1
0
Fork 0

can: peak: add support for PEAK PCAN-PCIe FD CAN-FD boards

This patch adds the support of the PCAN-PCI Express FD boards made
by PEAK-System, for computers using the PCI Express slot.

The PCAN-PCI Express FD has one or two CAN FD channels, depending
on the model. A galvanic isolation of the CAN ports protects
the electronics of the card and the respective computer against
disturbances of up to 500 Volts. The PCAN-PCI Express FD can be operated
with ambient temperatures in a range of -40 to +85 °C.

Such boards run an extented version of the CAN-FD IP running into USB
CAN-FD interfaces from PEAK-System, so this patch adds several new commands
and their corresponding data types to the PEAK CAN-FD common definitions
header file too.

Signed-off-by: Stephane Grosjean <s.grosjean@peak-system.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
zero-colors
Stephane Grosjean 2017-01-19 16:31:07 +01:00 committed by Marc Kleine-Budde
parent c3df7c5755
commit 8ac8321e4a
8 changed files with 1783 additions and 0 deletions

View File

@ -142,6 +142,7 @@ source "drivers/net/can/cc770/Kconfig"
source "drivers/net/can/ifi_canfd/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/mscan/Kconfig"
source "drivers/net/can/peak_canfd/Kconfig"
source "drivers/net/can/rcar/Kconfig"
source "drivers/net/can/sja1000/Kconfig"
source "drivers/net/can/softing/Kconfig"

View File

@ -26,6 +26,7 @@ obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd/
obj-$(CONFIG_CAN_JANZ_ICAN3) += janz-ican3.o
obj-$(CONFIG_CAN_MSCAN) += mscan/
obj-$(CONFIG_CAN_M_CAN) += m_can/
obj-$(CONFIG_CAN_PEAK_PCIEFD) += peak_canfd/
obj-$(CONFIG_CAN_SJA1000) += sja1000/
obj-$(CONFIG_CAN_SUN4I) += sun4i_can.o
obj-$(CONFIG_CAN_TI_HECC) += ti_hecc.o

View File

@ -0,0 +1,13 @@
config CAN_PEAK_PCIEFD
depends on PCI
tristate "PEAK-System PCAN-PCIe FD cards"
---help---
This driver adds support for the PEAK-System PCI Express FD
CAN-FD cards family.
These 1x or 2x CAN-FD channels cards offer CAN 2.0 a/b as well as
CAN-FD access to the CAN bus. Besides the nominal bitrate of up to
1 Mbit/s, the data bytes of CAN-FD frames can be transmitted with
up to 12 Mbit/s. A galvanic isolation of the CAN ports protects the
electronics of the card and the respective computer against
disturbances of up to 500 Volts. The PCAN-PCI Express FD can be
operated with ambient temperatures in a range of -40 to +85 °C.

View File

@ -0,0 +1,5 @@
#
# Makefile for the PEAK-System CAN-FD IP module drivers
#
obj-$(CONFIG_CAN_PEAK_PCIEFD) += peak_pciefd.o
peak_pciefd-y := peak_pciefd_main.o peak_canfd.o

