Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc

* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
  powerpc/booke: Fix breakpoint/watchpoint one-shot behavior
  powerpc: Reduce printk from pseries_mach_cpu_die()
  powerpc: Move checks in pseries_mach_cpu_die()
  powerpc: Reset kernel stack on cpu online from cede state
  powerpc: Fix G5 thermal shutdown
  powerpc/pseries: Pass CPPR value to H_XIRR hcall
  powerpc/booke: Fix a couple typos in the advanced ptrace code
  powerpc: Fix SMP build with disabled CPU hotplugging.
  powerpc: Dynamically allocate pacas
  powerpc/perf: e500 support
  powerpc/perf: Build callchain code regardless of hardware event support.
  powerpc/cpm2: Checkpatch cleanup
  powerpc/86xx: Renaming following split of GE Fanuc joint venture
  powerpc/86xx: Convert gef_pic_lock to raw_spinlock
  powerpc/qe: Convert qe_ic_lock to raw_spinlock
  powerpc/82xx: Convert pci_pic_lock to raw_spinlock
  powerpc/85xx: Convert socrates_fpga_pic_lock to raw_spinlock
This commit is contained in:
Linus Torvalds 2010-03-12 16:06:51 -08:00
commit b6fedfd2a1
37 changed files with 1253 additions and 267 deletions

View file

@ -1,7 +1,7 @@
/*
* GE Fanuc PPC9A Device Tree Source
* GE PPC9A Device Tree Source
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the

View file

@ -1,7 +1,7 @@
/*
* GE Fanuc SBC310 Device Tree Source
* GE SBC310 Device Tree Source
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the

View file

@ -1,7 +1,7 @@
/*
* GE Fanuc SBC610 Device Tree Source
* GE SBC610 Device Tree Source
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the

View file

@ -14,6 +14,9 @@
#define _ASM_POWERPC_PACA_H
#ifdef __KERNEL__
#ifdef CONFIG_PPC64
#include <linux/init.h>
#include <asm/types.h>
#include <asm/lppaca.h>
#include <asm/mmu.h>
@ -145,8 +148,19 @@ struct paca_struct {
#endif
};
extern struct paca_struct paca[];
extern void initialise_pacas(void);
extern struct paca_struct *paca;
extern __initdata struct paca_struct boot_paca;
extern void initialise_paca(struct paca_struct *new_paca, int cpu);
extern void allocate_pacas(void);
extern void free_unused_pacas(void);
#else /* CONFIG_PPC64 */
static inline void allocate_pacas(void) { };
static inline void free_unused_pacas(void) { };
#endif /* CONFIG_PPC64 */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_PACA_H */

View file

@ -1,110 +1,23 @@
/*
* Performance event support - PowerPC-specific definitions.
* Performance event support - hardware-specific disambiguation
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
* For now this is a compile-time decision, but eventually it should be
* runtime. This would allow multiplatform perf event support for e300 (fsl
* embedded perf counters) plus server/classic, and would accommodate
* devices other than the core which provide their own performance counters.
*
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <asm/hw_irq.h>
#define MAX_HWEVENTS 8
#define MAX_EVENT_ALTERNATIVES 8
#define MAX_LIMITED_HWCOUNTERS 2
/*
* This struct provides the constants and functions needed to
* describe the PMU on a particular POWER-family CPU.
*/
struct power_pmu {
const char *name;
int n_counter;
int max_alternatives;
unsigned long add_fields;
unsigned long test_adder;
int (*compute_mmcr)(u64 events[], int n_ev,
unsigned int hwc[], unsigned long mmcr[]);
int (*get_constraint)(u64 event_id, unsigned long *mskp,
unsigned long *valp);
int (*get_alternatives)(u64 event_id, unsigned int flags,
u64 alt[]);
void (*disable_pmc)(unsigned int pmc, unsigned long mmcr[]);
int (*limited_pmc_event)(u64 event_id);
u32 flags;
int n_generic;
int *generic_events;
int (*cache_events)[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
};
/*
* Values for power_pmu.flags
*/
#define PPMU_LIMITED_PMC5_6 1 /* PMC5/6 have limited function */
#define PPMU_ALT_SIPR 2 /* uses alternate posn for SIPR/HV */
/*
* Values for flags to get_alternatives()
*/
#define PPMU_LIMITED_PMC_OK 1 /* can put this on a limited PMC */
#define PPMU_LIMITED_PMC_REQD 2 /* have to put this on a limited PMC */
#define PPMU_ONLY_COUNT_RUN 4 /* only counting in run state */
extern int register_power_pmu(struct power_pmu *);
struct pt_regs;
extern unsigned long perf_misc_flags(struct pt_regs *regs);
extern unsigned long perf_instruction_pointer(struct pt_regs *regs);
#define PERF_EVENT_INDEX_OFFSET 1
/*
* Only override the default definitions in include/linux/perf_event.h
* if we have hardware PMU support.
*/
#ifdef CONFIG_PPC_PERF_CTRS
#define perf_misc_flags(regs) perf_misc_flags(regs)
#include <asm/perf_event_server.h>
#endif
/*
* The power_pmu.get_constraint function returns a 32/64-bit value and
* a 32/64-bit mask that express the constraints between this event_id and
* other events.
*
* The value and mask are divided up into (non-overlapping) bitfields
* of three different types:
*
* Select field: this expresses the constraint that some set of bits
* in MMCR* needs to be set to a specific value for this event_id. For a
* select field, the mask contains 1s in every bit of the field, and
* the value contains a unique value for each possible setting of the
* MMCR* bits. The constraint checking code will ensure that two events
* that set the same field in their masks have the same value in their
* value dwords.
*
* Add field: this expresses the constraint that there can be at most
* N events in a particular class. A field of k bits can be used for
* N <= 2^(k-1) - 1. The mask has the most significant bit of the field
* set (and the other bits 0), and the value has only the least significant
* bit of the field set. In addition, the 'add_fields' and 'test_adder'
* in the struct power_pmu for this processor come into play. The
* add_fields value contains 1 in the LSB of the field, and the
* test_adder contains 2^(k-1) - 1 - N in the field.
*
* NAND field: this expresses the constraint that you may not have events
* in all of a set of classes. (For example, on PPC970, you can't select
* events from the FPU, ISU and IDU simultaneously, although any two are
* possible.) For N classes, the field is N+1 bits wide, and each class
* is assigned one bit from the least-significant N bits. The mask has
* only the most-significant bit set, and the value has only the bit
* for the event_id's class set. The test_adder has the least significant
* bit set in the field.
*
* If an event_id is not subject to the constraint expressed by a particular
* field, then it will have 0 in both the mask and value for that field.
*/
#ifdef CONFIG_FSL_EMB_PERF_EVENT
#include <asm/perf_event_fsl_emb.h>
#endif

View file

@ -0,0 +1,50 @@
/*
* Performance event support - Freescale embedded specific definitions.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <asm/hw_irq.h>
#define MAX_HWEVENTS 4
/* event flags */
#define FSL_EMB_EVENT_VALID 1
#define FSL_EMB_EVENT_RESTRICTED 2
/* upper half of event flags is PMLCb */
#define FSL_EMB_EVENT_THRESHMUL 0x0000070000000000ULL
#define FSL_EMB_EVENT_THRESH 0x0000003f00000000ULL
struct fsl_emb_pmu {
const char *name;
int n_counter; /* total number of counters */
/*
* The number of contiguous counters starting at zero that
* can hold restricted events, or zero if there are no
* restricted events.
*
* This isn't a very flexible method of expressing constraints,
* but it's very simple and is adequate for existing chips.
*/
int n_restricted;
/* Returns event flags and PMLCb (FSL_EMB_EVENT_*) */
u64 (*xlate_event)(u64 event_id);
int n_generic;
int *generic_events;
int (*cache_events)[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
};
int register_fsl_emb_pmu(struct fsl_emb_pmu *);

