1
0
Fork 0

sparc64: Add AES driver making use of the new aes opcodes.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
wifi-calibration
David S. Miller 2012-08-21 03:58:13 -07:00
parent fa4dfedcc2
commit 9bf4852d3d
4 changed files with 1191 additions and 0 deletions

View File

@ -7,7 +7,11 @@ obj-$(CONFIG_CRYPTO_SHA256_SPARC64) += sha256-sparc64.o
obj-$(CONFIG_CRYPTO_SHA512_SPARC64) += sha512-sparc64.o
obj-$(CONFIG_CRYPTO_MD5_SPARC64) += md5-sparc64.o
obj-$(CONFIG_CRYPTO_AES_SPARC64) += aes-sparc64.o
sha1-sparc64-y := sha1_asm.o sha1_glue.o
sha256-sparc64-y := sha256_asm.o sha256_glue.o
sha512-sparc64-y := sha512_asm.o sha512_glue.o
md5-sparc64-y := md5_asm.o md5_glue.o
aes-sparc64-y := aes_asm.o aes_glue.o

View File

@ -0,0 +1,836 @@
#include <linux/linkage.h>
#include <asm/visasm.h>
#define F3F(x,y,z) (((x)<<30)|((y)<<19)|((z)<<5))
#define FPD_ENCODE(x) (((x) >> 5) | ((x) & ~(0x20)))
#define RS1(x) (FPD_ENCODE(x) << 14)
#define RS2(x) (FPD_ENCODE(x) << 0)
#define RS3(x) (FPD_ENCODE(x) << 9)
#define RD(x) (FPD_ENCODE(x) << 25)
#define IMM5(x) ((x) << 9)
#define AES_EROUND01(a,b,c,d) \
.word (F3F(2, 0x19, 0)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_EROUND23(a,b,c,d) \
.word (F3F(2, 0x19, 1)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_DROUND01(a,b,c,d) \
.word (F3F(2, 0x19, 2)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_DROUND23(a,b,c,d) \
.word (F3F(2, 0x19, 3)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_EROUND01_L(a,b,c,d) \
.word (F3F(2, 0x19, 4)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_EROUND23_L(a,b,c,d) \
.word (F3F(2, 0x19, 5)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_DROUND01_L(a,b,c,d) \
.word (F3F(2, 0x19, 6)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_DROUND23_L(a,b,c,d) \
.word (F3F(2, 0x19, 7)|RS1(a)|RS2(b)|RS3(c)|RD(d));
#define AES_KEXPAND1(a,b,c,d) \
.word (F3F(2, 0x19, 8)|RS1(a)|RS2(b)|IMM5(c)|RD(d));
#define AES_KEXPAND0(a,b,c) \
.word (F3F(2, 0x36, 0x130)|RS1(a)|RS2(b)|RD(c));
#define AES_KEXPAND2(a,b,c) \
.word (F3F(2, 0x36, 0x131)|RS1(a)|RS2(b)|RD(c));
#define MOVXTOD_G3_F4 \
.word 0x89b02303;
#define MOVXTOD_G7_F6 \
.word 0x8db02307;
#define MOVXTOD_G3_F0 \
.word 0x81b02303;
#define MOVXTOD_G7_F2 \
.word 0x85b02307;
#define MOVXTOD_O0_F0 \
.word 0x81b02308;
#define MOVXTOD_O1_F2 \
.word 0x85b02309;
#define ENCRYPT_TWO_ROUNDS(KEY_BASE, I0, I1, T0, T1) \
AES_EROUND01(KEY_BASE + 0, I0, I1, T0) \
AES_EROUND23(KEY_BASE + 2, I0, I1, T1) \
AES_EROUND01(KEY_BASE + 4, T0, T1, I0) \
