1
0
Fork 0

Merge branch 'akpm' (patches from Andrew Morton)

Merge leftovers from Andrew Morton:
 "A few leftovers: ocfs2, gcov, RTC"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  rtc: s5m: consolidate two device type switch statements
  rtc: s5m: add support for S2MPS14 RTC
  rtc: s5m: support different register layout
  rtc: s5m: use shorter time of register update
  rtc: s5m: remove undocumented time init on first boot
  mfd/rtc: sec/s5m: rename SEC* symbols to S5M
  gcov: add support for GCC 4.9
  ocfs2/o2net: incorrect to terminate accepting connections loop upon rejecting an invalid one
wifi-calibration
Linus Torvalds 2014-06-10 15:34:55 -07:00
commit 9ee4d7a653
6 changed files with 292 additions and 150 deletions

View File

@ -530,11 +530,11 @@ config RTC_DRV_RV3029C2
will be called rtc-rv3029c2.
config RTC_DRV_S5M
tristate "Samsung S5M series"
tristate "Samsung S2M/S5M series"
depends on MFD_SEC_CORE
help
If you say yes here you will get support for the
RTC of Samsung S5M PMIC series.
RTC of Samsung S2MPS14 and S5M PMIC series.
This driver can also be built as a module. If so, the module
will be called rtc-s5m.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013 Samsung Electronics Co., Ltd
* Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
* http://www.samsung.com
*
* Copyright (C) 2013 Google, Inc
@ -17,27 +17,76 @@
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/bcd.h>
#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mfd/samsung/core.h>
#include <linux/mfd/samsung/irq.h>
#include <linux/mfd/samsung/rtc.h>
#include <linux/mfd/samsung/s2mps14.h>
/*
* Maximum number of retries for checking changes in UDR field
* of SEC_RTC_UDR_CON register (to limit possible endless loop).
* of S5M_RTC_UDR_CON register (to limit possible endless loop).
*
* After writing to RTC registers (setting time or alarm) read the UDR field
* in SEC_RTC_UDR_CON register. UDR is auto-cleared when data have
* in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
* been transferred.
*/
#define UDR_READ_RETRY_CNT 5
/* Registers used by the driver which are different between chipsets. */
struct s5m_rtc_reg_config {
/* Number of registers used for setting time/alarm0/alarm1 */
unsigned int regs_count;
/* First register for time, seconds */
unsigned int time;
/* RTC control register */
unsigned int ctrl;
/* First register for alarm 0, seconds */
unsigned int alarm0;
/* First register for alarm 1, seconds */
unsigned int alarm1;
/* SMPL/WTSR register */
unsigned int smpl_wtsr;
/*
* Register for update flag (UDR). Typically setting UDR field to 1
* will enable update of time or alarm register. Then it will be
* auto-cleared after successful update.
*/
unsigned int rtc_udr_update;
/* Mask for UDR field in 'rtc_udr_update' register */
unsigned int rtc_udr_mask;
};
/* Register map for S5M8763 and S5M8767 */
static const struct s5m_rtc_reg_config s5m_rtc_regs = {
.regs_count = 8,
.time = S5M_RTC_SEC,
.ctrl = S5M_ALARM1_CONF,
.alarm0 = S5M_ALARM0_SEC,
.alarm1 = S5M_ALARM1_SEC,
.smpl_wtsr = S5M_WTSR_SMPL_CNTL,
.rtc_udr_update = S5M_RTC_UDR_CON,
.rtc_udr_mask = S5M_RTC_UDR_MASK,
};
/*
* Register map for S2MPS14.
* It may be also suitable for S2MPS11 but this was not tested.
*/
static const struct s5m_rtc_reg_config s2mps_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.smpl_wtsr = S2MPS_WTSR_SMPL_CNTL,
.rtc_udr_update = S2MPS_RTC_UDR_CON,
.rtc_udr_mask = S2MPS_RTC_WUDR_MASK,
};
struct s5m_rtc_info {
struct device *dev;
struct i2c_client *i2c;
@ -48,13 +97,14 @@ struct s5m_rtc_info {
int device_type;
int rtc_24hr_mode;
bool wtsr_smpl;
const struct s5m_rtc_reg_config *regs;
};
static const struct regmap_config s5m_rtc_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = SEC_RTC_REG_MAX,
.max_register = S5M_RTC_REG_MAX,
};
static const struct regmap_config s2mps14_rtc_regmap_config = {