View file

@ -0,0 +1,110 @@
/*
* Performance event support - PowerPC classic/server specific definitions.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <asm/hw_irq.h>
#define MAX_HWEVENTS 8
#define MAX_EVENT_ALTERNATIVES 8
#define MAX_LIMITED_HWCOUNTERS 2
/*
* This struct provides the constants and functions needed to
* describe the PMU on a particular POWER-family CPU.
*/
struct power_pmu {
const char *name;
int n_counter;
int max_alternatives;
unsigned long add_fields;
unsigned long test_adder;
int (*compute_mmcr)(u64 events[], int n_ev,
unsigned int hwc[], unsigned long mmcr[]);
int (*get_constraint)(u64 event_id, unsigned long *mskp,
unsigned long *valp);
int (*get_alternatives)(u64 event_id, unsigned int flags,
u64 alt[]);
void (*disable_pmc)(unsigned int pmc, unsigned long mmcr[]);
int (*limited_pmc_event)(u64 event_id);
u32 flags;
int n_generic;
int *generic_events;
int (*cache_events)[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
};
/*
* Values for power_pmu.flags
*/
#define PPMU_LIMITED_PMC5_6 1 /* PMC5/6 have limited function */
#define PPMU_ALT_SIPR 2 /* uses alternate posn for SIPR/HV */
/*
* Values for flags to get_alternatives()
*/
#define PPMU_LIMITED_PMC_OK 1 /* can put this on a limited PMC */
#define PPMU_LIMITED_PMC_REQD 2 /* have to put this on a limited PMC */
#define PPMU_ONLY_COUNT_RUN 4 /* only counting in run state */
extern int register_power_pmu(struct power_pmu *);
struct pt_regs;
extern unsigned long perf_misc_flags(struct pt_regs *regs);
extern unsigned long perf_instruction_pointer(struct pt_regs *regs);
#define PERF_EVENT_INDEX_OFFSET 1
/*
* Only override the default definitions in include/linux/perf_event.h
* if we have hardware PMU support.
*/
#ifdef CONFIG_PPC_PERF_CTRS
#define perf_misc_flags(regs) perf_misc_flags(regs)
#endif
/*
* The power_pmu.get_constraint function returns a 32/64-bit value and
* a 32/64-bit mask that express the constraints between this event_id and
* other events.
*
* The value and mask are divided up into (non-overlapping) bitfields
* of three different types:
*
* Select field: this expresses the constraint that some set of bits
* in MMCR* needs to be set to a specific value for this event_id. For a
* select field, the mask contains 1s in every bit of the field, and
* the value contains a unique value for each possible setting of the
* MMCR* bits. The constraint checking code will ensure that two events
* that set the same field in their masks have the same value in their
* value dwords.
*
* Add field: this expresses the constraint that there can be at most
* N events in a particular class. A field of k bits can be used for
* N <= 2^(k-1) - 1. The mask has the most significant bit of the field
* set (and the other bits 0), and the value has only the least significant
* bit of the field set. In addition, the 'add_fields' and 'test_adder'
* in the struct power_pmu for this processor come into play. The
* add_fields value contains 1 in the LSB of the field, and the
* test_adder contains 2^(k-1) - 1 - N in the field.
*
* NAND field: this expresses the constraint that you may not have events
* in all of a set of classes. (For example, on PPC970, you can't select
* events from the FPU, ISU and IDU simultaneously, although any two are
* possible.) For N classes, the field is N+1 bits wide, and each class
* is assigned one bit from the least-significant N bits. The mask has
* only the most-significant bit set, and the value has only the bit
* for the event_id's class set. The test_adder has the least significant
* bit set in the field.
*
* If an event_id is not subject to the constraint expressed by a particular
* field, then it will have 0 in both the mask and value for that field.
*/

View file

@ -421,8 +421,8 @@
/* Bit definitions related to the DBCR2. */
#define DBCR2_DAC1US 0xC0000000 /* Data Addr Cmp 1 Sup/User */
#define DBCR2_DAC1ER 0x30000000 /* Data Addr Cmp 1 Eff/Real */
#define DBCR2_DAC2US 0x00000000 /* Data Addr Cmp 2 Sup/User */
#define DBCR2_DAC2ER 0x00000000 /* Data Addr Cmp 2 Eff/Real */
#define DBCR2_DAC2US 0x0C000000 /* Data Addr Cmp 2 Sup/User */
#define DBCR2_DAC2ER 0x03000000 /* Data Addr Cmp 2 Eff/Real */
#define DBCR2_DAC12M 0x00800000 /* DAC 1-2 range enable */
#define DBCR2_DAC12MM 0x00400000 /* DAC 1-2 Mask mode*/
#define DBCR2_DAC12MX 0x00C00000 /* DAC 1-2 range eXclusive */

View file

@ -31,7 +31,7 @@
#define PMLCA_FCM0 0x08000000 /* Freeze when PMM==0 */
#define PMLCA_CE 0x04000000 /* Condition Enable */
#define PMLCA_EVENT_MASK 0x007f0000 /* Event field */
#define PMLCA_EVENT_MASK 0x00ff0000 /* Event field */
#define PMLCA_EVENT_SHIFT 16
#define PMRN_PMLCB0 0x110 /* PM Local Control B0 */

View file

@ -98,11 +98,16 @@ obj64-$(CONFIG_AUDIT) += compat_audit.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_PPC_PERF_CTRS) += perf_event.o perf_callchain.o
obj-$(CONFIG_PERF_EVENTS) += perf_callchain.o
obj-$(CONFIG_PPC_PERF_CTRS) += perf_event.o
obj64-$(CONFIG_PPC_PERF_CTRS) += power4-pmu.o ppc970-pmu.o power5-pmu.o \
power5+-pmu.o power6-pmu.o power7-pmu.o
obj32-$(CONFIG_PPC_PERF_CTRS) += mpc7450-pmu.o
obj-$(CONFIG_FSL_EMB_PERF_EVENT) += perf_event_fsl_emb.o
obj-$(CONFIG_FSL_EMB_PERF_EVENT_E500) += e500-pmu.o
obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o
ifneq ($(CONFIG_PPC_INDIRECT_IO),y)

View file

@ -1808,7 +1808,7 @@ static struct cpu_spec __initdata cpu_specs[] = {
.icache_bsize = 64,
.dcache_bsize = 64,
.num_pmcs = 4,
.oprofile_cpu_type = "ppc/e500", /* xxx - galak, e500mc? */
.oprofile_cpu_type = "ppc/e500mc",
.oprofile_type = PPC_OPROFILE_FSL_EMB,
.cpu_setup = __setup_cpu_e500mc,
.machine_check = machine_check_e500,

View file

@ -0,0 +1,129 @@
/*
* Performance counter support for e500 family processors.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/string.h>
#include <linux/perf_event.h>
#include <asm/reg.h>
#include <asm/cputable.h>
/*
* Map of generic hardware event types to hardware events
* Zero if unsupported
*/
static int e500_generic_events[] = {
[PERF_COUNT_HW_CPU_CYCLES] = 1,
[PERF_COUNT_HW_INSTRUCTIONS] = 2,
[PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
[PERF_COUNT_HW_BRANCH_MISSES] = 15,
};
#define C(x) PERF_COUNT_HW_CACHE_##x
/*
* Table of generalized cache-related events.
* 0 means not supported, -1 means nonsensical, other values
* are event codes.
*/
static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
/*
* D-cache misses are not split into read/write/prefetch;
* use raw event 41.
*/
[C(L1D)] = { /* RESULT_ACCESS RESULT_MISS */
[C(OP_READ)] = { 27, 0 },
[C(OP_WRITE)] = { 28, 0 },
[C(OP_PREFETCH)] = { 29, 0 },
},
[C(L1I)] = { /* RESULT_ACCESS RESULT_MISS */
[C(OP_READ)] = { 2, 60 },
[C(OP_WRITE)] = { -1, -1 },
[C(OP_PREFETCH)] = { 0, 0 },
},
/*
* Assuming LL means L2, it's not a good match for this model.
* It allocates only on L1 castout or explicit prefetch, and
* does not have separate read/write events (but it does have
* separate instruction/data events).
*/
[C(LL)] = { /* RESULT_ACCESS RESULT_MISS */
[C(OP_READ)] = { 0, 0 },
[C(OP_WRITE)] = { 0, 0 },
[C(OP_PREFETCH)] = { 0, 0 },
},
/*
* There are data/instruction MMU misses, but that's a miss on
* the chip's internal level-one TLB which is probably not
* what the user wants. Instead, unified level-two TLB misses
* are reported here.
*/
[C(DTLB)] = { /* RESULT_ACCESS RESULT_MISS */
[C(OP_READ)] = { 26, 66 },
[C(OP_WRITE)] = { -1, -1 },
[C(OP_PREFETCH)] = { -1, -1 },
},
[C(BPU)] = { /* RESULT_ACCESS RESULT_MISS */
[C(OP_READ)] = { 12, 15 },
[C(OP_WRITE)] = { -1, -1 },
[C(OP_PREFETCH)] = { -1, -1 },
},
};
static int num_events = 128;
/* Upper half of event id is PMLCb, for threshold events */
static u64 e500_xlate_event(u64 event_id)
{
u32 event_low = (u32)event_id;
u64 ret;
if (event_low >= num_events)
return 0;
ret = FSL_EMB_EVENT_VALID;
if (event_low >= 76 && event_low <= 81) {
ret |= FSL_EMB_EVENT_RESTRICTED;
ret |= event_id &
(FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
} else if (event_id &
(FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
/* Threshold requested on non-threshold event */
return 0;
}
return ret;
}
static struct fsl_emb_pmu e500_pmu = {
.name = "e500 family",
.n_counter = 4,
.n_restricted = 2,
.xlate_event = e500_xlate_event,
.n_generic = ARRAY_SIZE(e500_generic_events),
.generic_events = e500_generic_events,
.cache_events = &e500_cache_events,
};
static int init_e500_pmu(void)
{
if (!cur_cpu_spec->oprofile_cpu_type)
return -ENODEV;
if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
num_events = 256;
else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
return -ENODEV;
return register_fsl_emb_pmu(&e500_pmu);
}
arch_initcall(init_e500_pmu);