View File

@ -0,0 +1,801 @@
/*
* Copyright (C) 2007, 2011 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Copyright (C) 2016 PEAK System-Technik GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/can.h>
#include <linux/can/dev.h>
#include "peak_canfd_user.h"
/* internal IP core cache size (used as default echo skbs max number) */
#define PCANFD_ECHO_SKB_MAX 24
/* bittiming ranges of the PEAK-System PC CAN-FD interfaces */
static const struct can_bittiming_const peak_canfd_nominal_const = {
.name = "peak_canfd",
.tseg1_min = 1,
.tseg1_max = (1 << PUCAN_TSLOW_TSGEG1_BITS),
.tseg2_min = 1,
.tseg2_max = (1 << PUCAN_TSLOW_TSGEG2_BITS),
.sjw_max = (1 << PUCAN_TSLOW_SJW_BITS),
.brp_min = 1,
.brp_max = (1 << PUCAN_TSLOW_BRP_BITS),
.brp_inc = 1,
};
static const struct can_bittiming_const peak_canfd_data_const = {
.name = "peak_canfd",
.tseg1_min = 1,
.tseg1_max = (1 << PUCAN_TFAST_TSGEG1_BITS),
.tseg2_min = 1,
.tseg2_max = (1 << PUCAN_TFAST_TSGEG2_BITS),
.sjw_max = (1 << PUCAN_TFAST_SJW_BITS),
.brp_min = 1,
.brp_max = (1 << PUCAN_TFAST_BRP_BITS),
.brp_inc = 1,
};
static struct peak_canfd_priv *pucan_init_cmd(struct peak_canfd_priv *priv)
{
priv->cmd_len = 0;
return priv;
}
static void *pucan_add_cmd(struct peak_canfd_priv *priv, int cmd_op)
{
struct pucan_command *cmd;
if (priv->cmd_len + sizeof(*cmd) > priv->cmd_maxlen)
return NULL;
cmd = priv->cmd_buffer + priv->cmd_len;
/* reset all unused bit to default */
memset(cmd, 0, sizeof(*cmd));
cmd->opcode_channel = pucan_cmd_opcode_channel(priv->index, cmd_op);
priv->cmd_len += sizeof(*cmd);
return cmd;
}
static int pucan_write_cmd(struct peak_canfd_priv *priv)
{
int err;
if (priv->pre_cmd) {
err = priv->pre_cmd(priv);
if (err)
return err;
}
err = priv->write_cmd(priv);
if (err)
return err;
if (priv->post_cmd)
err = priv->post_cmd(priv);
return err;
}
/* uCAN commands interface functions */
static int pucan_set_reset_mode(struct peak_canfd_priv *priv)
{
pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_RESET_MODE);
return pucan_write_cmd(priv);
}
static int pucan_set_normal_mode(struct peak_canfd_priv *priv)
{
int err;
pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_NORMAL_MODE);
err = pucan_write_cmd(priv);
if (!err)
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return err;
}
static int pucan_set_listen_only_mode(struct peak_canfd_priv *priv)
{
int err;
pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_LISTEN_ONLY_MODE);
err = pucan_write_cmd(priv);
if (!err)
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return err;
}
static int pucan_set_timing_slow(struct peak_canfd_priv *priv,
const struct can_bittiming *pbt)
{
struct pucan_timing_slow *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TIMING_SLOW);
cmd->sjw_t = PUCAN_TSLOW_SJW_T(pbt->sjw - 1,
priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES);
cmd->tseg1 = PUCAN_TSLOW_TSEG1(pbt->prop_seg + pbt->phase_seg1 - 1);
cmd->tseg2 = PUCAN_TSLOW_TSEG2(pbt->phase_seg2 - 1);
cmd->brp = cpu_to_le16(PUCAN_TSLOW_BRP(pbt->brp - 1));
cmd->ewl = 96; /* default */
netdev_dbg(priv->ndev,
"nominal: brp=%u tseg1=%u tseg2=%u sjw=%u\n",
le16_to_cpu(cmd->brp), cmd->tseg1, cmd->tseg2, cmd->sjw_t);
return pucan_write_cmd(priv);
}
static int pucan_set_timing_fast(struct peak_canfd_priv *priv,
const struct can_bittiming *pbt)
{
struct pucan_timing_fast *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TIMING_FAST);
cmd->sjw = PUCAN_TFAST_SJW(pbt->sjw - 1);
cmd->tseg1 = PUCAN_TFAST_TSEG1(pbt->prop_seg + pbt->phase_seg1 - 1);
cmd->tseg2 = PUCAN_TFAST_TSEG2(pbt->phase_seg2 - 1);
cmd->brp = cpu_to_le16(PUCAN_TFAST_BRP(pbt->brp - 1));
netdev_dbg(priv->ndev,
"data: brp=%u tseg1=%u tseg2=%u sjw=%u\n",
le16_to_cpu(cmd->brp), cmd->tseg1, cmd->tseg2, cmd->sjw);
return pucan_write_cmd(priv);
}
static int pucan_set_std_filter(struct peak_canfd_priv *priv, u8 row, u32 mask)
{
struct pucan_std_filter *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_SET_STD_FILTER);
/* all the 11-bits CAN ID values are represented by one bit in a
* 64 rows array of 32 bits: the upper 6 bits of the CAN ID select the
* row while the lowest 5 bits select the bit in that row.
*
* bit filter
* 1 passed
* 0 discarded
*/
/* select the row */
cmd->idx = row;
/* set/unset bits in the row */
cmd->mask = cpu_to_le32(mask);
return pucan_write_cmd(priv);
}
static int pucan_tx_abort(struct peak_canfd_priv *priv, u16 flags)
{
struct pucan_tx_abort *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TX_ABORT);
cmd->flags = cpu_to_le16(flags);
return pucan_write_cmd(priv);
}
static int pucan_clr_err_counters(struct peak_canfd_priv *priv)
{
struct pucan_wr_err_cnt *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_WR_ERR_CNT);
cmd->sel_mask = cpu_to_le16(PUCAN_WRERRCNT_TE | PUCAN_WRERRCNT_RE);
cmd->tx_counter = 0;
cmd->rx_counter = 0;
return pucan_write_cmd(priv);
}
static int pucan_set_options(struct peak_canfd_priv *priv, u16 opt_mask)
{
struct pucan_options *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_SET_EN_OPTION);
cmd->options = cpu_to_le16(opt_mask);
return pucan_write_cmd(priv);
}
static int pucan_clr_options(struct peak_canfd_priv *priv, u16 opt_mask)
{
struct pucan_options *cmd;
cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_CLR_DIS_OPTION);
cmd->options = cpu_to_le16(opt_mask);
return pucan_write_cmd(priv);
}
static int pucan_setup_rx_barrier(struct peak_canfd_priv *priv)
{
pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_RX_BARRIER);
return pucan_write_cmd(priv);
}
/* handle the reception of one CAN frame */
static int pucan_handle_can_rx(struct peak_canfd_priv *priv,
struct pucan_rx_msg *msg)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
const u16 rx_msg_flags = le16_to_cpu(msg->flags);
u8 cf_len;
if (rx_msg_flags & PUCAN_MSG_EXT_DATA_LEN)
cf_len = can_dlc2len(get_canfd_dlc(pucan_msg_get_dlc(msg)));
else
cf_len = get_can_dlc(pucan_msg_get_dlc(msg));
/* if this frame is an echo, */
if ((rx_msg_flags & PUCAN_MSG_LOOPED_BACK) &&
!(rx_msg_flags & PUCAN_MSG_SELF_RECEIVE)) {
int n;
unsigned long flags;
spin_lock_irqsave(&priv->echo_lock, flags);
n = can_get_echo_skb(priv->ndev, msg->client);
spin_unlock_irqrestore(&priv->echo_lock, flags);
/* count bytes of the echo instead of skb */
stats->tx_bytes += cf_len;
stats->tx_packets++;
if (n) {
/* restart tx queue only if a slot is free */
netif_wake_queue(priv->ndev);
}
return 0;
}
/* otherwise, it should be pushed into rx fifo */
if (rx_msg_flags & PUCAN_MSG_EXT_DATA_LEN) {
/* CANFD frame case */
skb = alloc_canfd_skb(priv->ndev, &cf);
if (!skb)
return -ENOMEM;
if (rx_msg_flags & PUCAN_MSG_BITRATE_SWITCH)
cf->flags |= CANFD_BRS;
if (rx_msg_flags & PUCAN_MSG_ERROR_STATE_IND)
cf->flags |= CANFD_ESI;
} else {
/* CAN 2.0 frame case */
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
if (!skb)
return -ENOMEM;
}
cf->can_id = le32_to_cpu(msg->can_id);
cf->len = cf_len;
if (rx_msg_flags & PUCAN_MSG_EXT_ID)
cf->can_id |= CAN_EFF_FLAG;
if (rx_msg_flags & PUCAN_MSG_RTR)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, msg->d, cf->len);
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_rx(skb);
return 0;
}
/* handle rx/tx error counters notification */
static int pucan_handle_error(struct peak_canfd_priv *priv,
struct pucan_error_msg *msg)
{
priv->bec.txerr = msg->tx_err_cnt;
priv->bec.rxerr = msg->rx_err_cnt;
return 0;
}
/* handle status notification */
static int pucan_handle_status(struct peak_canfd_priv *priv,
struct pucan_status_msg *msg)
{
struct net_device *ndev = priv->ndev;
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
/* this STATUS is the CNF of the RX_BARRIER: Tx path can be setup */
if (pucan_status_is_rx_barrier(msg)) {
unsigned long flags;
if (priv->enable_tx_path) {
int err = priv->enable_tx_path(priv);
if (err)
return err;
}
/* restart network queue only if echo skb array is free */
spin_lock_irqsave(&priv->echo_lock, flags);
if (!priv->can.echo_skb[priv->echo_idx]) {
spin_unlock_irqrestore(&priv->echo_lock, flags);
netif_wake_queue(ndev);
} else {
spin_unlock_irqrestore(&priv->echo_lock, flags);
}
return 0;
}
skb = alloc_can_err_skb(ndev, &cf);
/* test state error bits according to their priority */
if (pucan_status_is_busoff(msg)) {
netdev_dbg(ndev, "Bus-off entry status\n");
priv->can.state = CAN_STATE_BUS_OFF;
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
if (skb)
cf->can_id |= CAN_ERR_BUSOFF;
} else if (pucan_status_is_passive(msg)) {
netdev_dbg(ndev, "Error passive status\n");
priv->can.state = CAN_STATE_ERROR_PASSIVE;
priv->can.can_stats.error_passive++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = (priv->bec.txerr > priv->bec.rxerr) ?
CAN_ERR_CRTL_TX_PASSIVE :
CAN_ERR_CRTL_RX_PASSIVE;
cf->data[6] = priv->bec.txerr;
cf->data[7] = priv->bec.rxerr;
}
} else if (pucan_status_is_warning(msg)) {