@ -119,8 +169,9 @@ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
unsigned int data;
do {
ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
} while (--retry && (data & RTC_UDR_MASK) && !ret);
ret = regmap_read(info->regmap, info->regs->rtc_udr_update,
&data);
} while (--retry && (data & info->regs->rtc_udr_mask) && !ret);
if (!retry)
dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
@ -128,21 +179,53 @@ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
return ret;
}
static inline int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
struct rtc_wkalrm *alarm)
{
int ret;
unsigned int val;
switch (info->device_type) {
case S5M8767X:
case S5M8763X:
ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
val &= S5M_ALARM0_STATUS;
break;
case S2MPS14X:
ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
&val);
val &= S2MPS_ALARM0_STATUS;
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
if (val)
alarm->pending = 1;
else
alarm->pending = 0;
return 0;
}
static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
{
int ret;
unsigned int data;
ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data);
if (ret < 0) {
dev_err(info->dev, "failed to read update reg(%d)\n", ret);
return ret;
}
data |= RTC_TIME_EN_MASK;
data |= RTC_UDR_MASK;
data |= info->regs->rtc_udr_mask;
if (info->device_type == S5M8763X || info->device_type == S5M8767X)
data |= S5M_RTC_TIME_EN_MASK;
ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data);
if (ret < 0) {
dev_err(info->dev, "failed to write update reg(%d)\n", ret);
return ret;
@ -158,17 +241,27 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
int ret;
unsigned int data;
ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read update reg(%d)\n",
__func__, ret);
return ret;
}
data &= ~RTC_TIME_EN_MASK;
data |= RTC_UDR_MASK;
data |= info->regs->rtc_udr_mask;
switch (info->device_type) {
case S5M8763X:
case S5M8767X:
data &= ~S5M_RTC_TIME_EN_MASK;
break;
case S2MPS14X:
data |= S2MPS_RTC_RUDR_MASK;
break;
default:
return -EINVAL;
}
ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write update reg(%d)\n",
__func__, ret);
@ -215,10 +308,22 @@ static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct s5m_rtc_info *info = dev_get_drvdata(dev);
u8 data[8];
u8 data[info->regs->regs_count];
int ret;
ret = regmap_bulk_read(info->regmap, SEC_RTC_SEC, data, 8);
if (info->device_type == S2MPS14X) {
ret = regmap_update_bits(info->regmap,
info->regs->rtc_udr_update,
S2MPS_RTC_RUDR_MASK, S2MPS_RTC_RUDR_MASK);
if (ret) {
dev_err(dev,
"Failed to prepare registers for time reading: %d\n",
ret);
return ret;
}
}
ret = regmap_bulk_read(info->regmap, info->regs->time, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -228,6 +333,7 @@ static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
break;
case S5M8767X:
case S2MPS14X:
s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
break;
@ -245,7 +351,7 @@ static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct s5m_rtc_info *info = dev_get_drvdata(dev);
u8 data[8];
u8 data[info->regs->regs_count];
int ret = 0;
switch (info->device_type) {
@ -253,6 +359,7 @@ static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
s5m8763_tm_to_data(tm, data);
break;
case S5M8767X:
case S2MPS14X:
ret = s5m8767_tm_to_data(tm, data);
break;
default:
@ -266,7 +373,8 @@ static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
ret = regmap_raw_write(info->regmap, SEC_RTC_SEC, data, 8);
ret = regmap_raw_write(info->regmap, info->regs->time, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -278,70 +386,60 @@ static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s5m_rtc_info *info = dev_get_drvdata(dev);
u8 data[8];
u8 data[info->regs->regs_count];
unsigned int val;
int ret, i;
ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
switch (info->device_type) {
case S5M8763X:
s5m8763_data_to_tm(data, &alrm->time);
ret = regmap_read(info->regmap, SEC_ALARM0_CONF, &val);
ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
if (ret < 0)
return ret;
alrm->enabled = !!val;
ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
if (ret < 0)
return ret;
break;
case S5M8767X:
case S2MPS14X:
s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
alrm->time.tm_mday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec,
alrm->time.tm_wday);
alrm->enabled = 0;
for (i = 0; i < 7; i++) {
for (i = 0; i < info->regs->regs_count; i++) {
if (data[i] & ALARM_ENABLE_MASK) {
alrm->enabled = 1;
break;
}
}
alrm->pending = 0;
ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
if (val & ALARM0_STATUS)
alrm->pending = 1;
else
alrm->pending = 0;
dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
alrm->time.tm_mday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec,
alrm->time.tm_wday);
ret = s5m_check_peding_alarm_interrupt(info, alrm);
return 0;
}
static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
{
u8 data[8];
u8 data[info->regs->regs_count];
int ret, i;
struct rtc_time tm;
ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -352,14 +450,16 @@ static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
switch (info->device_type) {
case S5M8763X:
ret = regmap_write(info->regmap, SEC_ALARM0_CONF, 0);
ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
break;
case S5M8767X:
for (i = 0; i < 7; i++)
case S2MPS14X:
for (i = 0; i < info->regs->regs_count; i++)
data[i] &= ~ALARM_ENABLE_MASK;
ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -377,11 +477,12 @@ static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
{
int ret;
u8 data[8];
u8 data[info->regs->regs_count];
u8 alarm0_conf;
struct rtc_time tm;
ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -393,10 +494,11 @@ static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
switch (info->device_type) {
case S5M8763X:
alarm0_conf = 0x77;
ret = regmap_write(info->regmap, SEC_ALARM0_CONF, alarm0_conf);
ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
break;
case S5M8767X:
case S2MPS14X:
data[RTC_SEC] |= ALARM_ENABLE_MASK;
data[RTC_MIN] |= ALARM_ENABLE_MASK;
data[RTC_HOUR] |= ALARM_ENABLE_MASK;
@ -408,7 +510,8 @@ static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
if (data[RTC_YEAR1] & 0x7f)
data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
ret = s5m8767_rtc_set_alarm_reg(info);
@ -425,7 +528,7 @@ static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s5m_rtc_info *info = dev_get_drvdata(dev);
u8 data[8];
u8 data[info->regs->regs_count];
int ret;
switch (info->device_type) {
@ -434,6 +537,7 @@ static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
break;
case S5M8767X:
case S2MPS14X:
s5m8767_tm_to_data(&alrm->time, data);
break;
@ -450,7 +554,8 @@ static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
if (ret < 0)
return ret;
ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
info->regs->regs_count);
if (ret < 0)
return ret;
@ -495,7 +600,7 @@ static const struct rtc_class_ops s5m_rtc_ops = {
static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable)
{
int ret;
ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
ret = regmap_update_bits(info->regmap, info->regs->smpl_wtsr,
WTSR_ENABLE_MASK,
enable ? WTSR_ENABLE_MASK : 0);
if (ret < 0)
@ -506,7 +611,7 @@ static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable)
static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable)
{
int ret;
ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
ret = regmap_update_bits(info->regmap, info->regs->smpl_wtsr,
SMPL_ENABLE_MASK,
enable ? SMPL_ENABLE_MASK : 0);
if (ret < 0)
@ -517,50 +622,41 @@ static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable)
static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
{
u8 data[2];
unsigned int tp_read;