AES_EROUND23(KEY_BASE + 6, T0, T1, I1)
#define ENCRYPT_TWO_ROUNDS_LAST(KEY_BASE, I0, I1, T0, T1) \
AES_EROUND01(KEY_BASE + 0, I0, I1, T0) \
AES_EROUND23(KEY_BASE + 2, I0, I1, T1) \
AES_EROUND01_L(KEY_BASE + 4, T0, T1, I0) \
AES_EROUND23_L(KEY_BASE + 6, T0, T1, I1)
/* 10 rounds */
#define ENCRYPT_128(KEY_BASE, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 0, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 8, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 16, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 24, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS_LAST(KEY_BASE + 32, I0, I1, T0, T1)
/* 12 rounds */
#define ENCRYPT_192(KEY_BASE, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 0, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 8, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 16, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 24, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 32, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS_LAST(KEY_BASE + 40, I0, I1, T0, T1)
/* 14 rounds */
#define ENCRYPT_256(KEY_BASE, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 0, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 8, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 16, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 24, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 32, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS(KEY_BASE + 40, I0, I1, T0, T1) \
ENCRYPT_TWO_ROUNDS_LAST(KEY_BASE + 48, I0, I1, T0, T1)
#define DECRYPT_TWO_ROUNDS(KEY_TOP, I0, I1, T0, T1) \
AES_DROUND23(KEY_TOP - 2, I0, I1, T1) \
AES_DROUND01(KEY_TOP - 4, I0, I1, T0) \
AES_DROUND23(KEY_TOP - 6, T0, T1, I1) \
AES_DROUND01(KEY_TOP - 8, T0, T1, I0)
#define DECRYPT_TWO_ROUNDS_LAST(KEY_TOP, I0, I1, T0, T1) \
AES_DROUND23(KEY_TOP - 2, I0, I1, T1) \
AES_DROUND01(KEY_TOP - 4, I0, I1, T0) \
AES_DROUND23_L(KEY_TOP - 6, T0, T1, I1) \
AES_DROUND01_L(KEY_TOP - 8, T0, T1, I0)
/* 10 rounds */
#define DECRYPT_128(KEY_TOP, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 0, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 8, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 16, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 24, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS_LAST(KEY_TOP - 32, I0, I1, T0, T1)
/* 12 rounds */