netdev_dbg(ndev, "Error warning status\n");
priv->can.state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = (priv->bec.txerr > priv->bec.rxerr) ?
CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = priv->bec.txerr;
cf->data[7] = priv->bec.rxerr;
}
} else if (priv->can.state != CAN_STATE_ERROR_ACTIVE) {
/* back to ERROR_ACTIVE */
netdev_dbg(ndev, "Error active status\n");
can_change_state(ndev, cf, CAN_STATE_ERROR_ACTIVE,
CAN_STATE_ERROR_ACTIVE);
} else {
dev_kfree_skb(skb);
return 0;
}
if (!skb) {
stats->rx_dropped++;
return -ENOMEM;
}
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
return 0;
}
/* handle uCAN Rx overflow notification */
static int pucan_handle_cache_critical(struct peak_canfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
stats->rx_over_errors++;
stats->rx_errors++;
skb = alloc_can_err_skb(priv->ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return -ENOMEM;
}
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
cf->data[6] = priv->bec.txerr;
cf->data[7] = priv->bec.rxerr;
stats->rx_bytes += cf->can_dlc;
stats->rx_packets++;
netif_rx(skb);
return 0;
}
/* handle a single uCAN message */
int peak_canfd_handle_msg(struct peak_canfd_priv *priv,
struct pucan_rx_msg *msg)
{
u16 msg_type = le16_to_cpu(msg->type);
int msg_size = le16_to_cpu(msg->size);
int err;
if (!msg_size || !msg_type) {
/* null packet found: end of list */
goto exit;
}
switch (msg_type) {
case PUCAN_MSG_CAN_RX:
err = pucan_handle_can_rx(priv, (struct pucan_rx_msg *)msg);
break;
case PUCAN_MSG_ERROR:
err = pucan_handle_error(priv, (struct pucan_error_msg *)msg);
break;
case PUCAN_MSG_STATUS:
err = pucan_handle_status(priv, (struct pucan_status_msg *)msg);
break;
case PUCAN_MSG_CACHE_CRITICAL:
err = pucan_handle_cache_critical(priv);
break;
default:
err = 0;
}
if (err < 0)
return err;
exit:
return msg_size;
}
/* handle a list of rx_count messages from rx_msg memory address */
int peak_canfd_handle_msgs_list(struct peak_canfd_priv *priv,
struct pucan_rx_msg *msg_list, int msg_count)
{
void *msg_ptr = msg_list;
int i, msg_size;
for (i = 0; i < msg_count; i++) {
msg_size = peak_canfd_handle_msg(priv, msg_ptr);
/* a null packet can be found at the end of a list */
if (msg_size <= 0)
break;
msg_ptr += msg_size;
}
if (msg_size < 0)
return msg_size;
return i;
}
static int peak_canfd_start(struct peak_canfd_priv *priv)
{
int err;
err = pucan_clr_err_counters(priv);
if (err)
goto err_exit;
priv->echo_idx = 0;
priv->bec.txerr = 0;
priv->bec.rxerr = 0;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
err = pucan_set_listen_only_mode(priv);
else
err = pucan_set_normal_mode(priv);
err_exit:
return err;
}
static void peak_canfd_stop(struct peak_canfd_priv *priv)
{
int err;
/* go back to RESET mode */
err = pucan_set_reset_mode(priv);
if (err) {
netdev_err(priv->ndev, "channel %u reset failed\n",
priv->index);
} else {
/* abort last Tx (MUST be done in RESET mode only!) */
pucan_tx_abort(priv, PUCAN_TX_ABORT_FLUSH);
}
}
static int peak_canfd_set_mode(struct net_device *ndev, enum can_mode mode)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
switch (mode) {
case CAN_MODE_START:
peak_canfd_start(priv);
netif_wake_queue(ndev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int peak_canfd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
*bec = priv->bec;
return 0;
}
static int peak_canfd_open(struct net_device *ndev)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
int i, err = 0;
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed, error %d\n", err);
goto err_exit;
}
err = pucan_set_reset_mode(priv);
if (err)
goto err_close;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
err = pucan_clr_options(priv, PUCAN_OPTION_CANDFDISO);
else
err = pucan_set_options(priv, PUCAN_OPTION_CANDFDISO);
if (err)
goto err_close;
}
/* set option: get rx/tx error counters */
err = pucan_set_options(priv, PUCAN_OPTION_ERROR);
if (err)
goto err_close;
/* accept all standard CAN ID */
for (i = 0; i <= PUCAN_FLTSTD_ROW_IDX_MAX; i++)
pucan_set_std_filter(priv, i, 0xffffffff);
err = peak_canfd_start(priv);
if (err)
goto err_close;
/* receiving the RB status says when Tx path is ready */
err = pucan_setup_rx_barrier(priv);
if (!err)
goto err_exit;
err_close:
close_candev(ndev);
err_exit:
return err;
}
static int peak_canfd_set_bittiming(struct net_device *ndev)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
return pucan_set_timing_slow(priv, &priv->can.bittiming);
}
static int peak_canfd_set_data_bittiming(struct net_device *ndev)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
return pucan_set_timing_fast(priv, &priv->can.data_bittiming);
}
static int peak_canfd_close(struct net_device *ndev)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
peak_canfd_stop(priv);
close_candev(ndev);
return 0;
}
static netdev_tx_t peak_canfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct peak_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
struct pucan_tx_msg *msg;
u16 msg_size, msg_flags;
unsigned long flags;
bool should_stop_tx_queue;
int room_left;
u8 can_dlc;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
msg_size = ALIGN(sizeof(*msg) + cf->len, 4);
msg = priv->alloc_tx_msg(priv, msg_size, &room_left);
/* should never happen except under bus-off condition and (auto-)restart
* mechanism
*/
if (!msg) {
stats->tx_dropped++;
netif_stop_queue(ndev);
return NETDEV_TX_BUSY;
}
msg->size = cpu_to_le16(msg_size);
msg->type = cpu_to_le16(PUCAN_MSG_CAN_TX);
msg_flags = 0;
if (cf->can_id & CAN_EFF_FLAG) {
msg_flags |= PUCAN_MSG_EXT_ID;
msg->can_id = cpu_to_le32(cf->can_id & CAN_EFF_MASK);
} else {
msg->can_id = cpu_to_le32(cf->can_id & CAN_SFF_MASK);
}
if (can_is_canfd_skb(skb)) {
/* CAN FD frame format */
can_dlc = can_len2dlc(cf->len);
msg_flags |= PUCAN_MSG_EXT_DATA_LEN;
if (cf->flags & CANFD_BRS)
msg_flags |= PUCAN_MSG_BITRATE_SWITCH;
if (cf->flags & CANFD_ESI)
msg_flags |= PUCAN_MSG_ERROR_STATE_IND;
} else {
/* CAN 2.0 frame format */
can_dlc = cf->len;
if (cf->can_id & CAN_RTR_FLAG)
msg_flags |= PUCAN_MSG_RTR;
}
/* always ask loopback for echo management */
msg_flags |= PUCAN_MSG_LOOPED_BACK;
/* set driver specific bit to differentiate with application loopback */
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
msg_flags |= PUCAN_MSG_SELF_RECEIVE;
msg->flags = cpu_to_le16(msg_flags);
msg->channel_dlc = PUCAN_MSG_CHANNEL_DLC(priv->index, can_dlc);
memcpy(msg->d, cf->data, cf->len);
/* struct msg client field is used as an index in the echo skbs ring */
msg->client = priv->echo_idx;
spin_lock_irqsave(&priv->echo_lock, flags);
/* prepare and save echo skb in internal slot */
can_put_echo_skb(skb, ndev, priv->echo_idx);
/* move echo index to the next slot */
priv->echo_idx = (priv->echo_idx + 1) % priv->can.echo_skb_max;
/* if next slot is not free, stop network queue (no slot free in echo
* skb ring means that the controller did not write these frames on
* the bus: no need to continue).
*/
should_stop_tx_queue = !!(priv->can.echo_skb[priv->echo_idx]);
spin_unlock_irqrestore(&priv->echo_lock, flags);
/* write the skb on the interface */
priv->write_tx_msg(priv, msg);
/* stop network tx queue if not enough room to save one more msg too */
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
should_stop_tx_queue |= (room_left <
(sizeof(*msg) + CANFD_MAX_DLEN));
else
should_stop_tx_queue |= (room_left <
(sizeof(*msg) + CAN_MAX_DLEN));
if (should_stop_tx_queue)
netif_stop_queue(ndev);
return NETDEV_TX_OK;
}
static const struct net_device_ops peak_canfd_netdev_ops = {
.ndo_open = peak_canfd_open,
.ndo_stop = peak_canfd_close,
.ndo_start_xmit = peak_canfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
struct net_device *alloc_peak_canfd_dev(int sizeof_priv, int index,
int echo_skb_max)
{
struct net_device *ndev;
struct peak_canfd_priv *priv;
/* we DO support local echo */
if (echo_skb_max < 0)
echo_skb_max = PCANFD_ECHO_SKB_MAX;
/* allocate the candev object */
ndev = alloc_candev(sizeof_priv, echo_skb_max);
if (!ndev)
return NULL;
priv = netdev_priv(ndev);
/* complete now socket-can initialization side */
priv->can.state = CAN_STATE_STOPPED;
priv->can.bittiming_const = &peak_canfd_nominal_const;
priv->can.data_bittiming_const = &peak_canfd_data_const;
priv->can.do_set_mode = peak_canfd_set_mode;
priv->can.do_get_berr_counter = peak_canfd_get_berr_counter;
priv->can.do_set_bittiming = peak_canfd_set_bittiming;
priv->can.do_set_data_bittiming = peak_canfd_set_data_bittiming;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_3_SAMPLES |
CAN_CTRLMODE_FD |
CAN_CTRLMODE_FD_NON_ISO |
CAN_CTRLMODE_BERR_REPORTING;
priv->ndev = ndev;
priv->index = index;
priv->cmd_len = 0;
spin_lock_init(&priv->echo_lock);
ndev->flags |= IFF_ECHO;
ndev->netdev_ops = &peak_canfd_netdev_ops;
ndev->dev_id = index;
return ndev;
}