int ret;
struct rtc_time tm;
ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &tp_read);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read control reg(%d)\n",
__func__, ret);
return ret;
switch (info->device_type) {
case S5M8763X:
case S5M8767X:
/* UDR update time. Default of 7.32 ms is too long. */
ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
if (ret < 0)
dev_err(info->dev, "%s: fail to change UDR time: %d\n",
__func__, ret);
/* Set RTC control register : Binary mode, 24hour mode */
data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
break;
case S2MPS14X:
data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
break;
default:
return -EINVAL;
}
/* Set RTC control register : Binary mode, 24hour mode */
data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
info->rtc_24hr_mode = 1;
ret = regmap_raw_write(info->regmap, SEC_ALARM0_CONF, data, 2);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
__func__, ret);
return ret;
}
/* In first boot time, Set rtc time to 1/1/2012 00:00:00(SUN) */
if ((tp_read & RTC_TCON_MASK) == 0) {
dev_dbg(info->dev, "rtc init\n");
tm.tm_sec = 0;
tm.tm_min = 0;
tm.tm_hour = 0;
tm.tm_wday = 0;
tm.tm_mday = 1;
tm.tm_mon = 0;
tm.tm_year = 112;
tm.tm_yday = 0;
tm.tm_isdst = 0;
ret = s5m_rtc_set_time(info->dev, &tm);
}
ret = regmap_update_bits(info->regmap, SEC_RTC_UDR_CON,
RTC_TCON_MASK, tp_read | RTC_TCON_MASK);
if (ret < 0)
dev_err(info->dev, "%s: fail to update TCON reg(%d)\n",
__func__, ret);
return ret;
}
@ -570,7 +666,7 @@ static int s5m_rtc_probe(struct platform_device *pdev)
struct sec_platform_data *pdata = s5m87xx->pdata;
struct s5m_rtc_info *info;
const struct regmap_config *regmap_cfg;
int ret;
int ret, alarm_irq;
if (!pdata) {
dev_err(pdev->dev.parent, "Platform data not supplied\n");
@ -584,12 +680,18 @@ static int s5m_rtc_probe(struct platform_device *pdev)
switch (pdata->device_type) {
case S2MPS14X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S5M8763X:
regmap_cfg = &s5m_rtc_regmap_config;
info->regs = &s5m_rtc_regs;
alarm_irq = S5M8763_IRQ_ALARM0;
break;
case S5M8767X:
regmap_cfg = &s5m_rtc_regmap_config;
info->regs = &s5m_rtc_regs;
alarm_irq = S5M8767_IRQ_RTCA1;
break;
default:
dev_err(&pdev->dev, "Device type is not supported by RTC driver\n");
@ -615,20 +717,11 @@ static int s5m_rtc_probe(struct platform_device *pdev)
info->device_type = s5m87xx->device_type;
info->wtsr_smpl = s5m87xx->wtsr_smpl;
switch (pdata->device_type) {
case S5M8763X:
info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
S5M8763_IRQ_ALARM0);
break;
case S5M8767X:
info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
S5M8767_IRQ_RTCA1);
break;
default:
info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
if (info->irq <= 0) {
ret = -EINVAL;
dev_err(&pdev->dev, "Unsupported device type: %d\n", ret);
dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
alarm_irq);
goto err;
}
@ -676,7 +769,7 @@ static void s5m_rtc_shutdown(struct platform_device *pdev)
if (info->wtsr_smpl) {
for (i = 0; i < 3; i++) {
s5m_rtc_enable_wtsr(info, false);
regmap_read(info->regmap, SEC_WTSR_SMPL_CNTL, &val);
regmap_read(info->regmap, info->regs->smpl_wtsr, &val);
pr_debug("%s: WTSR_SMPL reg(0x%02x)\n", __func__, val);
if (val & WTSR_ENABLE_MASK)
pr_emerg("%s: fail to disable WTSR\n",
@ -730,7 +823,8 @@ static int s5m_rtc_suspend(struct device *dev)
static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
static const struct platform_device_id s5m_rtc_id[] = {
{ "s5m-rtc", 0 },
{ "s5m-rtc", S5M8767X },
{ "s2mps14-rtc", S2MPS14X },
};
static struct platform_driver s5m_rtc_driver = {
@ -749,6 +843,6 @@ module_platform_driver(s5m_rtc_driver);
/* Module information */
MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
MODULE_DESCRIPTION("Samsung S5M RTC driver");
MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s5m-rtc");