#define DECRYPT_192(KEY_TOP, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 0, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 8, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 16, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 24, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 32, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS_LAST(KEY_TOP - 40, I0, I1, T0, T1)
/* 14 rounds */
#define DECRYPT_256(KEY_TOP, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 0, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 8, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 16, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 24, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 32, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS(KEY_TOP - 40, I0, I1, T0, T1) \
DECRYPT_TWO_ROUNDS_LAST(KEY_TOP - 48, I0, I1, T0, T1)
ENTRY(aes_sparc64_key_expand)
/* %o0=input_key, %o1=output_key, %o2=key_len */
VISEntry
ld [%o0 + 0x00], %f0
ld [%o0 + 0x04], %f1
ld [%o0 + 0x08], %f2
ld [%o0 + 0x0c], %f3
std %f0, [%o1 + 0x00]
std %f2, [%o1 + 0x08]
add %o1, 0x10, %o1
cmp %o2, 24
bl 2f
nop
be 1f
nop
/* 256-bit key expansion */
ld [%o0 + 0x10], %f4
ld [%o0 + 0x14], %f5
ld [%o0 + 0x18], %f6
ld [%o0 + 0x1c], %f7
std %f4, [%o1 + 0x00]
std %f6, [%o1 + 0x08]
add %o1, 0x10, %o1
AES_KEXPAND1(0, 6, 0x0, 8)
AES_KEXPAND2(2, 8, 10)
AES_KEXPAND0(4, 10, 12)
AES_KEXPAND2(6, 12, 14)
AES_KEXPAND1(8, 14, 0x1, 16)
AES_KEXPAND2(10, 16, 18)
AES_KEXPAND0(12, 18, 20)
AES_KEXPAND2(14, 20, 22)
AES_KEXPAND1(16, 22, 0x2, 24)
AES_KEXPAND2(18, 24, 26)
AES_KEXPAND0(20, 26, 28)
AES_KEXPAND2(22, 28, 30)
AES_KEXPAND1(24, 30, 0x3, 32)
AES_KEXPAND2(26, 32, 34)
AES_KEXPAND0(28, 34, 36)
AES_KEXPAND2(30, 36, 38)
AES_KEXPAND1(32, 38, 0x4, 40)
AES_KEXPAND2(34, 40, 42)
AES_KEXPAND0(36, 42, 44)
AES_KEXPAND2(38, 44, 46)
AES_KEXPAND1(40, 46, 0x5, 48)
AES_KEXPAND2(42, 48, 50)
AES_KEXPAND0(44, 50, 52)
AES_KEXPAND2(46, 52, 54)
AES_KEXPAND1(48, 54, 0x6, 56)
AES_KEXPAND2(50, 56, 58)
std %f8, [%o1 + 0x00]
std %f10, [%o1 + 0x08]
std %f12, [%o1 + 0x10]
std %f14, [%o1 + 0x18]
std %f16, [%o1 + 0x20]
std %f18, [%o1 + 0x28]
std %f20, [%o1 + 0x30]
std %f22, [%o1 + 0x38]
std %f24, [%o1 + 0x40]
std %f26, [%o1 + 0x48]
std %f28, [%o1 + 0x50]
std %f30, [%o1 + 0x58]
std %f32, [%o1 + 0x60]
std %f34, [%o1 + 0x68]
std %f36, [%o1 + 0x70]
std %f38, [%o1 + 0x78]
std %f40, [%o1 + 0x80]
std %f42, [%o1 + 0x88]
std %f44, [%o1 + 0x90]
std %f46, [%o1 + 0x98]
std %f48, [%o1 + 0xa0]
std %f50, [%o1 + 0xa8]
std %f52, [%o1 + 0xb0]
std %f54, [%o1 + 0xb8]
std %f56, [%o1 + 0xc0]
ba,pt %xcc, 80f
std %f58, [%o1 + 0xc8]
1:
/* 192-bit key expansion */
ld [%o0 + 0x10], %f4