View File

@ -0,0 +1,55 @@
/*
* CAN driver for PEAK System micro-CAN based adapters
*
* Copyright (C) 2003-2011 PEAK System-Technik GmbH
* Copyright (C) 2011-2013 Stephane Grosjean <s.grosjean@peak-system.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef PEAK_CANFD_USER_H
#define PEAK_CANFD_USER_H
#include <linux/can/dev/peak_canfd.h>
#define PCANFD_ECHO_SKB_DEF -1
/* data structure private to each uCAN interface */
struct peak_canfd_priv {
struct can_priv can; /* socket-can private data */
struct net_device *ndev; /* network device */
int index; /* channel index */
struct can_berr_counter bec; /* rx/tx err counters */
int echo_idx; /* echo skb free slot index */
spinlock_t echo_lock;
int cmd_len;
void *cmd_buffer;
int cmd_maxlen;
int (*pre_cmd)(struct peak_canfd_priv *priv);
int (*write_cmd)(struct peak_canfd_priv *priv);
int (*post_cmd)(struct peak_canfd_priv *priv);
int (*enable_tx_path)(struct peak_canfd_priv *priv);
void *(*alloc_tx_msg)(struct peak_canfd_priv *priv, u16 msg_size,
int *room_left);
int (*write_tx_msg)(struct peak_canfd_priv *priv,
struct pucan_tx_msg *msg);
};
struct net_device *alloc_peak_canfd_dev(int sizeof_priv, int index,
int echo_skb_max);
int peak_canfd_handle_msg(struct peak_canfd_priv *priv,
struct pucan_rx_msg *msg);
int peak_canfd_handle_msgs_list(struct peak_canfd_priv *priv,
struct pucan_rx_msg *rx_msg, int rx_count);
#endif