View file

@ -219,7 +219,8 @@ generic_secondary_common_init:
* physical cpu id in r24, we need to search the pacas to find
* which logical id maps to our physical one.
*/
LOAD_REG_ADDR(r13, paca) /* Get base vaddr of paca array */
LOAD_REG_ADDR(r13, paca) /* Load paca pointer */
ld r13,0(r13) /* Get base vaddr of paca array */
li r5,0 /* logical cpu id */
1: lhz r6,PACAHWCPUID(r13) /* Load HW procid from paca */
cmpw r6,r24 /* Compare to our id */
@ -536,7 +537,8 @@ _GLOBAL(pmac_secondary_start)
mtmsrd r3 /* RI on */
/* Set up a paca value for this processor. */
LOAD_REG_ADDR(r4,paca) /* Get base vaddr of paca array */
LOAD_REG_ADDR(r4,paca) /* Load paca pointer */
ld r4,0(r4) /* Get base vaddr of paca array */
mulli r13,r24,PACA_SIZE /* Calculate vaddr of right paca */
add r13,r13,r4 /* for this processor. */
mtspr SPRN_SPRG_PACA,r13 /* Save vaddr of paca in an SPRG*/
@ -615,6 +617,17 @@ _GLOBAL(start_secondary_prolog)
std r3,0(r1) /* Zero the stack frame pointer */
bl .start_secondary
b .
/*
* Reset stack pointer and call start_secondary
* to continue with online operation when woken up
* from cede in cpu offline.
*/
_GLOBAL(start_secondary_resume)
ld r1,PACAKSAVE(r13) /* Reload kernel stack pointer */
li r3,0
std r3,0(r1) /* Zero the stack frame pointer */
bl .start_secondary
b .
#endif
/*

View file

@ -9,11 +9,15 @@
#include <linux/threads.h>
#include <linux/module.h>
#include <linux/lmb.h>
#include <asm/firmware.h>
#include <asm/lppaca.h>
#include <asm/paca.h>
#include <asm/sections.h>
#include <asm/pgtable.h>
#include <asm/iseries/lpar_map.h>
#include <asm/iseries/hv_types.h>
/* This symbol is provided by the linker - let it fill in the paca
* field correctly */
@ -70,37 +74,82 @@ struct slb_shadow slb_shadow[] __cacheline_aligned = {
* processors. The processor VPD array needs one entry per physical
* processor (not thread).
*/
struct paca_struct paca[NR_CPUS];
struct paca_struct *paca;
EXPORT_SYMBOL(paca);
void __init initialise_pacas(void)
{
int cpu;
struct paca_struct boot_paca;
/* The TOC register (GPR2) points 32kB into the TOC, so that 64kB
* of the TOC can be addressed using a single machine instruction.
*/
void __init initialise_paca(struct paca_struct *new_paca, int cpu)
{
/* The TOC register (GPR2) points 32kB into the TOC, so that 64kB
* of the TOC can be addressed using a single machine instruction.
*/
unsigned long kernel_toc = (unsigned long)(&__toc_start) + 0x8000UL;
/* Can't use for_each_*_cpu, as they aren't functional yet */
for (cpu = 0; cpu < NR_CPUS; cpu++) {
struct paca_struct *new_paca = &paca[cpu];
#ifdef CONFIG_PPC_BOOK3S
new_paca->lppaca_ptr = &lppaca[cpu];
new_paca->lppaca_ptr = &lppaca[cpu];
#else
new_paca->kernel_pgd = swapper_pg_dir;
new_paca->kernel_pgd = swapper_pg_dir;
#endif
new_paca->lock_token = 0x8000;
new_paca->paca_index = cpu;
new_paca->kernel_toc = kernel_toc;
new_paca->kernelbase = (unsigned long) _stext;
new_paca->kernel_msr = MSR_KERNEL;
new_paca->hw_cpu_id = 0xffff;
new_paca->__current = &init_task;
new_paca->lock_token = 0x8000;
new_paca->paca_index = cpu;
new_paca->kernel_toc = kernel_toc;
new_paca->kernelbase = (unsigned long) _stext;
new_paca->kernel_msr = MSR_KERNEL;
new_paca->hw_cpu_id = 0xffff;
new_paca->__current = &init_task;
#ifdef CONFIG_PPC_STD_MMU_64
new_paca->slb_shadow_ptr = &slb_shadow[cpu];
new_paca->slb_shadow_ptr = &slb_shadow[cpu];
#endif /* CONFIG_PPC_STD_MMU_64 */
}
}
static int __initdata paca_size;
void __init allocate_pacas(void)
{
int nr_cpus, cpu, limit;
/*
* We can't take SLB misses on the paca, and we want to access them
* in real mode, so allocate them within the RMA and also within
* the first segment. On iSeries they must be within the area mapped
* by the HV, which is HvPagesToMap * HVPAGESIZE bytes.
*/
limit = min(0x10000000ULL, lmb.rmo_size);
if (firmware_has_feature(FW_FEATURE_ISERIES))
limit = min(limit, HvPagesToMap * HVPAGESIZE);
nr_cpus = NR_CPUS;
/* On iSeries we know we can never have more than 64 cpus */
if (firmware_has_feature(FW_FEATURE_ISERIES))
nr_cpus = min(64, nr_cpus);
paca_size = PAGE_ALIGN(sizeof(struct paca_struct) * nr_cpus);
paca = __va(lmb_alloc_base(paca_size, PAGE_SIZE, limit));
memset(paca, 0, paca_size);
printk(KERN_DEBUG "Allocated %u bytes for %d pacas at %p\n",
paca_size, nr_cpus, paca);
/* Can't use for_each_*_cpu, as they aren't functional yet */
for (cpu = 0; cpu < nr_cpus; cpu++)
initialise_paca(&paca[cpu], cpu);
}
void __init free_unused_pacas(void)
{
int new_size;
new_size = PAGE_ALIGN(sizeof(struct paca_struct) * num_possible_cpus());
if (new_size >= paca_size)
return;
lmb_free(__pa(paca) + new_size, paca_size - new_size);
printk(KERN_DEBUG "Freed %u bytes for unused pacas\n",
paca_size - new_size);
paca_size = new_size;
}