View File

@ -1799,7 +1799,7 @@ int o2net_register_hb_callbacks(void)
/* ------------------------------------------------------------ */
static int o2net_accept_one(struct socket *sock)
static int o2net_accept_one(struct socket *sock, int *more)
{
int ret, slen;
struct sockaddr_in sin;
@ -1810,6 +1810,7 @@ static int o2net_accept_one(struct socket *sock)
struct o2net_node *nn;
BUG_ON(sock == NULL);
*more = 0;
ret = sock_create_lite(sock->sk->sk_family, sock->sk->sk_type,
sock->sk->sk_protocol, &new_sock);
if (ret)
@ -1821,6 +1822,7 @@ static int o2net_accept_one(struct socket *sock)
if (ret < 0)
goto out;
*more = 1;
new_sock->sk->sk_allocation = GFP_ATOMIC;
ret = o2net_set_nodelay(new_sock);
@ -1919,11 +1921,36 @@ out:
return ret;
}
/*
* This function is invoked in response to one or more
* pending accepts at softIRQ level. We must drain the
* entire que before returning.
*/
static void o2net_accept_many(struct work_struct *work)
{
struct socket *sock = o2net_listen_sock;
while (o2net_accept_one(sock) == 0)
int more;
int err;
/*
* It is critical to note that due to interrupt moderation
* at the network driver level, we can't assume to get a
* softIRQ for every single conn since tcp SYN packets
* can arrive back-to-back, and therefore many pending
* accepts may result in just 1 softIRQ. If we terminate
* the o2net_accept_one() loop upon seeing an err, what happens
* to the rest of the conns in the queue? If no new SYN
* arrives for hours, no softIRQ will be delivered,
* and the connections will just sit in the queue.
*/
for (;;) {
err = o2net_accept_one(sock, &more);
if (!more)
break;
cond_resched();
}
}
static void o2net_listen_data_ready(struct sock *sk)

View File

@ -18,38 +18,38 @@
#ifndef __LINUX_MFD_SEC_RTC_H
#define __LINUX_MFD_SEC_RTC_H
enum sec_rtc_reg {
SEC_RTC_SEC,
SEC_RTC_MIN,
SEC_RTC_HOUR,
SEC_RTC_WEEKDAY,
SEC_RTC_DATE,
SEC_RTC_MONTH,
SEC_RTC_YEAR1,
SEC_RTC_YEAR2,
SEC_ALARM0_SEC,
SEC_ALARM0_MIN,
SEC_ALARM0_HOUR,
SEC_ALARM0_WEEKDAY,
SEC_ALARM0_DATE,
SEC_ALARM0_MONTH,
SEC_ALARM0_YEAR1,
SEC_ALARM0_YEAR2,
SEC_ALARM1_SEC,
SEC_ALARM1_MIN,
SEC_ALARM1_HOUR,
SEC_ALARM1_WEEKDAY,
SEC_ALARM1_DATE,
SEC_ALARM1_MONTH,
SEC_ALARM1_YEAR1,
SEC_ALARM1_YEAR2,
SEC_ALARM0_CONF,
SEC_ALARM1_CONF,
SEC_RTC_STATUS,
SEC_WTSR_SMPL_CNTL,
SEC_RTC_UDR_CON,
enum s5m_rtc_reg {
S5M_RTC_SEC,
S5M_RTC_MIN,
S5M_RTC_HOUR,
S5M_RTC_WEEKDAY,
S5M_RTC_DATE,
S5M_RTC_MONTH,
S5M_RTC_YEAR1,
S5M_RTC_YEAR2,
S5M_ALARM0_SEC,
S5M_ALARM0_MIN,
S5M_ALARM0_HOUR,
S5M_ALARM0_WEEKDAY,
S5M_ALARM0_DATE,
S5M_ALARM0_MONTH,
S5M_ALARM0_YEAR1,
S5M_ALARM0_YEAR2,
S5M_ALARM1_SEC,
S5M_ALARM1_MIN,
S5M_ALARM1_HOUR,
S5M_ALARM1_WEEKDAY,
S5M_ALARM1_DATE,
S5M_ALARM1_MONTH,
S5M_ALARM1_YEAR1,
S5M_ALARM1_YEAR2,
S5M_ALARM0_CONF,
S5M_ALARM1_CONF,
S5M_RTC_STATUS,
S5M_WTSR_SMPL_CNTL,
S5M_RTC_UDR_CON,
SEC_RTC_REG_MAX,
S5M_RTC_REG_MAX,
};
enum s2mps_rtc_reg {
@ -88,9 +88,9 @@ enum s2mps_rtc_reg {
#define HOUR_12 (1 << 7)
#define HOUR_AMPM (1 << 6)
#define HOUR_PM (1 << 5)
#define ALARM0_STATUS (1 << 1)
#define ALARM1_STATUS (1 << 2)
#define UPDATE_AD (1 << 0)
#define S5M_ALARM0_STATUS (1 << 1)
#define S5M_ALARM1_STATUS (1 << 2)
#define S5M_UPDATE_AD (1 << 0)
#define S2MPS_ALARM0_STATUS (1 << 2)
#define S2MPS_ALARM1_STATUS (1 << 1)
@ -101,16 +101,26 @@ enum s2mps_rtc_reg {
#define MODEL24_SHIFT 1
#define MODEL24_MASK (1 << MODEL24_SHIFT)
/* RTC Update Register1 */
#define RTC_UDR_SHIFT 0
#define RTC_UDR_MASK (1 << RTC_UDR_SHIFT)
#define S5M_RTC_UDR_SHIFT 0
#define S5M_RTC_UDR_MASK (1 << S5M_RTC_UDR_SHIFT)
#define S2MPS_RTC_WUDR_SHIFT 4
#define S2MPS_RTC_WUDR_MASK (1 << S2MPS_RTC_WUDR_SHIFT)
#define S2MPS_RTC_RUDR_SHIFT 0
#define S2MPS_RTC_RUDR_MASK (1 << S2MPS_RTC_RUDR_SHIFT)
#define RTC_TCON_SHIFT 1
#define RTC_TCON_MASK (1 << RTC_TCON_SHIFT)
#define RTC_TIME_EN_SHIFT 3
#define RTC_TIME_EN_MASK (1 << RTC_TIME_EN_SHIFT)
#define S5M_RTC_TIME_EN_SHIFT 3
#define S5M_RTC_TIME_EN_MASK (1 << S5M_RTC_TIME_EN_SHIFT)
/*
* UDR_T field in S5M_RTC_UDR_CON register determines the time needed
* for updating alarm and time registers. Default is 7.32 ms.
*/
#define S5M_RTC_UDR_T_SHIFT 6
#define S5M_RTC_UDR_T_MASK (0x3 << S5M_RTC_UDR_T_SHIFT)
#define S5M_RTC_UDR_T_7320_US (0x0 << S5M_RTC_UDR_T_SHIFT)
#define S5M_RTC_UDR_T_1830_US (0x1 << S5M_RTC_UDR_T_SHIFT)
#define S5M_RTC_UDR_T_3660_US (0x2 << S5M_RTC_UDR_T_SHIFT)
#define S5M_RTC_UDR_T_450_US (0x3 << S5M_RTC_UDR_T_SHIFT)
/* RTC Hour register */
#define HOUR_PM_SHIFT 6

View File

@ -85,6 +85,12 @@ void __gcov_merge_ior(gcov_type *counters, unsigned int n_counters)
}
EXPORT_SYMBOL(__gcov_merge_ior);
void __gcov_merge_time_profile(gcov_type *counters, unsigned int n_counters)
{
/* Unused. */
}
EXPORT_SYMBOL(__gcov_merge_time_profile);
/**
* gcov_enable_events - enable event reporting through gcov_event()
*

View File

@ -18,7 +18,12 @@
#include <linux/vmalloc.h>
#include "gcov.h"
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 9
#define GCOV_COUNTERS 9
#else
#define GCOV_COUNTERS 8
#endif
#define GCOV_TAG_FUNCTION_LENGTH 3
static struct gcov_info *gcov_info_head;