View File

@ -0,0 +1,842 @@
/*
* Copyright (C) 2007, 2011 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Derived from the PCAN project file driver/src/pcan_pci.c:
*
* Copyright (C) 2001-2006 PEAK System-Technik GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include "peak_canfd_user.h"
MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>");
MODULE_DESCRIPTION("Socket-CAN driver for PEAK PCAN PCIe FD family cards");
MODULE_SUPPORTED_DEVICE("PEAK PCAN PCIe FD CAN cards");
MODULE_LICENSE("GPL v2");
#define PCIEFD_DRV_NAME "peak_pciefd"
#define PEAK_PCI_VENDOR_ID 0x001c /* The PCI device and vendor IDs */
#define PEAK_PCIEFD_ID 0x0013 /* for PCIe slot cards */
/* PEAK PCIe board access description */
#define PCIEFD_BAR0_SIZE (64 * 1024)
#define PCIEFD_RX_DMA_SIZE (4 * 1024)
#define PCIEFD_TX_DMA_SIZE (4 * 1024)
#define PCIEFD_TX_PAGE_SIZE (2 * 1024)
/* System Control Registers */
#define PCIEFD_REG_SYS_CTL_SET 0x0000 /* set bits */
#define PCIEFD_REG_SYS_CTL_CLR 0x0004 /* clear bits */
/* Version info registers */
#define PCIEFD_REG_SYS_VER1 0x0040 /* version reg #1 */
#define PCIEFD_REG_SYS_VER2 0x0044 /* version reg #2 */
/* System Control Registers Bits */
#define PCIEFD_SYS_CTL_TS_RST 0x00000001 /* timestamp clock */
#define PCIEFD_SYS_CTL_CLK_EN 0x00000002 /* system clock */
/* CAN-FD channel addresses */
#define PCIEFD_CANX_OFF(c) (((c) + 1) * 0x1000)
#define PCIEFD_ECHO_SKB_MAX PCANFD_ECHO_SKB_DEF
/* CAN-FD channel registers */
#define PCIEFD_REG_CAN_MISC 0x0000 /* Misc. control */
#define PCIEFD_REG_CAN_CLK_SEL 0x0008 /* Clock selector */
#define PCIEFD_REG_CAN_CMD_PORT_L 0x0010 /* 64-bits command port */
#define PCIEFD_REG_CAN_CMD_PORT_H 0x0014
#define PCIEFD_REG_CAN_TX_REQ_ACC 0x0020 /* Tx request accumulator */
#define PCIEFD_REG_CAN_TX_CTL_SET 0x0030 /* Tx control set register */
#define PCIEFD_REG_CAN_TX_CTL_CLR 0x0038 /* Tx control clear register */
#define PCIEFD_REG_CAN_TX_DMA_ADDR_L 0x0040 /* 64-bits addr for Tx DMA */
#define PCIEFD_REG_CAN_TX_DMA_ADDR_H 0x0044
#define PCIEFD_REG_CAN_RX_CTL_SET 0x0050 /* Rx control set register */
#define PCIEFD_REG_CAN_RX_CTL_CLR 0x0058 /* Rx control clear register */
#define PCIEFD_REG_CAN_RX_CTL_WRT 0x0060 /* Rx control write register */
#define PCIEFD_REG_CAN_RX_CTL_ACK 0x0068 /* Rx control ACK register */
#define PCIEFD_REG_CAN_RX_DMA_ADDR_L 0x0070 /* 64-bits addr for Rx DMA */
#define PCIEFD_REG_CAN_RX_DMA_ADDR_H 0x0074
/* CAN-FD channel misc register bits */
#define CANFD_MISC_TS_RST 0x00000001 /* timestamp cnt rst */
/* CAN-FD channel Clock SELector Source & DIVider */
#define CANFD_CLK_SEL_DIV_MASK 0x00000007
#define CANFD_CLK_SEL_DIV_60MHZ 0x00000000 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_40MHZ 0x00000001 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_30MHZ 0x00000002 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_24MHZ 0x00000003 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_20MHZ 0x00000004 /* SRC=240MHz only */
#define CANFD_CLK_SEL_SRC_MASK 0x00000008 /* 0=80MHz, 1=240MHz */
#define CANFD_CLK_SEL_SRC_240MHZ 0x00000008
#define CANFD_CLK_SEL_SRC_80MHZ (~CANFD_CLK_SEL_SRC_240MHZ & \
CANFD_CLK_SEL_SRC_MASK)
#define CANFD_CLK_SEL_20MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_20MHZ)
#define CANFD_CLK_SEL_24MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_24MHZ)
#define CANFD_CLK_SEL_30MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_30MHZ)
#define CANFD_CLK_SEL_40MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_40MHZ)
#define CANFD_CLK_SEL_60MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_60MHZ)
#define CANFD_CLK_SEL_80MHZ (CANFD_CLK_SEL_SRC_80MHZ)
/* CAN-FD channel Rx/Tx control register bits */
#define CANFD_CTL_UNC_BIT 0x00010000 /* Uncached DMA mem */
#define CANFD_CTL_RST_BIT 0x00020000 /* reset DMA action */
#define CANFD_CTL_IEN_BIT 0x00040000 /* IRQ enable */
/* Rx IRQ Count and Time Limits */
#define CANFD_CTL_IRQ_CL_DEF 16 /* Rx msg max nb per IRQ in Rx DMA */
#define CANFD_CTL_IRQ_TL_DEF 10 /* Time before IRQ if < CL (x100 µs) */
#define CANFD_OPTIONS_SET (CANFD_OPTION_ERROR | CANFD_OPTION_BUSLOAD)
/* Tx anticipation window (link logical address should be aligned on 2K
* boundary)
*/
#define PCIEFD_TX_PAGE_COUNT (PCIEFD_TX_DMA_SIZE / PCIEFD_TX_PAGE_SIZE)
#define CANFD_MSG_LNK_TX 0x1001 /* Tx msgs link */
/* 32-bits IRQ status fields, heading Rx DMA area */
static inline int pciefd_irq_tag(u32 irq_status)
{
return irq_status & 0x0000000f;
}
static inline int pciefd_irq_rx_cnt(u32 irq_status)
{
return (irq_status & 0x000007f0) >> 4;
}
static inline int pciefd_irq_is_lnk(u32 irq_status)
{
return irq_status & 0x00010000;
}
/* Rx record */
struct pciefd_rx_dma {
__le32 irq_status;
__le32 sys_time_low;
__le32 sys_time_high;
struct pucan_rx_msg msg[0];
} __packed __aligned(4);
/* Tx Link record */
struct pciefd_tx_link {
__le16 size;
__le16 type;
__le32 laddr_lo;
__le32 laddr_hi;
} __packed __aligned(4);
/* Tx page descriptor */
struct pciefd_page {
void *vbase; /* page virtual address */
dma_addr_t lbase; /* page logical address */
u32 offset;
u32 size;
};
#define CANFD_IRQ_SET 0x00000001
#define CANFD_TX_PATH_SET 0x00000002
/* CAN-FD channel object */
struct pciefd_board;
struct pciefd_can {
struct peak_canfd_priv ucan; /* must be the first member */
void __iomem *reg_base; /* channel config base addr */
struct pciefd_board *board; /* reverse link */
struct pucan_command pucan_cmd; /* command buffer */
dma_addr_t rx_dma_laddr; /* DMA virtual and logical addr */
void *rx_dma_vaddr; /* for Rx and Tx areas */
dma_addr_t tx_dma_laddr;
void *tx_dma_vaddr;
struct pciefd_page tx_pages[PCIEFD_TX_PAGE_COUNT];
u16 tx_pages_free; /* free Tx pages counter */
u16 tx_page_index; /* current page used for Tx */
spinlock_t tx_lock;
u32 irq_status;
u32 irq_tag; /* next irq tag */
};
/* PEAK-PCIe FD board object */
struct pciefd_board {
void __iomem *reg_base;
struct pci_dev *pci_dev;
int can_count;
spinlock_t cmd_lock; /* 64-bits cmds must be atomic */
struct pciefd_can *can[0]; /* array of network devices */
};
/* supported device ids. */
static const struct pci_device_id peak_pciefd_tbl[] = {
{PEAK_PCI_VENDOR_ID, PEAK_PCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, peak_pciefd_tbl);
/* read a 32 bits value from a SYS block register */
static inline u32 pciefd_sys_readreg(const struct pciefd_board *priv, u16 reg)
{
return readl(priv->reg_base + reg);
}
/* write a 32 bits value into a SYS block register */
static inline void pciefd_sys_writereg(const struct pciefd_board *priv,
u32 val, u16 reg)
{
writel(val, priv->reg_base + reg);
}
/* read a 32 bits value from CAN-FD block register */
static inline u32 pciefd_can_readreg(const struct pciefd_can *priv, u16 reg)
{
return readl(priv->reg_base + reg);
}
/* write a 32 bits value into a CAN-FD block register */
static inline void pciefd_can_writereg(const struct pciefd_can *priv,
u32 val, u16 reg)
{
writel(val, priv->reg_base + reg);
}
/* give a channel logical Rx DMA address to the board */
static void pciefd_can_setup_rx_dma(struct pciefd_can *priv)
{
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
const u32 dma_addr_h = (u32)(priv->rx_dma_laddr >> 32);
#else
const u32 dma_addr_h = 0;
#endif
/* (DMA must be reset for Rx) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET);
/* write the logical address of the Rx DMA area for this channel */