View file

@ -0,0 +1,654 @@
/*
* Performance event support - Freescale Embedded Performance Monitor
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg_fsl_emb.h>
#include <asm/pmc.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/ptrace.h>
struct cpu_hw_events {
int n_events;
int disabled;
u8 pmcs_enabled;
struct perf_event *event[MAX_HWEVENTS];
};
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
static struct fsl_emb_pmu *ppmu;
/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
* it as an NMI.
*/
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
#ifdef __powerpc64__
return !regs->softe;
#else
return 0;
#endif
}
static void perf_event_interrupt(struct pt_regs *regs);
/*
* Read one performance monitor counter (PMC).
*/
static unsigned long read_pmc(int idx)
{
unsigned long val;
switch (idx) {
case 0:
val = mfpmr(PMRN_PMC0);
break;
case 1:
val = mfpmr(PMRN_PMC1);
break;
case 2:
val = mfpmr(PMRN_PMC2);
break;
case 3:
val = mfpmr(PMRN_PMC3);
break;
default:
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
val = 0;
}
return val;
}
/*
* Write one PMC.
*/
static void write_pmc(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMC0, val);
break;
case 1:
mtpmr(PMRN_PMC1, val);
break;
case 2:
mtpmr(PMRN_PMC2, val);
break;
case 3:
mtpmr(PMRN_PMC3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
}
isync();
}
/*
* Write one local control A register
*/
static void write_pmlca(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMLCA0, val);
break;
case 1:
mtpmr(PMRN_PMLCA1, val);
break;
case 2:
mtpmr(PMRN_PMLCA2, val);
break;
case 3:
mtpmr(PMRN_PMLCA3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
}
isync();
}
/*
* Write one local control B register
*/
static void write_pmlcb(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMLCB0, val);
break;
case 1:
mtpmr(PMRN_PMLCB1, val);
break;
case 2:
mtpmr(PMRN_PMLCB2, val);
break;
case 3:
mtpmr(PMRN_PMLCB3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
}
isync();
}
static void fsl_emb_pmu_read(struct perf_event *event)
{
s64 val, delta, prev;
/*
* Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled.
* Therefore we treat them like NMIs.
*/
do {
prev = atomic64_read(&event->hw.prev_count);
barrier();
val = read_pmc(event->hw.idx);
} while (atomic64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
/* The counters are only 32 bits wide */
delta = (val - prev) & 0xfffffffful;
atomic64_add(delta, &event->count);
atomic64_sub(delta, &event->hw.period_left);
}
/*
* Disable all events to prevent PMU interrupts and to allow
* events to be added or removed.
*/
void hw_perf_disable(void)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled) {
cpuhw->disabled = 1;
/*
* Check if we ever enabled the PMU on this cpu.
*/
if (!cpuhw->pmcs_enabled) {
ppc_enable_pmcs();
cpuhw->pmcs_enabled = 1;
}
if (atomic_read(&num_events)) {
/*
* Set the 'freeze all counters' bit, and disable
* interrupts. The barrier is to make sure the
* mtpmr has been executed and the PMU has frozen
* the events before we return.
*/
mtpmr(PMRN_PMGC0, PMGC0_FAC);
isync();
}
}
local_irq_restore(flags);
}
/*
* Re-enable all events if disable == 0.
* If we were previously disabled and events were added, then
* put the new config on the PMU.
*/
void hw_perf_enable(void)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled)
goto out;
cpuhw->disabled = 0;
ppc_set_pmu_inuse(cpuhw->n_events != 0);
if (cpuhw->n_events > 0) {
mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
isync();
}
out:
local_irq_restore(flags);
}
static int collect_events(struct perf_event *group, int max_count,
struct perf_event *ctrs[])
{
int n = 0;
struct perf_event *event;
if (!is_software_event(group)) {
if (n >= max_count)
return -1;
ctrs[n] = group;
n++;
}
list_for_each_entry(event, &group->sibling_list, group_entry) {
if (!is_software_event(event) &&
event->state != PERF_EVENT_STATE_OFF) {
if (n >= max_count)
return -1;
ctrs[n] = event;
n++;
}
}
return n;
}
/* perf must be disabled, context locked on entry */
static int fsl_emb_pmu_enable(struct perf_event *event)
{
struct cpu_hw_events *cpuhw;
int ret = -EAGAIN;
int num_counters = ppmu->n_counter;
u64 val;
int i;
cpuhw = &get_cpu_var(cpu_hw_events);
if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
num_counters = ppmu->n_restricted;
/*
* Allocate counters from top-down, so that restricted-capable
* counters are kept free as long as possible.
*/
for (i = num_counters - 1; i >= 0; i--) {
if (cpuhw->event[i])
continue;
break;
}
if (i < 0)
goto out;
event->hw.idx = i;
cpuhw->event[i] = event;
++cpuhw->n_events;
val = 0;
if (event->hw.sample_period) {
s64 left = atomic64_read(&event->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
atomic64_set(&event->hw.prev_count, val);
write_pmc(i, val);
perf_event_update_userpage(event);
write_pmlcb(i, event->hw.config >> 32);
write_pmlca(i, event->hw.config_base);
ret = 0;
out:
put_cpu_var(cpu_hw_events);
return ret;
}
/* perf must be disabled, context locked on entry */
static void fsl_emb_pmu_disable(struct perf_event *event)
{
struct cpu_hw_events *cpuhw;
int i = event->hw.idx;
if (i < 0)
goto out;
fsl_emb_pmu_read(event);
cpuhw = &get_cpu_var(cpu_hw_events);
WARN_ON(event != cpuhw->event[event->hw.idx]);
write_pmlca(i, 0);
write_pmlcb(i, 0);
write_pmc(i, 0);
cpuhw->event[i] = NULL;
event->hw.idx = -1;
/*
* TODO: if at least one restricted event exists, and we
* just freed up a non-restricted-capable counter, and
* there is a restricted-capable counter occupied by
* a non-restricted event, migrate that event to the
* vacated counter.
*/
cpuhw->n_events--;
out:
put_cpu_var(cpu_hw_events);
}
/*
* Re-enable interrupts on a event after they were throttled
* because they were coming too fast.
*
* Context is locked on entry, but perf is not disabled.
*/
static void fsl_emb_pmu_unthrottle(struct perf_event *event)
{
s64 val, left;
unsigned long flags;
if (event->hw.idx < 0 || !event->hw.sample_period)
return;
local_irq_save(flags);
perf_disable();
fsl_emb_pmu_read(event);
left = event->hw.sample_period;
event->hw.last_period = left;
val = 0;
if (left < 0x80000000L)
val = 0x80000000L - left;
write_pmc(event->hw.idx, val);
atomic64_set(&event->hw.prev_count, val);
atomic64_set(&event->hw.period_left, left);
perf_event_update_userpage(event);
perf_enable();
local_irq_restore(flags);
}
static struct pmu fsl_emb_pmu = {
.enable = fsl_emb_pmu_enable,
.disable = fsl_emb_pmu_disable,
.read = fsl_emb_pmu_read,
.unthrottle = fsl_emb_pmu_unthrottle,
};
/*
* Release the PMU if this is the last perf_event.
*/
static void hw_perf_event_destroy(struct perf_event *event)
{
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
/*
* Translate a generic cache event_id config to a raw event_id code.
*/
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
unsigned long type, op, result;
int ev;
if (!ppmu->cache_events)
return -EINVAL;
/* unpack config */
type = config & 0xff;
op = (config >> 8) & 0xff;
result = (config >> 16) & 0xff;
if (type >= PERF_COUNT_HW_CACHE_MAX ||
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ev = (*ppmu->cache_events)[type][op][result];
if (ev == 0)
return -EOPNOTSUPP;
if (ev == -1)
return -EINVAL;
*eventp = ev;
return 0;
}
const struct pmu *hw_perf_event_init(struct perf_event *event)
{
u64 ev;
struct perf_event *events[MAX_HWEVENTS];
int n;
int err;
int num_restricted;
int i;
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
ev = event->attr.config;
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
return ERR_PTR(-EOPNOTSUPP);
ev = ppmu->generic_events[ev];
break;
case PERF_TYPE_HW_CACHE:
err = hw_perf_cache_event(event->attr.config, &ev);
if (err)
return ERR_PTR(err);
break;
case PERF_TYPE_RAW:
ev = event->attr.config;
break;
default:
return ERR_PTR(-EINVAL);
}
event->hw.config = ppmu->xlate_event(ev);
if (!(event->hw.config & FSL_EMB_EVENT_VALID))
return ERR_PTR(-EINVAL);
/*
* If this is in a group, check if it can go on with all the
* other hardware events in the group. We assume the event
* hasn't been linked into its leader's sibling list at this point.
*/
n = 0;
if (event->group_leader != event) {
n = collect_events(event->group_leader,
ppmu->n_counter - 1, events);
if (n < 0)
return ERR_PTR(-EINVAL);
}
if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
num_restricted = 0;
for (i = 0; i < n; i++) {
if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
num_restricted++;
}
if (num_restricted >= ppmu->n_restricted)
return ERR_PTR(-EINVAL);
}
event->hw.idx = -1;
event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
(u32)((ev << 16) & PMLCA_EVENT_MASK);
if (event->attr.exclude_user)
event->hw.config_base |= PMLCA_FCU;
if (event->attr.exclude_kernel)
event->hw.config_base |= PMLCA_FCS;
if (event->attr.exclude_idle)
return ERR_PTR(-ENOTSUPP);
event->hw.last_period = event->hw.sample_period;
atomic64_set(&event->hw.period_left, event->hw.last_period);
/*
* See if we need to reserve the PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* reserve_pmc_hardware or release_pmc_hardware.
*/
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 &&
reserve_pmc_hardware(perf_event_interrupt))
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
mtpmr(PMRN_PMGC0, PMGC0_FAC);
isync();
}
event->destroy = hw_perf_event_destroy;
if (err)
return ERR_PTR(err);
return &fsl_emb_pmu;
}
/*
* A counter has overflowed; update its count and record
* things if requested. Note that interrupts are hard-disabled
* here so there is no possibility of being interrupted.
*/
static void record_and_restart(struct perf_event *event, unsigned long val,
struct pt_regs *regs, int nmi)
{
u64 period = event->hw.sample_period;
s64 prev, delta, left;
int record = 0;
/* we don't have to worry about interrupts here */
prev = atomic64_read(&event->hw.prev_count);
delta = (val - prev) & 0xfffffffful;
atomic64_add(delta, &event->count);
/*
* See if the total period for this event has expired,
* and update for the next period.
*/
val = 0;
left = atomic64_read(&event->hw.period_left) - delta;
if (period) {
if (left <= 0) {
left += period;
if (left <= 0)
left = period;
record = 1;
}
if (left < 0x80000000LL)
val = 0x80000000LL - left;
}
/*
* Finally record data if requested.
*/
if (record) {
struct perf_sample_data data = {
.period = event->hw.last_period,
};
if (perf_event_overflow(event, nmi, &data, regs)) {
/*
* Interrupts are coming too fast - throttle them
* by setting the event to 0, so it will be
* at least 2^30 cycles until the next interrupt
* (assuming each event counts at most 2 counts
* per cycle).
*/
val = 0;
left = ~0ULL >> 1;
}
}
write_pmc(event->hw.idx, val);
atomic64_set(&event->hw.prev_count, val);
atomic64_set(&event->hw.period_left, left);
perf_event_update_userpage(event);
}
static void perf_event_interrupt(struct pt_regs *regs)
{
int i;
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
struct perf_event *event;
unsigned long val;
int found = 0;
int nmi;
nmi = perf_intr_is_nmi(regs);
if (nmi)
nmi_enter();
else
irq_enter();
for (i = 0; i < ppmu->n_counter; ++i) {
event = cpuhw->event[i];
val = read_pmc(i);
if ((int)val < 0) {
if (event) {
/* event has overflowed */
found = 1;
record_and_restart(event, val, regs, nmi);
} else {
/*
* Disabled counter is negative,
* reset it just in case.
*/
write_pmc(i, 0);
}
}
}
/* PMM will keep counters frozen until we return from the interrupt. */
mtmsr(mfmsr() | MSR_PMM);
mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
isync();
if (nmi)
nmi_exit();
else
irq_exit();
}
void hw_perf_event_setup(int cpu)
{
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
memset(cpuhw, 0, sizeof(*cpuhw));
}
int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
{
if (ppmu)
return -EBUSY; /* something's already registered */
ppmu = pmu;
pr_info("%s performance monitor hardware support registered\n",
pmu->name);
return 0;
}