ld [%o0 + 0x14], %f5
std %f4, [%o1 + 0x00]
add %o1, 0x08, %o1
AES_KEXPAND1(0, 4, 0x0, 6)
AES_KEXPAND2(2, 6, 8)
AES_KEXPAND2(4, 8, 10)
AES_KEXPAND1(6, 10, 0x1, 12)
AES_KEXPAND2(8, 12, 14)
AES_KEXPAND2(10, 14, 16)
AES_KEXPAND1(12, 16, 0x2, 18)
AES_KEXPAND2(14, 18, 20)
AES_KEXPAND2(16, 20, 22)
AES_KEXPAND1(18, 22, 0x3, 24)
AES_KEXPAND2(20, 24, 26)
AES_KEXPAND2(22, 26, 28)
AES_KEXPAND1(24, 28, 0x4, 30)
AES_KEXPAND2(26, 30, 32)
AES_KEXPAND2(28, 32, 34)
AES_KEXPAND1(30, 34, 0x5, 36)
AES_KEXPAND2(32, 36, 38)
AES_KEXPAND2(34, 38, 40)
AES_KEXPAND1(36, 40, 0x6, 42)
AES_KEXPAND2(38, 42, 44)
AES_KEXPAND2(40, 44, 46)
AES_KEXPAND1(42, 46, 0x7, 48)
AES_KEXPAND2(44, 48, 50)
std %f6, [%o1 + 0x00]
std %f8, [%o1 + 0x08]
std %f10, [%o1 + 0x10]
std %f12, [%o1 + 0x18]
std %f14, [%o1 + 0x20]
std %f16, [%o1 + 0x28]
std %f18, [%o1 + 0x30]
std %f20, [%o1 + 0x38]
std %f22, [%o1 + 0x40]
std %f24, [%o1 + 0x48]
std %f26, [%o1 + 0x50]
std %f28, [%o1 + 0x58]
std %f30, [%o1 + 0x60]
std %f32, [%o1 + 0x68]
std %f34, [%o1 + 0x70]
std %f36, [%o1 + 0x78]
std %f38, [%o1 + 0x80]
std %f40, [%o1 + 0x88]
std %f42, [%o1 + 0x90]
std %f44, [%o1 + 0x98]
std %f46, [%o1 + 0xa0]
std %f48, [%o1 + 0xa8]
ba,pt %xcc, 80f
std %f50, [%o1 + 0xb0]
2:
/* 128-bit key expansion */
AES_KEXPAND1(0, 2, 0x0, 4)
AES_KEXPAND2(2, 4, 6)
AES_KEXPAND1(4, 6, 0x1, 8)
AES_KEXPAND2(6, 8, 10)
AES_KEXPAND1(8, 10, 0x2, 12)
AES_KEXPAND2(10, 12, 14)
AES_KEXPAND1(12, 14, 0x3, 16)
AES_KEXPAND2(14, 16, 18)
AES_KEXPAND1(16, 18, 0x4, 20)
AES_KEXPAND2(18, 20, 22)
AES_KEXPAND1(20, 22, 0x5, 24)
AES_KEXPAND2(22, 24, 26)
AES_KEXPAND1(24, 26, 0x6, 28)
AES_KEXPAND2(26, 28, 30)
AES_KEXPAND1(28, 30, 0x7, 32)
AES_KEXPAND2(30, 32, 34)
AES_KEXPAND1(32, 34, 0x8, 36)
AES_KEXPAND2(34, 36, 38)
AES_KEXPAND1(36, 38, 0x9, 40)
AES_KEXPAND2(38, 40, 42)
std %f4, [%o1 + 0x00]
std %f6, [%o1 + 0x08]
std %f8, [%o1 + 0x10]
std %f10, [%o1 + 0x18]
std %f12, [%o1 + 0x20]
std %f14, [%o1 + 0x28]
std %f16, [%o1 + 0x30]
std %f18, [%o1 + 0x38]
std %f20, [%o1 + 0x40]
std %f22, [%o1 + 0x48]
std %f24, [%o1 + 0x50]
std %f26, [%o1 + 0x58]
std %f28, [%o1 + 0x60]
std %f30, [%o1 + 0x68]
std %f32, [%o1 + 0x70]
std %f34, [%o1 + 0x78]
std %f36, [%o1 + 0x80]
std %f38, [%o1 + 0x88]
std %f40, [%o1 + 0x90]
std %f42, [%o1 + 0x98]
80:
retl
VISExit
ENDPROC(aes_sparc64_key_expand)
ENTRY(aes_sparc64_encrypt)
/* %o0=key, %o1=input, %o2=output, %o3=key_len */
VISEntry
ld [%o1 + 0x00], %f4
ld [%o1 + 0x04], %f5
ld [%o1 + 0x08], %f6
ld [%o1 + 0x0c], %f7
ldd [%o0 + 0x00], %f8