pciefd_can_writereg(priv, (u32)priv->rx_dma_laddr,
PCIEFD_REG_CAN_RX_DMA_ADDR_L);
pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_RX_DMA_ADDR_H);
/* also indicates that Rx DMA is cacheable */
pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_RX_CTL_CLR);
}
/* clear channel logical Rx DMA address from the board */
static void pciefd_can_clear_rx_dma(struct pciefd_can *priv)
{
/* DMA must be reset for Rx */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET);
/* clear the logical address of the Rx DMA area for this channel */
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_L);
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_H);
}
/* give a channel logical Tx DMA address to the board */
static void pciefd_can_setup_tx_dma(struct pciefd_can *priv)
{
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
const u32 dma_addr_h = (u32)(priv->tx_dma_laddr >> 32);
#else
const u32 dma_addr_h = 0;
#endif
/* (DMA must be reset for Tx) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET);
/* write the logical address of the Tx DMA area for this channel */
pciefd_can_writereg(priv, (u32)priv->tx_dma_laddr,
PCIEFD_REG_CAN_TX_DMA_ADDR_L);
pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_TX_DMA_ADDR_H);
/* also indicates that Tx DMA is cacheable */
pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_TX_CTL_CLR);
}
/* clear channel logical Tx DMA address from the board */
static void pciefd_can_clear_tx_dma(struct pciefd_can *priv)
{
/* DMA must be reset for Tx */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET);
/* clear the logical address of the Tx DMA area for this channel */
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_L);
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_H);
}
static void pciefd_can_ack_rx_dma(struct pciefd_can *priv)
{
/* read value of current IRQ tag and inc it for next one */
priv->irq_tag = le32_to_cpu(*(__le32 *)priv->rx_dma_vaddr);
priv->irq_tag++;
priv->irq_tag &= 0xf;
/* write the next IRQ tag for this CAN */
pciefd_can_writereg(priv, priv->irq_tag, PCIEFD_REG_CAN_RX_CTL_ACK);
}
/* IRQ handler */
static irqreturn_t pciefd_irq_handler(int irq, void *arg)
{
struct pciefd_can *priv = arg;
struct pciefd_rx_dma *rx_dma = priv->rx_dma_vaddr;
/* INTA mode only to sync with PCIe transaction */
if (!pci_dev_msi_enabled(priv->board->pci_dev))
(void)pciefd_sys_readreg(priv->board, PCIEFD_REG_SYS_VER1);
/* read IRQ status from the first 32-bits of the Rx DMA area */
priv->irq_status = le32_to_cpu(rx_dma->irq_status);
/* check if this (shared) IRQ is for this CAN */
if (pciefd_irq_tag(priv->irq_status) != priv->irq_tag)
return IRQ_NONE;
/* handle rx messages (if any) */
peak_canfd_handle_msgs_list(&priv->ucan,
rx_dma->msg,
pciefd_irq_rx_cnt(priv->irq_status));
/* handle tx link interrupt (if any) */
if (pciefd_irq_is_lnk(priv->irq_status)) {
unsigned long flags;
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_pages_free++;
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* wake producer up */
netif_wake_queue(priv->ucan.ndev);
}
/* re-enable Rx DMA transfer for this CAN */
pciefd_can_ack_rx_dma(priv);
return IRQ_HANDLED;
}
static int pciefd_enable_tx_path(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
int i;
/* initialize the Tx pages descriptors */
priv->tx_pages_free = PCIEFD_TX_PAGE_COUNT - 1;
priv->tx_page_index = 0;
priv->tx_pages[0].vbase = priv->tx_dma_vaddr;
priv->tx_pages[0].lbase = priv->tx_dma_laddr;
for (i = 0; i < PCIEFD_TX_PAGE_COUNT; i++) {
priv->tx_pages[i].offset = 0;
priv->tx_pages[i].size = PCIEFD_TX_PAGE_SIZE -
sizeof(struct pciefd_tx_link);
if (i) {
priv->tx_pages[i].vbase =
priv->tx_pages[i - 1].vbase +
PCIEFD_TX_PAGE_SIZE;
priv->tx_pages[i].lbase =
priv->tx_pages[i - 1].lbase +
PCIEFD_TX_PAGE_SIZE;
}
}
/* setup Tx DMA addresses into IP core */
pciefd_can_setup_tx_dma(priv);
/* start (TX_RST=0) Tx Path */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_CLR);
return 0;
}
/* board specific CANFD command pre-processing */
static int pciefd_pre_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd);
int err;
/* pre-process command */
switch (cmd) {
case PUCAN_CMD_NORMAL_MODE:
case PUCAN_CMD_LISTEN_ONLY_MODE:
if (ucan->can.state == CAN_STATE_BUS_OFF)
break;
/* going into operational mode: setup IRQ handler */
err = request_irq(priv->board->pci_dev->irq,
pciefd_irq_handler,
IRQF_SHARED,
PCIEFD_DRV_NAME,
priv);
if (err)
return err;
/* setup Rx DMA address */
pciefd_can_setup_rx_dma(priv);
/* setup max count of msgs per IRQ */
pciefd_can_writereg(priv, (CANFD_CTL_IRQ_TL_DEF) << 8 |
CANFD_CTL_IRQ_CL_DEF,
PCIEFD_REG_CAN_RX_CTL_WRT);
/* clear DMA RST for Rx (Rx start) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT,
PCIEFD_REG_CAN_RX_CTL_CLR);
/* reset timestamps */
pciefd_can_writereg(priv, !CANFD_MISC_TS_RST,
PCIEFD_REG_CAN_MISC);
/* do an initial ACK */
pciefd_can_ack_rx_dma(priv);
/* enable IRQ for this CAN after having set next irq_tag */
pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT,
PCIEFD_REG_CAN_RX_CTL_SET);
/* Tx path will be setup as soon as RX_BARRIER is received */
break;
default:
break;
}
return 0;
}
/* write a command */
static int pciefd_write_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
unsigned long flags;
/* 64-bits command is atomic */
spin_lock_irqsave(&priv->board->cmd_lock, flags);
pciefd_can_writereg(priv, *(u32 *)ucan->cmd_buffer,
PCIEFD_REG_CAN_CMD_PORT_L);
pciefd_can_writereg(priv, *(u32 *)(ucan->cmd_buffer + 4),
PCIEFD_REG_CAN_CMD_PORT_H);
spin_unlock_irqrestore(&priv->board->cmd_lock, flags);
return 0;
}
/* board specific CANFD command post-processing */
static int pciefd_post_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd);
switch (cmd) {
case PUCAN_CMD_RESET_MODE:
if (ucan->can.state == CAN_STATE_STOPPED)
break;
/* controller now in reset mode: */
/* stop and reset DMA addresses in Tx/Rx engines */
pciefd_can_clear_tx_dma(priv);
pciefd_can_clear_rx_dma(priv);
/* disable IRQ for this CAN */
pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT,
PCIEFD_REG_CAN_RX_CTL_CLR);
free_irq(priv->board->pci_dev->irq, priv);
ucan->can.state = CAN_STATE_STOPPED;
break;
}
return 0;
}
static void *pciefd_alloc_tx_msg(struct peak_canfd_priv *ucan, u16 msg_size,
int *room_left)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
struct pciefd_page *page = priv->tx_pages + priv->tx_page_index;
unsigned long flags;
void *msg;
spin_lock_irqsave(&priv->tx_lock, flags);
if (page->offset + msg_size > page->size) {
struct pciefd_tx_link *lk;
/* not enough space in this page: try another one */
if (!priv->tx_pages_free) {
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* Tx overflow */
return NULL;
}
priv->tx_pages_free--;
/* keep address of the very last free slot of current page */
lk = page->vbase + page->offset;
/* next, move on a new free page */
priv->tx_page_index = (priv->tx_page_index + 1) %
PCIEFD_TX_PAGE_COUNT;
page = priv->tx_pages + priv->tx_page_index;
/* put link record to this new page at the end of prev one */
lk->size = cpu_to_le16(sizeof(*lk));
lk->type = cpu_to_le16(CANFD_MSG_LNK_TX);
lk->laddr_lo = cpu_to_le32(page->lbase);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
lk->laddr_hi = cpu_to_le32(page->lbase >> 32);
#else
lk->laddr_hi = 0;
#endif
/* next msgs will be put from the begininng of this new page */
page->offset = 0;