View file

@ -43,6 +43,7 @@
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/paca.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
@ -721,6 +722,8 @@ void __init early_init_devtree(void *params)
* FIXME .. and the initrd too? */
move_device_tree();
allocate_pacas();
DBG("Scanning CPUs ...\n");
/* Retreive CPU related informations from the flat tree

View file

@ -940,7 +940,7 @@ static int del_instruction_bp(struct task_struct *child, int slot)
{
switch (slot) {
case 1:
if (child->thread.iac1 == 0)
if ((child->thread.dbcr0 & DBCR0_IAC1) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
@ -952,7 +952,7 @@ static int del_instruction_bp(struct task_struct *child, int slot)
child->thread.dbcr0 &= ~DBCR0_IAC1;
break;
case 2:
if (child->thread.iac2 == 0)
if ((child->thread.dbcr0 & DBCR0_IAC2) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC12MODE)
@ -963,7 +963,7 @@ static int del_instruction_bp(struct task_struct *child, int slot)
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case 3:
if (child->thread.iac3 == 0)
if ((child->thread.dbcr0 & DBCR0_IAC3) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
@ -975,7 +975,7 @@ static int del_instruction_bp(struct task_struct *child, int slot)
child->thread.dbcr0 &= ~DBCR0_IAC3;
break;
case 4:
if (child->thread.iac4 == 0)
if ((child->thread.dbcr0 & DBCR0_IAC4) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC34MODE)
@ -1054,7 +1054,7 @@ static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
static int del_dac(struct task_struct *child, int slot)
{
if (slot == 1) {
if (child->thread.dac1 == 0)
if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
return -ENOENT;
child->thread.dac1 = 0;
@ -1070,7 +1070,7 @@ static int del_dac(struct task_struct *child, int slot)
child->thread.dvc1 = 0;
#endif
} else if (slot == 2) {
if (child->thread.dac1 == 0)
if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
return -ENOENT;
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE

View file

@ -36,6 +36,7 @@
#include <linux/lmb.h>
#include <linux/of_platform.h>
#include <asm/io.h>
#include <asm/paca.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/vdso_datapage.h>
@ -493,6 +494,8 @@ void __init smp_setup_cpu_maps(void)
* here will have to be reworked
*/
cpu_init_thread_core_maps(nthreads);
free_unused_pacas();
}
#endif /* CONFIG_SMP */

View file

@ -144,9 +144,9 @@ early_param("smt-enabled", early_smt_enabled);
#endif /* CONFIG_SMP */
/* Put the paca pointer into r13 and SPRG_PACA */
void __init setup_paca(int cpu)
static void __init setup_paca(struct paca_struct *new_paca)
{
local_paca = &paca[cpu];
local_paca = new_paca;
mtspr(SPRN_SPRG_PACA, local_paca);
#ifdef CONFIG_PPC_BOOK3E
mtspr(SPRN_SPRG_TLB_EXFRAME, local_paca->extlb);
@ -176,14 +176,12 @@ void __init early_setup(unsigned long dt_ptr)
{
/* -------- printk is _NOT_ safe to use here ! ------- */
/* Fill in any unititialised pacas */
initialise_pacas();
/* Identify CPU type */
identify_cpu(0, mfspr(SPRN_PVR));
/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
setup_paca(0);
initialise_paca(&boot_paca, 0);
setup_paca(&boot_paca);
/* Initialize lockdep early or else spinlocks will blow */
lockdep_init();
@ -203,7 +201,7 @@ void __init early_setup(unsigned long dt_ptr)
early_init_devtree(__va(dt_ptr));
/* Now we know the logical id of our boot cpu, setup the paca. */
setup_paca(boot_cpuid);
setup_paca(&paca[boot_cpuid]);
/* Fix up paca fields required for the boot cpu */
get_paca()->cpu_start = 1;

View file

@ -24,7 +24,7 @@
#include "pq2.h"
static DEFINE_SPINLOCK(pci_pic_lock);
static DEFINE_RAW_SPINLOCK(pci_pic_lock);
struct pq2ads_pci_pic {
struct device_node *node;
@ -45,12 +45,12 @@ static void pq2ads_pci_mask_irq(unsigned int virq)
if (irq != -1) {
unsigned long flags;
spin_lock_irqsave(&pci_pic_lock, flags);
raw_spin_lock_irqsave(&pci_pic_lock, flags);
setbits32(&priv->regs->mask, 1 << irq);
mb();
spin_unlock_irqrestore(&pci_pic_lock, flags);
raw_spin_unlock_irqrestore(&pci_pic_lock, flags);
}
}
@ -62,9 +62,9 @@ static void pq2ads_pci_unmask_irq(unsigned int virq)
if (irq != -1) {
unsigned long flags;
spin_lock_irqsave(&pci_pic_lock, flags);
raw_spin_lock_irqsave(&pci_pic_lock, flags);
clrbits32(&priv->regs->mask, 1 << irq);
spin_unlock_irqrestore(&pci_pic_lock, flags);
raw_spin_unlock_irqrestore(&pci_pic_lock, flags);
}
}