ldd [%o0 + 0x08], %f10
cmp %o3, 24
fxor %f8, %f4, %f4
bl 2f
fxor %f10, %f6, %f6
be 1f
ldd [%o0 + 0x10], %f8
ldd [%o0 + 0x18], %f10
ldd [%o0 + 0x20], %f12
ldd [%o0 + 0x28], %f14
add %o0, 0x20, %o0
ENCRYPT_TWO_ROUNDS(8, 4, 6, 0, 2)
ldd [%o0 + 0x10], %f8
1:
ldd [%o0 + 0x18], %f10
ldd [%o0 + 0x20], %f12
ldd [%o0 + 0x28], %f14
add %o0, 0x20, %o0
ENCRYPT_TWO_ROUNDS(8, 4, 6, 0, 2)
2:
ldd [%o0 + 0x10], %f12
ldd [%o0 + 0x18], %f14
ldd [%o0 + 0x20], %f16
ldd [%o0 + 0x28], %f18
ldd [%o0 + 0x30], %f20
ldd [%o0 + 0x38], %f22
ldd [%o0 + 0x40], %f24
ldd [%o0 + 0x48], %f26
ldd [%o0 + 0x50], %f28
ldd [%o0 + 0x58], %f30
ldd [%o0 + 0x60], %f32
ldd [%o0 + 0x68], %f34
ldd [%o0 + 0x70], %f36
ldd [%o0 + 0x78], %f38
ldd [%o0 + 0x80], %f40
ldd [%o0 + 0x88], %f42
ldd [%o0 + 0x90], %f44
ldd [%o0 + 0x98], %f46
ldd [%o0 + 0xa0], %f48
ldd [%o0 + 0xa8], %f50
ENCRYPT_128(12, 4, 6, 0, 2)
st %f4, [%o2 + 0x00]
st %f5, [%o2 + 0x04]
st %f6, [%o2 + 0x08]
st %f7, [%o2 + 0x0c]
retl
VISExit
ENDPROC(aes_sparc64_encrypt)
ENTRY(aes_sparc64_decrypt)
/* %o0=key, %o1=input, %o2=output, %o3=key_len, %o4=exp_key_len */
VISEntry
ld [%o1 + 0x00], %f4
add %o0, %o4, %o0
ld [%o1 + 0x04], %f5
ld [%o1 + 0x08], %f6
ld [%o1 + 0x0c], %f7
ldd [%o0 - 0x08], %f8
ldd [%o0 - 0x10], %f10
cmp %o3, 24
fxor %f10, %f4, %f4
bl 2f
fxor %f8, %f6, %f6
be 1f
ldd [%o0 - 0x30], %f8
ldd [%o0 - 0x28], %f10
ldd [%o0 - 0x20], %f12
ldd [%o0 - 0x18], %f14
sub %o0, 0x20, %o0
DECRYPT_TWO_ROUNDS(16, 4, 6, 0, 2)
ldd [%o0 - 0x30], %f8
1:
ldd [%o0 - 0x28], %f10
ldd [%o0 - 0x20], %f12
ldd [%o0 - 0x18], %f14
sub %o0, 0x20, %o0
DECRYPT_TWO_ROUNDS(16, 4, 6, 0, 2)
2:
ldd [%o0 - 0xb0], %f12
ldd [%o0 - 0xa8], %f14
ldd [%o0 - 0xa0], %f16
ldd [%o0 - 0x98], %f18
ldd [%o0 - 0x90], %f20
ldd [%o0 - 0x88], %f22
ldd [%o0 - 0x80], %f24
ldd [%o0 - 0x78], %f26
ldd [%o0 - 0x70], %f28
ldd [%o0 - 0x68], %f30
ldd [%o0 - 0x60], %f32
ldd [%o0 - 0x58], %f34
ldd [%o0 - 0x50], %f36
ldd [%o0 - 0x48], %f38
ldd [%o0 - 0x40], %f40
ldd [%o0 - 0x38], %f42
ldd [%o0 - 0x30], %f44
ldd [%o0 - 0x28], %f46
ldd [%o0 - 0x20], %f48
ldd [%o0 - 0x18], %f50
DECRYPT_128(52, 4, 6, 0, 2)
st %f4, [%o2 + 0x00]
st %f5, [%o2 + 0x04]
st %f6, [%o2 + 0x08]
st %f7, [%o2 + 0x0c]
retl
VISExit
ENDPROC(aes_sparc64_decrypt)
ENTRY(aes_sparc64_load_decrypt_keys)
/* %o0=key */
ba,pt %xcc, aes_sparc64_load_encrypt_keys
sub %o0, 0x10, %o0
ENDPROC(aes_sparc64_load_decrypt_keys)
ENTRY(aes_sparc64_load_encrypt_keys)
/* %o0=key */
VISEntry
ldd [%o0 + 0x10], %f8
ldd [%o0 + 0x18], %f10
ldd [%o0 + 0x20], %f12