}
*room_left = priv->tx_pages_free * page->size;
spin_unlock_irqrestore(&priv->tx_lock, flags);
msg = page->vbase + page->offset;
/* give back room left in the tx ring */
*room_left += page->size - (page->offset + msg_size);
return msg;
}
static int pciefd_write_tx_msg(struct peak_canfd_priv *ucan,
struct pucan_tx_msg *msg)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
struct pciefd_page *page = priv->tx_pages + priv->tx_page_index;
/* this slot is now reserved for writing the frame */
page->offset += le16_to_cpu(msg->size);
/* tell the board a frame has been written in Tx DMA area */
pciefd_can_writereg(priv, 1, PCIEFD_REG_CAN_TX_REQ_ACC);
return 0;
}
/* probe for CAN-FD channel #pciefd_board->can_count */
static int pciefd_can_probe(struct pciefd_board *pciefd)
{
struct net_device *ndev;
struct pciefd_can *priv;
u32 clk;
int err;
/* allocate the candev object with default isize of echo skbs ring */
ndev = alloc_peak_canfd_dev(sizeof(*priv), pciefd->can_count,
PCIEFD_ECHO_SKB_MAX);
if (!ndev) {
dev_err(&pciefd->pci_dev->dev,
"failed to alloc candev object\n");
goto failure;
}
priv = netdev_priv(ndev);
/* fill-in candev private object: */
/* setup PCIe-FD own callbacks */
priv->ucan.pre_cmd = pciefd_pre_cmd;
priv->ucan.write_cmd = pciefd_write_cmd;
priv->ucan.post_cmd = pciefd_post_cmd;
priv->ucan.enable_tx_path = pciefd_enable_tx_path;
priv->ucan.alloc_tx_msg = pciefd_alloc_tx_msg;
priv->ucan.write_tx_msg = pciefd_write_tx_msg;
/* setup PCIe-FD own command buffer */
priv->ucan.cmd_buffer = &priv->pucan_cmd;
priv->ucan.cmd_maxlen = sizeof(priv->pucan_cmd);
priv->board = pciefd;
/* CAN config regs block address */
priv->reg_base = pciefd->reg_base + PCIEFD_CANX_OFF(priv->ucan.index);
/* allocate non-cacheable DMA'able 4KB memory area for Rx */
priv->rx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev,
PCIEFD_RX_DMA_SIZE,
&priv->rx_dma_laddr,
GFP_KERNEL);
if (!priv->rx_dma_vaddr) {
dev_err(&pciefd->pci_dev->dev,
"Rx dmam_alloc_coherent(%u) failure\n",
PCIEFD_RX_DMA_SIZE);
goto err_free_candev;
}
/* allocate non-cacheable DMA'able 4KB memory area for Tx */
priv->tx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev,
PCIEFD_TX_DMA_SIZE,
&priv->tx_dma_laddr,
GFP_KERNEL);
if (!priv->tx_dma_vaddr) {
dev_err(&pciefd->pci_dev->dev,
"Tx dmaim_alloc_coherent(%u) failure\n",
PCIEFD_TX_DMA_SIZE);
goto err_free_candev;
}
/* CAN clock in RST mode */
pciefd_can_writereg(priv, CANFD_MISC_TS_RST, PCIEFD_REG_CAN_MISC);
/* read current clock value */
clk = pciefd_can_readreg(priv, PCIEFD_REG_CAN_CLK_SEL);
switch (clk) {
case CANFD_CLK_SEL_20MHZ:
priv->ucan.can.clock.freq = 20 * 1000 * 1000;
break;
case CANFD_CLK_SEL_24MHZ:
priv->ucan.can.clock.freq = 24 * 1000 * 1000;
break;
case CANFD_CLK_SEL_30MHZ:
priv->ucan.can.clock.freq = 30 * 1000 * 1000;
break;
case CANFD_CLK_SEL_40MHZ:
priv->ucan.can.clock.freq = 40 * 1000 * 1000;
break;
case CANFD_CLK_SEL_60MHZ:
priv->ucan.can.clock.freq = 60 * 1000 * 1000;
break;
default:
pciefd_can_writereg(priv, CANFD_CLK_SEL_80MHZ,
PCIEFD_REG_CAN_CLK_SEL);
/* fallthough */
case CANFD_CLK_SEL_80MHZ:
priv->ucan.can.clock.freq = 80 * 1000 * 1000;
break;
}
ndev->irq = pciefd->pci_dev->irq;
SET_NETDEV_DEV(ndev, &pciefd->pci_dev->dev);
err = register_candev(ndev);
if (err) {
dev_err(&pciefd->pci_dev->dev,
"couldn't register CAN device: %d\n", err);
goto err_free_candev;
}
spin_lock_init(&priv->tx_lock);
/* save the object address in the board structure */
pciefd->can[pciefd->can_count] = priv;
dev_info(&pciefd->pci_dev->dev, "%s at reg_base=0x%p irq=%d\n",
ndev->name, priv->reg_base, pciefd->pci_dev->irq);
return 0;
err_free_candev:
free_candev(ndev);
failure:
return -ENOMEM;
}
/* remove a CAN-FD channel by releasing all of its resources */
static void pciefd_can_remove(struct pciefd_can *priv)
{
/* unregister (close) the can device to go back to RST mode first */
unregister_candev(priv->ucan.ndev);
/* finally, free the candev object */
free_candev(priv->ucan.ndev);
}
/* remove all CAN-FD channels by releasing their own resources */
static void pciefd_can_remove_all(struct pciefd_board *pciefd)
{
while (pciefd->can_count > 0)
pciefd_can_remove(pciefd->can[--pciefd->can_count]);
}
/* probe for the entire device */
static int peak_pciefd_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct pciefd_board *pciefd;
int err, can_count;
u16 sub_sys_id;
u8 hw_ver_major;
u8 hw_ver_minor;
u8 hw_ver_sub;
u32 v2;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, PCIEFD_DRV_NAME);
if (err)
goto err_disable_pci;
/* the number of channels depends on sub-system id */
err = pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sub_sys_id);
if (err)
goto err_release_regions;
dev_dbg(&pdev->dev, "probing device %04x:%04x:%04x\n",
pdev->vendor, pdev->device, sub_sys_id);
if (sub_sys_id >= 0x0012)
can_count = 4;
else if (sub_sys_id >= 0x0010)
can_count = 3;
else if (sub_sys_id >= 0x0004)
can_count = 2;
else
can_count = 1;
/* allocate board structure object */
pciefd = devm_kzalloc(&pdev->dev, sizeof(*pciefd) +
can_count * sizeof(*pciefd->can),
GFP_KERNEL);
if (!pciefd) {
err = -ENOMEM;
goto err_release_regions;
}
/* initialize the board structure */
pciefd->pci_dev = pdev;
spin_lock_init(&pciefd->cmd_lock);
/* save the PCI BAR0 virtual address for further system regs access */
pciefd->reg_base = pci_iomap(pdev, 0, PCIEFD_BAR0_SIZE);
if (!pciefd->reg_base) {
dev_err(&pdev->dev, "failed to map PCI resource #0\n");
err = -ENOMEM;
goto err_release_regions;
}
/* read the firmware version number */
v2 = pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER2);
hw_ver_major = (v2 & 0x0000f000) >> 12;
hw_ver_minor = (v2 & 0x00000f00) >> 8;
hw_ver_sub = (v2 & 0x000000f0) >> 4;
dev_info(&pdev->dev,
"%ux CAN-FD PCAN-PCIe FPGA v%u.%u.%u:\n", can_count,
hw_ver_major, hw_ver_minor, hw_ver_sub);
/* stop system clock */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN,
PCIEFD_REG_SYS_CTL_CLR);
pci_set_master(pdev);
/* create now the corresponding channels objects */
while (pciefd->can_count < can_count) {
err = pciefd_can_probe(pciefd);
if (err)
goto err_free_canfd;
pciefd->can_count++;
}
/* set system timestamps counter in RST mode */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST,
PCIEFD_REG_SYS_CTL_SET);
/* wait a bit (read cycle) */
(void)pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER1);
/* free all clocks */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST,
PCIEFD_REG_SYS_CTL_CLR);
/* start system clock */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN,
PCIEFD_REG_SYS_CTL_SET);
/* remember the board structure address in the device user data */
pci_set_drvdata(pdev, pciefd);
return 0;
err_free_canfd:
pciefd_can_remove_all(pciefd);
pci_iounmap(pdev, pciefd->reg_base);
err_release_regions:
pci_release_regions(pdev);
err_disable_pci:
pci_disable_device(pdev);
return err;
}
/* free the board structure object, as well as its resources: */
static void peak_pciefd_remove(struct pci_dev *pdev)
{
struct pciefd_board *pciefd = pci_get_drvdata(pdev);
/* release CAN-FD channels resources */
pciefd_can_remove_all(pciefd);
pci_iounmap(pdev, pciefd->reg_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver peak_pciefd_driver = {
.name = PCIEFD_DRV_NAME,
.id_table = peak_pciefd_tbl,
.probe = peak_pciefd_probe,
.remove = peak_pciefd_remove,
};
module_pci_driver(peak_pciefd_driver);