View file

@ -50,7 +50,7 @@ static struct socrates_fpga_irq_info fpga_irqs[SOCRATES_FPGA_NUM_IRQS] = {
#define socrates_fpga_irq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
static DEFINE_SPINLOCK(socrates_fpga_pic_lock);
static DEFINE_RAW_SPINLOCK(socrates_fpga_pic_lock);
static void __iomem *socrates_fpga_pic_iobase;
static struct irq_host *socrates_fpga_pic_irq_host;
@ -80,9 +80,9 @@ static inline unsigned int socrates_fpga_pic_get_irq(unsigned int irq)
if (i == 3)
return NO_IRQ;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
cause = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(i));
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
for (i = SOCRATES_FPGA_NUM_IRQS - 1; i >= 0; i--) {
if (cause >> (i + 16))
break;
@ -116,12 +116,12 @@ static void socrates_fpga_pic_ack(unsigned int virq)
hwirq = socrates_fpga_irq_to_hw(virq);
irq_line = fpga_irqs[hwirq].irq_line;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(irq_line))
& SOCRATES_FPGA_IRQ_MASK;
mask |= (1 << (hwirq + 16));
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(irq_line), mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
}
static void socrates_fpga_pic_mask(unsigned int virq)
@ -134,12 +134,12 @@ static void socrates_fpga_pic_mask(unsigned int virq)
hwirq = socrates_fpga_irq_to_hw(virq);
irq_line = fpga_irqs[hwirq].irq_line;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(irq_line))
& SOCRATES_FPGA_IRQ_MASK;
mask &= ~(1 << hwirq);
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(irq_line), mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
}
static void socrates_fpga_pic_mask_ack(unsigned int virq)
@ -152,13 +152,13 @@ static void socrates_fpga_pic_mask_ack(unsigned int virq)
hwirq = socrates_fpga_irq_to_hw(virq);
irq_line = fpga_irqs[hwirq].irq_line;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(irq_line))
& SOCRATES_FPGA_IRQ_MASK;
mask &= ~(1 << hwirq);
mask |= (1 << (hwirq + 16));
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(irq_line), mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
}
static void socrates_fpga_pic_unmask(unsigned int virq)
@ -171,12 +171,12 @@ static void socrates_fpga_pic_unmask(unsigned int virq)
hwirq = socrates_fpga_irq_to_hw(virq);
irq_line = fpga_irqs[hwirq].irq_line;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(irq_line))
& SOCRATES_FPGA_IRQ_MASK;
mask |= (1 << hwirq);
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(irq_line), mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
}
static void socrates_fpga_pic_eoi(unsigned int virq)
@ -189,12 +189,12 @@ static void socrates_fpga_pic_eoi(unsigned int virq)
hwirq = socrates_fpga_irq_to_hw(virq);
irq_line = fpga_irqs[hwirq].irq_line;
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQMASK(irq_line))
& SOCRATES_FPGA_IRQ_MASK;
mask |= (1 << (hwirq + 16));
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(irq_line), mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
}
static int socrates_fpga_pic_set_type(unsigned int virq,
@ -220,14 +220,14 @@ static int socrates_fpga_pic_set_type(unsigned int virq,
default:
return -EINVAL;
}
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
mask = socrates_fpga_pic_read(FPGA_PIC_IRQCFG);
if (polarity)
mask |= (1 << hwirq);
else
mask &= ~(1 << hwirq);
socrates_fpga_pic_write(FPGA_PIC_IRQCFG, mask);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
return 0;
}
@ -314,14 +314,14 @@ void socrates_fpga_pic_init(struct device_node *pic)
socrates_fpga_pic_iobase = of_iomap(pic, 0);
spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
raw_spin_lock_irqsave(&socrates_fpga_pic_lock, flags);
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(0),
SOCRATES_FPGA_IRQ_MASK << 16);
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(1),
SOCRATES_FPGA_IRQ_MASK << 16);
socrates_fpga_pic_write(FPGA_PIC_IRQMASK(2),
SOCRATES_FPGA_IRQ_MASK << 16);
spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
raw_spin_unlock_irqrestore(&socrates_fpga_pic_lock, flags);
pr_info("FPGA PIC: Setting up Socrates FPGA PIC\n");
}

View file

@ -33,32 +33,32 @@ config MPC8610_HPCD
This option enables support for the MPC8610 HPCD board.
config GEF_PPC9A
bool "GE Fanuc PPC9A"
bool "GE PPC9A"
select DEFAULT_UIMAGE
select MMIO_NVRAM
select GENERIC_GPIO
select ARCH_REQUIRE_GPIOLIB
help
This option enables support for GE Fanuc's PPC9A.
This option enables support for the GE PPC9A.
config GEF_SBC310
bool "GE Fanuc SBC310"
bool "GE SBC310"
select DEFAULT_UIMAGE
select MMIO_NVRAM
select GENERIC_GPIO
select ARCH_REQUIRE_GPIOLIB
help
This option enables support for GE Fanuc's SBC310.
This option enables support for the GE SBC310.
config GEF_SBC610
bool "GE Fanuc SBC610"
bool "GE SBC610"
select DEFAULT_UIMAGE
select MMIO_NVRAM
select GENERIC_GPIO
select ARCH_REQUIRE_GPIOLIB
select HAS_RAPIDIO
help
This option enables support for GE Fanuc's SBC610.
This option enables support for the GE SBC610.
endif

View file

@ -1,9 +1,9 @@
/*
* Driver for GE Fanuc's FPGA based GPIO pins
* Driver for GE FPGA based GPIO
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Author: Martyn Welch <martyn.welch@ge.com>
*
* 2008 (c) GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* 2008 (c) GE Intelligent Platforms Embedded Systems, Inc.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
@ -164,6 +164,6 @@ static int __init gef_gpio_init(void)
};
arch_initcall(gef_gpio_init);
MODULE_DESCRIPTION("GE Fanuc I/O FPGA GPIO driver");
MODULE_AUTHOR("Martyn Welch <martyn.welch@gefanuc.com");
MODULE_DESCRIPTION("GE I/O FPGA GPIO driver");
MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
MODULE_LICENSE("GPL");

View file

@ -1,9 +1,9 @@
/*
* Interrupt handling for GE Fanuc's FPGA based PIC
* Interrupt handling for GE FPGA based PIC
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Author: Martyn Welch <martyn.welch@ge.com>
*
* 2008 (c) GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* 2008 (c) GE Intelligent Platforms Embedded Systems, Inc.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
@ -49,7 +49,7 @@
#define gef_irq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
static DEFINE_SPINLOCK(gef_pic_lock);
static DEFINE_RAW_SPINLOCK(gef_pic_lock);
static void __iomem *gef_pic_irq_reg_base;
static struct irq_host *gef_pic_irq_host;
@ -118,11 +118,11 @@ static void gef_pic_mask(unsigned int virq)
hwirq = gef_irq_to_hw(virq);
spin_lock_irqsave(&gef_pic_lock, flags);
raw_spin_lock_irqsave(&gef_pic_lock, flags);
mask = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0));
mask &= ~(1 << hwirq);
out_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0), mask);
spin_unlock_irqrestore(&gef_pic_lock, flags);
raw_spin_unlock_irqrestore(&gef_pic_lock, flags);
}
static void gef_pic_mask_ack(unsigned int virq)
@ -141,11 +141,11 @@ static void gef_pic_unmask(unsigned int virq)
hwirq = gef_irq_to_hw(virq);
spin_lock_irqsave(&gef_pic_lock, flags);
raw_spin_lock_irqsave(&gef_pic_lock, flags);
mask = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0));
mask |= (1 << hwirq);
out_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0), mask);
spin_unlock_irqrestore(&gef_pic_lock, flags);
raw_spin_unlock_irqrestore(&gef_pic_lock, flags);
}
static struct irq_chip gef_pic_chip = {
@ -199,7 +199,7 @@ void __init gef_pic_init(struct device_node *np)
/* Map the devices registers into memory */
gef_pic_irq_reg_base = of_iomap(np, 0);
spin_lock_irqsave(&gef_pic_lock, flags);
raw_spin_lock_irqsave(&gef_pic_lock, flags);
/* Initialise everything as masked. */
out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU0_INTR_MASK, 0);
@ -208,7 +208,7 @@ void __init gef_pic_init(struct device_node *np)
out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU0_MCP_MASK, 0);
out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU1_MCP_MASK, 0);
spin_unlock_irqrestore(&gef_pic_lock, flags);
raw_spin_unlock_irqrestore(&gef_pic_lock, flags);
/* Map controller */
gef_pic_cascade_irq = irq_of_parse_and_map(np, 0);