ldd [%o0 + 0x28], %f14
ldd [%o0 + 0x30], %f16
ldd [%o0 + 0x38], %f18
ldd [%o0 + 0x40], %f20
ldd [%o0 + 0x48], %f22
ldd [%o0 + 0x50], %f24
ldd [%o0 + 0x58], %f26
ldd [%o0 + 0x60], %f28
ldd [%o0 + 0x68], %f30
ldd [%o0 + 0x70], %f32
ldd [%o0 + 0x78], %f34
ldd [%o0 + 0x80], %f36
ldd [%o0 + 0x88], %f38
ldd [%o0 + 0x90], %f40
ldd [%o0 + 0x98], %f42
ldd [%o0 + 0xa0], %f44
ldd [%o0 + 0xa8], %f46
ldd [%o0 + 0xb0], %f48
ldd [%o0 + 0xb8], %f50
ldd [%o0 + 0xc0], %f52
ldd [%o0 + 0xc8], %f54
ldd [%o0 + 0xd0], %f56
ldd [%o0 + 0xd8], %f58
ldd [%o0 + 0xe0], %f60
retl
ldd [%o0 + 0xe8], %f62
ENDPROC(aes_sparc64_load_encrypt_keys)
ENTRY(aes_sparc64_ecb_encrypt)
/* %o0=key, %o1=input, %o2=output, %o3=key_len, %o4=len */
ldx [%o0 + 0x00], %g1
ldx [%o0 + 0x08], %g2
cmp %o3, 24
bl 2f
nop
be 1f
nop
0:
/* 256-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
ENCRYPT_256(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 0b
add %o2, 0x10, %o2
retl
nop
1:
/* 192-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
ENCRYPT_192(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 1b
add %o2, 0x10, %o2
retl
nop
2:
/* 128-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
ENCRYPT_128(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 2b
add %o2, 0x10, %o2
retl
nop
ENDPROC(aes_sparc64_ecb_encrypt)
ENTRY(aes_sparc64_ecb_decrypt)
/* %o0=&key[key_len], %o1=input, %o2=output, %o3=key_len, %o4=len, %o5=iv */
ldx [%o0 - 0x10], %g1
ldx [%o0 - 0x08], %g2
cmp %o3, 24
bl 2f
nop
be 1f
nop
0:
/* 256-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_256(64, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 0b
add %o2, 0x10, %o2
retl
nop
1:
/* 192-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_192(56, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 1b
add %o2, 0x10, %o2
retl
nop
2:
/* 128-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_128(48, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 2b
add %o2, 0x10, %o2
retl
nop
ENDPROC(aes_sparc64_ecb_decrypt)
ENTRY(aes_sparc64_cbc_encrypt)
/* %o0=key, %o1=input, %o2=output, %o3=key_len, %o4=len */
ldd [%o5 + 0x00], %f4
ldd [%o5 + 0x08], %f6
ldx [%o0 + 0x00], %g1
ldx [%o0 + 0x08], %g2
cmp %o3, 24
bl 2f
nop
be 1f
nop
0:
/* 256-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F0
MOVXTOD_G7_F2
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
ENCRYPT_256(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 0b
add %o2, 0x10, %o2
std %f4, [%o5 + 0x00]
std %f6, [%o5 + 0x08]
retl
nop
1:
/* 192-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F0
MOVXTOD_G7_F2
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
ENCRYPT_192(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 1b
add %o2, 0x10, %o2
std %f4, [%o5 + 0x00]
std %f6, [%o5 + 0x08]
retl
nop
2:
/* 128-bit key */
ldx [%o1 + 0x00], %g3
ldx [%o1 + 0x08], %g7
add %o1, 0x10, %o1
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F0
MOVXTOD_G7_F2
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
ENCRYPT_128(8, 4, 6, 0, 2)
std %f4, [%o2 + 0x00]
std %f6, [%o2 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 2b
add %o2, 0x10, %o2
std %f4, [%o5 + 0x00]
std %f6, [%o5 + 0x08]
retl
nop
ENDPROC(aes_sparc64_cbc_encrypt)
ENTRY(aes_sparc64_cbc_decrypt)
/* %o0=&key[key_len], %o1=key_len, %o2=input, %o3=output, %o4=len, %o5=iv */
ldx [%o0 - 0x10], %g1
ldx [%o0 - 0x08], %g2
cmp %o1, 24
ldx [%o5 + 0x00], %o0
bl 2f
ldx [%o5 + 0x08], %o1
be 1f
nop
0:
/* 256-bit key */
ldx [%o2 + 0x00], %g3
ldx [%o2 + 0x08], %g7
add %o2, 0x10, %o2
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_256(64, 4, 6, 0, 2)
MOVXTOD_O0_F0
MOVXTOD_O1_F2
xor %g1, %g3, %o0
xor %g2, %g7, %o1
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
std %f4, [%o3 + 0x00]
std %f6, [%o3 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 0b
add %o3, 0x10, %o3
stx %o0, [%o5 + 0x00]
stx %o1, [%o5 + 0x08]
retl
nop
1:
/* 192-bit key */
ldx [%o2 + 0x00], %g3
ldx [%o2 + 0x08], %g7
add %o2, 0x10, %o2
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_192(56, 4, 6, 0, 2)
MOVXTOD_O0_F0
MOVXTOD_O1_F2
xor %g1, %g3, %o0
xor %g2, %g7, %o1
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
std %f4, [%o3 + 0x00]
std %f6, [%o3 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 1b
add %o3, 0x10, %o3
stx %o0, [%o5 + 0x00]
stx %o1, [%o5 + 0x08]
retl
nop
2:
/* 128-bit key */
ldx [%o2 + 0x00], %g3
ldx [%o2 + 0x08], %g7
add %o2, 0x10, %o2
xor %g1, %g3, %g3
xor %g2, %g7, %g7
MOVXTOD_G3_F4
MOVXTOD_G7_F6
DECRYPT_128(48, 4, 6, 0, 2)
MOVXTOD_O0_F0
MOVXTOD_O1_F2
xor %g1, %g3, %o0
xor %g2, %g7, %o1
fxor %f4, %f0, %f4
fxor %f6, %f2, %f6
std %f4, [%o3 + 0x00]
std %f6, [%o3 + 0x08]
subcc %o4, 0x10, %o4
bne,pt %xcc, 2b
add %o3, 0x10, %o3
stx %o0, [%o5 + 0x00]
stx %o1, [%o5 + 0x08]
retl
nop
ENDPROC(aes_sparc64_cbc_decrypt)

View File

@ -0,0 +1,323 @@
/* Glue code for AES encryption optimized for sparc64 crypto opcodes.
*
* This is based largely upon arch/x86/crypto/aesni-intel_glue.c
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
* interface for 64-bit kernels.