View File

@ -23,11 +23,14 @@
#define PUCAN_CMD_LISTEN_ONLY_MODE 0x003
#define PUCAN_CMD_TIMING_SLOW 0x004
#define PUCAN_CMD_TIMING_FAST 0x005
#define PUCAN_CMD_SET_STD_FILTER 0x006
#define PUCAN_CMD_RESERVED2 0x007
#define PUCAN_CMD_FILTER_STD 0x008
#define PUCAN_CMD_TX_ABORT 0x009
#define PUCAN_CMD_WR_ERR_CNT 0x00a
#define PUCAN_CMD_SET_EN_OPTION 0x00b
#define PUCAN_CMD_CLR_DIS_OPTION 0x00c
#define PUCAN_CMD_RX_BARRIER 0x010
#define PUCAN_CMD_END_OF_COLLECTION 0x3ff
/* uCAN received messages list */
@ -35,6 +38,10 @@
#define PUCAN_MSG_ERROR 0x0002
#define PUCAN_MSG_STATUS 0x0003
#define PUCAN_MSG_BUSLOAD 0x0004
#define PUCAN_MSG_CACHE_CRITICAL 0x0102
/* uCAN transmitted messages */
#define PUCAN_MSG_CAN_TX 0x1000
/* uCAN command common header */
@ -43,6 +50,12 @@ struct __packed pucan_command {
u16 args[3];
};
/* return the opcode from the opcode_channel field of a command */
static inline u16 pucan_cmd_get_opcode(struct pucan_command *c)
{
return le16_to_cpu(c->opcode_channel) & 0x3ff;
}
#define PUCAN_TSLOW_BRP_BITS 10
#define PUCAN_TSLOW_TSGEG1_BITS 8
#define PUCAN_TSLOW_TSGEG2_BITS 7
@ -108,6 +121,27 @@ struct __packed pucan_filter_std {
__le32 mask; /* CAN-ID bitmask in idx range */
};
#define PUCAN_FLTSTD_ROW_IDX_MAX ((1 << PUCAN_FLTSTD_ROW_IDX_BITS) - 1)
/* uCAN SET_STD_FILTER command fields */
struct __packed pucan_std_filter {
__le16 opcode_channel;
u8 unused;
u8 idx;
__le32 mask; /* CAN-ID bitmask in idx range */
};
/* uCAN TX_ABORT commands fields */
#define PUCAN_TX_ABORT_FLUSH 0x0001
struct __packed pucan_tx_abort {
__le16 opcode_channel;
__le16 flags;
u32 unused;
};
/* uCAN WR_ERR_CNT command fields */
#define PUCAN_WRERRCNT_TE 0x4000 /* Tx error cntr write Enable */
#define PUCAN_WRERRCNT_RE 0x8000 /* Rx error cntr write Enable */
@ -184,6 +218,12 @@ struct __packed pucan_error_msg {
u8 rx_err_cnt;
};
static inline int pucan_error_get_channel(const struct pucan_error_msg *msg)
{
return msg->channel_type_d & 0x0f;
}
#define PUCAN_RX_BARRIER 0x10
#define PUCAN_BUS_PASSIVE 0x20
#define PUCAN_BUS_WARNING 0x40
#define PUCAN_BUS_BUSOFF 0x80
@ -197,6 +237,31 @@ struct __packed pucan_status_msg {
u8 unused[3];
};
static inline int pucan_status_get_channel(const struct pucan_status_msg *msg)
{
return msg->channel_p_w_b & 0x0f;
}
static inline int pucan_status_is_rx_barrier(const struct pucan_status_msg *msg)
{
return msg->channel_p_w_b & PUCAN_RX_BARRIER;
}
static inline int pucan_status_is_passive(const struct pucan_status_msg *msg)
{
return msg->channel_p_w_b & PUCAN_BUS_PASSIVE;
}
static inline int pucan_status_is_warning(const struct pucan_status_msg *msg)
{
return msg->channel_p_w_b & PUCAN_BUS_WARNING;
}
static inline int pucan_status_is_busoff(const struct pucan_status_msg *msg)
{
return msg->channel_p_w_b & PUCAN_BUS_BUSOFF;
}
/* uCAN transmitted message format */
#define PUCAN_MSG_CHANNEL_DLC(c, d) (((c) & 0xf) | ((d) << 4))