View file

@ -1,9 +1,9 @@
/*
* GE Fanuc PPC9A board support
* GE PPC9A board support
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Author: Martyn Welch <martyn.welch@ge.com>
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
@ -82,7 +82,7 @@ static void __init gef_ppc9a_setup_arch(void)
}
#endif
printk(KERN_INFO "GE Fanuc Intelligent Platforms PPC9A 6U VME SBC\n");
printk(KERN_INFO "GE Intelligent Platforms PPC9A 6U VME SBC\n");
#ifdef CONFIG_SMP
mpc86xx_smp_init();
@ -151,7 +151,7 @@ static void gef_ppc9a_show_cpuinfo(struct seq_file *m)
{
uint svid = mfspr(SPRN_SVR);
seq_printf(m, "Vendor\t\t: GE Fanuc Intelligent Platforms\n");
seq_printf(m, "Vendor\t\t: GE Intelligent Platforms\n");
seq_printf(m, "Revision\t: %u%c\n", gef_ppc9a_get_pcb_rev(),
('A' + gef_ppc9a_get_board_rev()));
@ -235,7 +235,7 @@ static int __init declare_of_platform_devices(void)
machine_device_initcall(gef_ppc9a, declare_of_platform_devices);
define_machine(gef_ppc9a) {
.name = "GE Fanuc PPC9A",
.name = "GE PPC9A",
.probe = gef_ppc9a_probe,
.setup_arch = gef_ppc9a_setup_arch,
.init_IRQ = gef_ppc9a_init_irq,

View file

@ -1,9 +1,9 @@
/*
* GE Fanuc SBC310 board support
* GE SBC310 board support
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Author: Martyn Welch <martyn.welch@ge.com>
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
@ -82,7 +82,7 @@ static void __init gef_sbc310_setup_arch(void)
}
#endif
printk(KERN_INFO "GE Fanuc Intelligent Platforms SBC310 6U VPX SBC\n");
printk(KERN_INFO "GE Intelligent Platforms SBC310 6U VPX SBC\n");
#ifdef CONFIG_SMP
mpc86xx_smp_init();
@ -142,7 +142,7 @@ static void gef_sbc310_show_cpuinfo(struct seq_file *m)
{
uint svid = mfspr(SPRN_SVR);
seq_printf(m, "Vendor\t\t: GE Fanuc Intelligent Platforms\n");
seq_printf(m, "Vendor\t\t: GE Intelligent Platforms\n");
seq_printf(m, "Board ID\t: 0x%2.2x\n", gef_sbc310_get_board_id());
seq_printf(m, "Revision\t: %u%c\n", gef_sbc310_get_pcb_rev(),
@ -223,7 +223,7 @@ static int __init declare_of_platform_devices(void)
machine_device_initcall(gef_sbc310, declare_of_platform_devices);
define_machine(gef_sbc310) {
.name = "GE Fanuc SBC310",
.name = "GE SBC310",
.probe = gef_sbc310_probe,
.setup_arch = gef_sbc310_setup_arch,
.init_IRQ = gef_sbc310_init_irq,

View file

@ -1,9 +1,9 @@
/*
* GE Fanuc SBC610 board support
* GE SBC610 board support
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Author: Martyn Welch <martyn.welch@ge.com>
*
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
@ -82,7 +82,7 @@ static void __init gef_sbc610_setup_arch(void)
}
#endif
printk(KERN_INFO "GE Fanuc Intelligent Platforms SBC610 6U VPX SBC\n");
printk(KERN_INFO "GE Intelligent Platforms SBC610 6U VPX SBC\n");
#ifdef CONFIG_SMP
mpc86xx_smp_init();
@ -133,7 +133,7 @@ static void gef_sbc610_show_cpuinfo(struct seq_file *m)
{
uint svid = mfspr(SPRN_SVR);
seq_printf(m, "Vendor\t\t: GE Fanuc Intelligent Platforms\n");
seq_printf(m, "Vendor\t\t: GE Intelligent Platforms\n");
seq_printf(m, "Revision\t: %u%c\n", gef_sbc610_get_pcb_rev(),
('A' + gef_sbc610_get_board_rev() - 1));
@ -212,7 +212,7 @@ static int __init declare_of_platform_devices(void)
machine_device_initcall(gef_sbc610, declare_of_platform_devices);
define_machine(gef_sbc610) {
.name = "GE Fanuc SBC610",
.name = "GE SBC610",
.probe = gef_sbc610_probe,
.setup_arch = gef_sbc610_setup_arch,
.init_IRQ = gef_sbc610_init_irq,

View file

@ -144,6 +144,16 @@ config FSL_EMB_PERFMON
and some e300 cores (c3 and c4). Select this only if your
core supports the Embedded Performance Monitor APU
config FSL_EMB_PERF_EVENT
bool
depends on FSL_EMB_PERFMON && PERF_EVENTS && !PPC_PERF_CTRS
default y
config FSL_EMB_PERF_EVENT_E500
bool
depends on FSL_EMB_PERF_EVENT && E500
default y
config 4xx
bool
depends on 40x || 44x

View file

@ -43,17 +43,14 @@ system_reset_iSeries:
LOAD_REG_ADDR(r23, alpaca)
li r0,ALPACA_SIZE
sub r23,r13,r23
divdu r23,r23,r0 /* r23 has cpu number */
LOAD_REG_ADDR(r13, paca)
mulli r0,r23,PACA_SIZE
add r13,r13,r0
mtspr SPRN_SPRG_PACA,r13 /* Save it away for the future */
mfmsr r24
ori r24,r24,MSR_RI
mtmsrd r24 /* RI on */
mr r24,r23
divdu r24,r23,r0 /* r24 has cpu number */
cmpwi 0,r24,0 /* Are we processor 0? */
bne 1f
LOAD_REG_ADDR(r13, boot_paca)
mtspr SPRN_SPRG_PACA,r13 /* Save it away for the future */
mfmsr r23
ori r23,r23,MSR_RI
mtmsrd r23 /* RI on */
b .__start_initialization_iSeries /* Start up the first processor */
1: mfspr r4,SPRN_CTRLF
li r5,CTRL_RUNLATCH /* Turn off the run light */
@ -86,6 +83,16 @@ system_reset_iSeries:
#endif
2:
/* Load our paca now that it's been allocated */
LOAD_REG_ADDR(r13, paca)
ld r13,0(r13)
mulli r0,r24,PACA_SIZE
add r13,r13,r0
mtspr SPRN_SPRG_PACA,r13 /* Save it away for the future */
mfmsr r23
ori r23,r23,MSR_RI
mtmsrd r23 /* RI on */
HMT_LOW
#ifdef CONFIG_SMP
lbz r23,PACAPROCSTART(r13) /* Test if this processor

View file

@ -122,44 +122,32 @@ static void pseries_mach_cpu_die(void)
if (!get_lppaca()->shared_proc)
get_lppaca()->donate_dedicated_cpu = 1;
printk(KERN_INFO
"cpu %u (hwid %u) ceding for offline with hint %d\n",
cpu, hwcpu, cede_latency_hint);
while (get_preferred_offline_state(cpu) == CPU_STATE_INACTIVE) {
extended_cede_processor(cede_latency_hint);
printk(KERN_INFO "cpu %u (hwid %u) returned from cede.\n",
cpu, hwcpu);
printk(KERN_INFO
"Decrementer value = %x Timebase value = %llx\n",
get_dec(), get_tb());
}
printk(KERN_INFO "cpu %u (hwid %u) got prodded to go online\n",
cpu, hwcpu);
if (!get_lppaca()->shared_proc)
get_lppaca()->donate_dedicated_cpu = 0;
get_lppaca()->idle = 0;
if (get_preferred_offline_state(cpu) == CPU_STATE_ONLINE) {
unregister_slb_shadow(hwcpu, __pa(get_slb_shadow()));
/*
* Call to start_secondary_resume() will not return.
* Kernel stack will be reset and start_secondary()
* will be called to continue the online operation.
*/
start_secondary_resume();
}
}
if (get_preferred_offline_state(cpu) == CPU_STATE_ONLINE) {
unregister_slb_shadow(hwcpu, __pa(get_slb_shadow()));
/* Requested state is CPU_STATE_OFFLINE at this point */
WARN_ON(get_preferred_offline_state(cpu) != CPU_STATE_OFFLINE);
/*
* NOTE: Calling start_secondary() here for now to
* start new context.
* However, need to do it cleanly by resetting the
* stack pointer.
*/
start_secondary();
} else if (get_preferred_offline_state(cpu) == CPU_STATE_OFFLINE) {
set_cpu_current_state(cpu, CPU_STATE_OFFLINE);
unregister_slb_shadow(hard_smp_processor_id(),
__pa(get_slb_shadow()));
rtas_stop_self();
}
set_cpu_current_state(cpu, CPU_STATE_OFFLINE);
unregister_slb_shadow(hwcpu, __pa(get_slb_shadow()));
rtas_stop_self();
/* Should never get here... */
BUG();

View file

@ -9,10 +9,31 @@ enum cpu_state_vals {
CPU_MAX_OFFLINE_STATES
};
#ifdef CONFIG_HOTPLUG_CPU
extern enum cpu_state_vals get_cpu_current_state(int cpu);
extern void set_cpu_current_state(int cpu, enum cpu_state_vals state);
extern enum cpu_state_vals get_preferred_offline_state(int cpu);
extern void set_preferred_offline_state(int cpu, enum cpu_state_vals state);
extern void set_default_offline_state(int cpu);
extern int start_secondary(void);
#else
static inline enum cpu_state_vals get_cpu_current_state(int cpu)
{
return CPU_STATE_ONLINE;
}
static inline void set_cpu_current_state(int cpu, enum cpu_state_vals state)
{
}
static inline void set_preferred_offline_state(int cpu, enum cpu_state_vals state)
{
}
static inline void set_default_offline_state(int cpu)
{
}
#endif
extern enum cpu_state_vals get_preferred_offline_state(int cpu);
extern int start_secondary(void);
extern void start_secondary_resume(void);
#endif

View file

@ -259,12 +259,12 @@ static inline long plpar_ipi(unsigned long servernum, unsigned long mfrr)
return plpar_hcall_norets(H_IPI, servernum, mfrr);
}
static inline long plpar_xirr(unsigned long *xirr_ret)
static inline long plpar_xirr(unsigned long *xirr_ret, unsigned char cppr)
{
long rc;
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
rc = plpar_hcall(H_XIRR, retbuf);
rc = plpar_hcall(H_XIRR, retbuf, cppr);
*xirr_ret = retbuf[0];

View file

@ -120,12 +120,12 @@ static inline void direct_qirr_info(int n_cpu, u8 value)
/* LPAR low level accessors */
static inline unsigned int lpar_xirr_info_get(void)
static inline unsigned int lpar_xirr_info_get(unsigned char cppr)
{
unsigned long lpar_rc;
unsigned long return_value;
lpar_rc = plpar_xirr(&return_value);
lpar_rc = plpar_xirr(&return_value, cppr);
if (lpar_rc != H_SUCCESS)
panic(" bad return code xirr - rc = %lx\n", lpar_rc);
return (unsigned int)return_value;
@ -331,7 +331,8 @@ static unsigned int xics_get_irq_direct(void)
static unsigned int xics_get_irq_lpar(void)
{
unsigned int xirr = lpar_xirr_info_get();
struct xics_cppr *os_cppr = &__get_cpu_var(xics_cppr);
unsigned int xirr = lpar_xirr_info_get(os_cppr->stack[os_cppr->index]);
unsigned int vec = xics_xirr_vector(xirr);
unsigned int irq;

View file

@ -3,6 +3,6 @@
extern unsigned int cpm2_get_irq(void);
extern void cpm2_pic_init(struct device_node*);
extern void cpm2_pic_init(struct device_node *);
#endif /* _PPC_KERNEL_CPM2_H */

View file

@ -33,7 +33,7 @@
#include "qe_ic.h"
static DEFINE_SPINLOCK(qe_ic_lock);
static DEFINE_RAW_SPINLOCK(qe_ic_lock);
static struct qe_ic_info qe_ic_info[] = {
[1] = {
@ -201,13 +201,13 @@ static void qe_ic_unmask_irq(unsigned int virq)
unsigned long flags;
u32 temp;
spin_lock_irqsave(&qe_ic_lock, flags);
raw_spin_lock_irqsave(&qe_ic_lock, flags);
temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
temp | qe_ic_info[src].mask);
spin_unlock_irqrestore(&qe_ic_lock, flags);
raw_spin_unlock_irqrestore(&qe_ic_lock, flags);
}
static void qe_ic_mask_irq(unsigned int virq)
@ -217,7 +217,7 @@ static void qe_ic_mask_irq(unsigned int virq)
unsigned long flags;
u32 temp;
spin_lock_irqsave(&qe_ic_lock, flags);
raw_spin_lock_irqsave(&qe_ic_lock, flags);
temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
@ -233,7 +233,7 @@ static void qe_ic_mask_irq(unsigned int virq)
*/
mb();
spin_unlock_irqrestore(&qe_ic_lock, flags);
raw_spin_unlock_irqrestore(&qe_ic_lock, flags);
}
static struct irq_chip qe_ic_irq_chip = {

View file

@ -948,10 +948,16 @@ static void do_monitor_cpu_combined(void)
printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
temp_combi >> 16);
state0->overtemp += CPU_MAX_OVERTEMP / 4;
} else if (temp_combi > (state0->mpu.tmax << 16))
} else if (temp_combi > (state0->mpu.tmax << 16)) {
state0->overtemp++;
else
printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
} else {
if (state0->overtemp)
printk(KERN_WARNING "Temperature back down to %d\n",
temp_combi >> 16);
state0->overtemp = 0;
}
if (state0->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state0->overtemp > 0) {
@ -1023,10 +1029,16 @@ static void do_monitor_cpu_split(struct cpu_pid_state *state)
" (%d) !\n",
state->index, temp >> 16);
state->overtemp += CPU_MAX_OVERTEMP / 4;
} else if (temp > (state->mpu.tmax << 16))
} else if (temp > (state->mpu.tmax << 16)) {
state->overtemp++;
else
printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
state->index, temp >> 16, state->mpu.tmax, state->overtemp);
} else {
if (state->overtemp)
printk(KERN_WARNING "CPU %d temperature back down to %d\n",
state->index, temp >> 16);
state->overtemp = 0;
}
if (state->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state->overtemp > 0) {
@ -1085,10 +1097,16 @@ static void do_monitor_cpu_rack(struct cpu_pid_state *state)
" (%d) !\n",
state->index, temp >> 16);
state->overtemp = CPU_MAX_OVERTEMP / 4;
} else if (temp > (state->mpu.tmax << 16))
} else if (temp > (state->mpu.tmax << 16)) {
state->overtemp++;
else
printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
state->index, temp >> 16, state->mpu.tmax, state->overtemp);
} else {
if (state->overtemp)
printk(KERN_WARNING "CPU %d temperature back down to %d\n",
state->index, temp >> 16);
state->overtemp = 0;
}
if (state->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state->overtemp > 0) {

View file

@ -269,7 +269,7 @@ struct slots_pid_state
#define CPU_TEMP_HISTORY_SIZE 2
#define CPU_POWER_HISTORY_SIZE 10
#define CPU_PID_INTERVAL 1
#define CPU_MAX_OVERTEMP 30
#define CPU_MAX_OVERTEMP 90
#define CPUA_PUMP_RPM_INDEX 7
#define CPUB_PUMP_RPM_INDEX 8