* Authors: Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*/
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <asm/fpumacro.h>
#include <asm/pstate.h>
#include <asm/elf.h>
struct crypto_sparc64_aes_ctx {
u64 key[AES_MAX_KEYLENGTH / sizeof(u64)];
u32 key_length;
u32 expanded_key_length;
};
extern void aes_sparc64_key_expand(const u32 *in_key, u64 *output_key,
unsigned int key_len);
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
switch (key_len) {
case AES_KEYSIZE_128:
ctx->expanded_key_length = 0xb0;
break;
case AES_KEYSIZE_192:
ctx->expanded_key_length = 0xd0;
break;
case AES_KEYSIZE_256:
ctx->expanded_key_length = 0xf0;
break;
default:
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
aes_sparc64_key_expand((const u32 *)in_key, &ctx->key[0], key_len);
ctx->key_length = key_len;
return 0;
}
extern void aes_sparc64_encrypt(const u64 *key, const u32 *input,
u32 *output, unsigned int key_len);
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
aes_sparc64_encrypt(&ctx->key[0], (const u32 *) src,
(u32 *) dst, ctx->key_length);
}
extern void aes_sparc64_decrypt(const u64 *key, const u32 *input,
u32 *output, unsigned int key_len,
unsigned int expanded_key_len);
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
aes_sparc64_decrypt(&ctx->key[0], (const u32 *) src,
(u32 *) dst, ctx->key_length,
ctx->expanded_key_length);
}
extern void aes_sparc64_load_encrypt_keys(u64 *key);
extern void aes_sparc64_load_decrypt_keys(u64 *key);
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1))
extern void aes_sparc64_ecb_encrypt(u64 *key, const u32 *input, u32 *output,
unsigned int key_len, unsigned int len);
static int ecb_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
aes_sparc64_load_encrypt_keys(&ctx->key[0]);
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
aes_sparc64_ecb_encrypt(&ctx->key[0],
(const u32 *)walk.src.virt.addr,
(u32 *) walk.dst.virt.addr,
ctx->key_length, block_len);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
extern void aes_sparc64_ecb_decrypt(u64 *ekey, const u32 *input, u32 *output,
unsigned int key_len, unsigned int len);
static int ecb_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
u64 *key_end;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
aes_sparc64_load_decrypt_keys(&ctx->key[0]);
key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)];
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
aes_sparc64_ecb_decrypt(key_end, (const u32 *) walk.src.virt.addr,
(u32 *) walk.dst.virt.addr, ctx->key_length,
block_len);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
extern void aes_sparc64_cbc_encrypt(u64 *key, const u32 *input, u32 *output,
unsigned int key_len, unsigned int len,
u64 *iv);
static int cbc_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
aes_sparc64_load_encrypt_keys(&ctx->key[0]);
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
aes_sparc64_cbc_encrypt(&ctx->key[0],
(const u32 *)walk.src.virt.addr,
(u32 *) walk.dst.virt.addr,
ctx->key_length, block_len,
(u64 *) walk.iv);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
extern void aes_sparc64_cbc_decrypt(u64 *ekey, unsigned int key_len,
const u32 *input, u32 *output,
unsigned int len, u64 *iv);
static int cbc_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
u64 *key_end;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
aes_sparc64_load_decrypt_keys(&ctx->key[0]);
key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)];
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
aes_sparc64_cbc_decrypt(key_end, ctx->key_length,
(const u32 *) walk.src.virt.addr,
(u32 *) walk.dst.virt.addr,
block_len, (u64 *) walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
static struct crypto_alg algs[] = { {
.cra_name = "aes",
.cra_driver_name = "aes-sparc64",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
}, {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sparc64",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 7,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sparc64",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 7,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
} };
static bool __init sparc64_has_aes_opcode(void)
{
unsigned long cfr;
if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO))
return false;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
if (!(cfr & CFR_AES))
return false;
return true;
}
static int __init aes_sparc64_mod_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(algs); i++)
INIT_LIST_HEAD(&algs[i].cra_list);
if (sparc64_has_aes_opcode()) {
pr_info("Using sparc64 aes opcodes optimized AES implementation\n");
return crypto_register_algs(algs, ARRAY_SIZE(algs));
}
pr_info("sparc64 aes opcodes not available.\n");
return -ENODEV;
}
static void __exit aes_sparc64_mod_fini(void)
{
crypto_unregister_algs(algs, ARRAY_SIZE(algs));
}
module_init(aes_sparc64_mod_init);
module_exit(aes_sparc64_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AES Secure Hash Algorithm, sparc64 aes opcode accelerated");
MODULE_ALIAS("aes");

View File

@ -624,6 +624,34 @@ config CRYPTO_AES_NI_INTEL
ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
acceleration for CTR.
config CRYPTO_AES_SPARC64
tristate "AES cipher algorithms (SPARC64)"
depends on SPARC64
select CRYPTO_CRYPTD
select CRYPTO_ALGAPI
help
Use SPARC64 crypto opcodes for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
In addition to AES cipher algorithm support, the acceleration
for some popular block cipher mode is supported too, including
ECB and CBC.
config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI