1
0
Fork 0

rcu: Direct algorithmic SRCU implementation

The current implementation of synchronize_srcu_expedited() can cause
severe OS jitter due to its use of synchronize_sched(), which in turn
invokes try_stop_cpus(), which causes each CPU to be sent an IPI.
This can result in severe performance degradation for real-time workloads
and especially for short-interation-length HPC workloads.  Furthermore,
because only one instance of try_stop_cpus() can be making forward progress
at a given time, only one instance of synchronize_srcu_expedited() can
make forward progress at a time, even if they are all operating on
distinct srcu_struct structures.

This commit, inspired by an earlier implementation by Peter Zijlstra
(https://lkml.org/lkml/2012/1/31/211) and by further offline discussions,
takes a strictly algorithmic bits-in-memory approach.  This has the
disadvantage of requiring one explicit memory-barrier instruction in
each of srcu_read_lock() and srcu_read_unlock(), but on the other hand
completely dispenses with OS jitter and furthermore allows SRCU to be
used freely by CPUs that RCU believes to be idle or offline.

The update-side implementation handles the single read-side memory
barrier by rechecking the per-CPU counters after summing them and
by running through the update-side state machine twice.

This implementation has passed moderate rcutorture testing on both
x86 and Power.  Also updated to use this_cpu_ptr() instead of per_cpu_ptr(),
as suggested by Peter Zijlstra.

Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
wifi-calibration
Paul E. McKenney 2012-02-05 07:42:44 -08:00 committed by Paul E. McKenney
parent fae4b54f28
commit cef50120b6
3 changed files with 200 additions and 100 deletions

View File

@ -31,13 +31,19 @@
#include <linux/rcupdate.h>
struct srcu_struct_array {
int c[2];
unsigned long c[2];
};
/* Bit definitions for field ->c above and ->snap below. */
#define SRCU_USAGE_BITS 2
#define SRCU_REF_MASK (ULONG_MAX >> SRCU_USAGE_BITS)
#define SRCU_USAGE_COUNT (SRCU_REF_MASK + 1)
struct srcu_struct {
int completed;
unsigned completed;
struct srcu_struct_array __percpu *per_cpu_ref;
struct mutex mutex;
unsigned long snap[NR_CPUS];
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

View File

@ -639,7 +639,7 @@ static int srcu_torture_stats(char *page)
cnt += sprintf(&page[cnt], "%s%s per-CPU(idx=%d):",
torture_type, TORTURE_FLAG, idx);
for_each_possible_cpu(cpu) {
cnt += sprintf(&page[cnt], " %d(%d,%d)", cpu,
cnt += sprintf(&page[cnt], " %d(%lu,%lu)", cpu,
per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[!idx],
per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[idx]);
}

View File

@ -73,19 +73,102 @@ EXPORT_SYMBOL_GPL(init_srcu_struct);
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/*
* srcu_readers_active_idx -- returns approximate number of readers
* active on the specified rank of per-CPU counters.
* Returns approximate number of readers active on the specified rank
* of per-CPU counters. Also snapshots each counter's value in the
* corresponding element of sp->snap[] for later use validating
* the sum.
*/
static int srcu_readers_active_idx(struct srcu_struct *sp, int idx)
static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
{
int cpu;
int sum;
unsigned long sum = 0;
unsigned long t;
sum = 0;
for_each_possible_cpu(cpu) {
t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
sum += t;
sp->snap[cpu] = t;
}
return sum & SRCU_REF_MASK;
}
/*
* To be called from the update side after an index flip. Returns true
* if the modulo sum of the counters is stably zero, false if there is
* some possibility of non-zero.
*/
static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
{
int cpu;
/*
* Note that srcu_readers_active_idx() can incorrectly return
* zero even though there is a pre-existing reader throughout.
* To see this, suppose that task A is in a very long SRCU
* read-side critical section that started on CPU 0, and that
* no other reader exists, so that the modulo sum of the counters
* is equal to one. Then suppose that task B starts executing
* srcu_readers_active_idx(), summing up to CPU 1, and then that
* task C starts reading on CPU 0, so that its increment is not
* summed, but finishes reading on CPU 2, so that its decrement
* -is- summed. Then when task B completes its sum, it will
* incorrectly get zero, despite the fact that task A has been
* in its SRCU read-side critical section the whole time.
*
* We therefore do a validation step should srcu_readers_active_idx()
* return zero.
*/
if (srcu_readers_active_idx(sp, idx) != 0)
return false;
/*
* Since the caller recently flipped ->completed, we can see at
* most one increment of each CPU's counter from this point
* forward. The reason for this is that the reader CPU must have
* fetched the index before srcu_readers_active_idx checked
* that CPU's counter, but not yet incremented its counter.
* Its eventual counter increment will follow the read in
* srcu_readers_active_idx(), and that increment is immediately
* followed by smp_mb() B. Because smp_mb() D is between
* the ->completed flip and srcu_readers_active_idx()'s read,
* that CPU's subsequent load of ->completed must see the new
* value, and therefore increment the counter in the other rank.
*/
smp_mb(); /* A */
/*
* Now, we check the ->snap array that srcu_readers_active_idx()
* filled in from the per-CPU counter values. Since both
* __srcu_read_lock() and __srcu_read_unlock() increment the
* upper bits of the per-CPU counter, an increment/decrement
* pair will change the value of the counter. Since there is
* only one possible increment, the only way to wrap the counter
* is to have a huge number of counter decrements, which requires
* a huge number of tasks and huge SRCU read-side critical-section
* nesting levels, even on 32-bit systems.
*
* All of the ways of confusing the readings require that the scan
* in srcu_readers_active_idx() see the read-side task's decrement,
* but not its increment. However, between that decrement and
* increment are smb_mb() B and C. Either or both of these pair
* with smp_mb() A above to ensure that the scan below will see
* the read-side tasks's increment, thus noting a difference in
* the counter values between the two passes.
*
* Therefore, if srcu_readers_active_idx() returned zero, and
* none of the counters changed, we know that the zero was the
* correct sum.
*
* Of course, it is possible that a task might be delayed
* for a very long time in __srcu_read_lock() after fetching
* the index but before incrementing its counter. This
* possibility will be dealt with in __synchronize_srcu().
*/
for_each_possible_cpu(cpu)
sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
return sum;
if (sp->snap[cpu] !=
ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]))
return false; /* False zero reading! */
return true;
}
/**
@ -131,10 +214,11 @@ int __srcu_read_lock(struct srcu_struct *sp)
int idx;
preempt_disable();
idx = sp->completed & 0x1;
barrier(); /* ensure compiler looks -once- at sp->completed. */
per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++;
srcu_barrier(); /* ensure compiler won't misorder critical section. */
idx = rcu_dereference_index_check(sp->completed,
rcu_read_lock_sched_held()) & 0x1;
ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) +=
SRCU_USAGE_COUNT + 1;
smp_mb(); /* B */ /* Avoid leaking the critical section. */
preempt_enable();
return idx;
}
@ -149,8 +233,9 @@ EXPORT_SYMBOL_GPL(__srcu_read_lock);
void __srcu_read_unlock(struct srcu_struct *sp, int idx)
{
preempt_disable();
srcu_barrier(); /* ensure compiler won't misorder critical section. */
per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--;
smp_mb(); /* C */ /* Avoid leaking the critical section. */
ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) +=
SRCU_USAGE_COUNT - 1;
preempt_enable();
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
@ -163,12 +248,65 @@ EXPORT_SYMBOL_GPL(__srcu_read_unlock);
* we repeatedly block for 1-millisecond time periods. This approach
* has done well in testing, so there is no need for a config parameter.
*/
#define SYNCHRONIZE_SRCU_READER_DELAY 10
#define SYNCHRONIZE_SRCU_READER_DELAY 5
/*
* Flip the readers' index by incrementing ->completed, then wait
* until there are no more readers using the counters referenced by
* the old index value. (Recall that the index is the bottom bit
* of ->completed.)
*
* Of course, it is possible that a reader might be delayed for the
* full duration of flip_idx_and_wait() between fetching the
* index and incrementing its counter. This possibility is handled
* by __synchronize_srcu() invoking flip_idx_and_wait() twice.
*/
static void flip_idx_and_wait(struct srcu_struct *sp, bool expedited)
{
int idx;
int trycount = 0;
idx = sp->completed++ & 0x1;
/*
* If a reader fetches the index before the above increment,
* but increments its counter after srcu_readers_active_idx_check()
* sums it, then smp_mb() D will pair with __srcu_read_lock()'s
* smp_mb() B to ensure that the SRCU read-side critical section
* will see any updates that the current task performed before its
* call to synchronize_srcu(), or to synchronize_srcu_expedited(),
* as the case may be.
*/
smp_mb(); /* D */
/*
* SRCU read-side critical sections are normally short, so wait
* a small amount of time before possibly blocking.
*/
if (!srcu_readers_active_idx_check(sp, idx)) {
udelay(SYNCHRONIZE_SRCU_READER_DELAY);
while (!srcu_readers_active_idx_check(sp, idx)) {
if (expedited && ++ trycount < 10)
udelay(SYNCHRONIZE_SRCU_READER_DELAY);
else
schedule_timeout_interruptible(1);
}
}
/*
* The following smp_mb() E pairs with srcu_read_unlock()'s
* smp_mb C to ensure that if srcu_readers_active_idx_check()
* sees srcu_read_unlock()'s counter decrement, then any
* of the current task's subsequent code will happen after
* that SRCU read-side critical section.
*/
smp_mb(); /* E */
}
/*
* Helper function for synchronize_srcu() and synchronize_srcu_expedited().
*/
static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
static void __synchronize_srcu(struct srcu_struct *sp, bool expedited)
{
int idx;
@ -178,90 +316,53 @@ static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
!lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
idx = sp->completed;
smp_mb(); /* Ensure prior action happens before grace period. */
idx = ACCESS_ONCE(sp->completed);
smp_mb(); /* Access to ->completed before lock acquisition. */
mutex_lock(&sp->mutex);
/*
* Check to see if someone else did the work for us while we were
* waiting to acquire the lock. We need -two- advances of
* waiting to acquire the lock. We need -three- advances of
* the counter, not just one. If there was but one, we might have
* shown up -after- our helper's first synchronize_sched(), thus
* having failed to prevent CPU-reordering races with concurrent
* srcu_read_unlock()s on other CPUs (see comment below). So we
* either (1) wait for two or (2) supply the second ourselves.
* srcu_read_unlock()s on other CPUs (see comment below). If there
* was only two, we are guaranteed to have waited through only one
* full index-flip phase. So we either (1) wait for three or
* (2) supply the additional ones we need.
*/
if ((sp->completed - idx) >= 2) {
if (sp->completed == idx + 2)
idx = 1;
else if (sp->completed == idx + 3) {
mutex_unlock(&sp->mutex);
return;
}
sync_func(); /* Force memory barrier on all CPUs. */
} else
idx = 0;
/*
* The preceding synchronize_sched() ensures that any CPU that
* sees the new value of sp->completed will also see any preceding
* changes to data structures made by this CPU. This prevents
* some other CPU from reordering the accesses in its SRCU
* read-side critical section to precede the corresponding
* srcu_read_lock() -- ensuring that such references will in
* fact be protected.
* If there were no helpers, then we need to do two flips of
* the index. The first flip is required if there are any
* outstanding SRCU readers even if there are no new readers
* running concurrently with the first counter flip.
*
* So it is now safe to do the flip.
* The second flip is required when a new reader picks up
* the old value of the index, but does not increment its
* counter until after its counters is summed/rechecked by
* srcu_readers_active_idx_check(). In this case, the current SRCU
* grace period would be OK because the SRCU read-side critical
* section started after this SRCU grace period started, so the
* grace period is not required to wait for the reader.
*
* However, the next SRCU grace period would be waiting for the
* other set of counters to go to zero, and therefore would not
* wait for the reader, which would be very bad. To avoid this
* bad scenario, we flip and wait twice, clearing out both sets
* of counters.
*/
idx = sp->completed & 0x1;
sp->completed++;
sync_func(); /* Force memory barrier on all CPUs. */
/*
* At this point, because of the preceding synchronize_sched(),
* all srcu_read_lock() calls using the old counters have completed.
* Their corresponding critical sections might well be still
* executing, but the srcu_read_lock() primitives themselves
* will have finished executing. We initially give readers
* an arbitrarily chosen 10 microseconds to get out of their
* SRCU read-side critical sections, then loop waiting 1/HZ
* seconds per iteration. The 10-microsecond value has done
* very well in testing.
*/
if (srcu_readers_active_idx(sp, idx))
udelay(SYNCHRONIZE_SRCU_READER_DELAY);
while (srcu_readers_active_idx(sp, idx))
schedule_timeout_interruptible(1);
sync_func(); /* Force memory barrier on all CPUs. */
/*
* The preceding synchronize_sched() forces all srcu_read_unlock()
* primitives that were executing concurrently with the preceding
* for_each_possible_cpu() loop to have completed by this point.
* More importantly, it also forces the corresponding SRCU read-side
* critical sections to have also completed, and the corresponding
* references to SRCU-protected data items to be dropped.
*
* Note:
*
* Despite what you might think at first glance, the
* preceding synchronize_sched() -must- be within the
* critical section ended by the following mutex_unlock().
* Otherwise, a task taking the early exit can race
* with a srcu_read_unlock(), which might have executed
* just before the preceding srcu_readers_active() check,
* and whose CPU might have reordered the srcu_read_unlock()
* with the preceding critical section. In this case, there
* is nothing preventing the synchronize_sched() task that is
* taking the early exit from freeing a data structure that
* is still being referenced (out of order) by the task
* doing the srcu_read_unlock().
*
* Alternatively, the comparison with "2" on the early exit
* could be changed to "3", but this increases synchronize_srcu()
* latency for bulk loads. So the current code is preferred.
*/
for (; idx < 2; idx++)
flip_idx_and_wait(sp, expedited);
mutex_unlock(&sp->mutex);
}
@ -281,7 +382,7 @@ static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
*/
void synchronize_srcu(struct srcu_struct *sp)
{
__synchronize_srcu(sp, synchronize_sched);
__synchronize_srcu(sp, 0);
}
EXPORT_SYMBOL_GPL(synchronize_srcu);
@ -289,18 +390,11 @@ EXPORT_SYMBOL_GPL(synchronize_srcu);
* synchronize_srcu_expedited - Brute-force SRCU grace period
* @sp: srcu_struct with which to synchronize.
*
* Wait for an SRCU grace period to elapse, but use a "big hammer"
* approach to force the grace period to end quickly. This consumes
* significant time on all CPUs and is unfriendly to real-time workloads,
* so is thus not recommended for any sort of common-case code. In fact,
* if you are using synchronize_srcu_expedited() in a loop, please
* restructure your code to batch your updates, and then use a single
* synchronize_srcu() instead.
* Wait for an SRCU grace period to elapse, but be more aggressive about
* spinning rather than blocking when waiting.
*
* Note that it is illegal to call this function while holding any lock
* that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
* to call this function from a CPU-hotplug notifier. Failing to observe
* these restriction will result in deadlock. It is also illegal to call
* that is acquired by a CPU-hotplug notifier. It is also illegal to call
* synchronize_srcu_expedited() from the corresponding SRCU read-side
* critical section; doing so will result in deadlock. However, it is
* perfectly legal to call synchronize_srcu_expedited() on one srcu_struct
@ -309,7 +403,7 @@ EXPORT_SYMBOL_GPL(synchronize_srcu);
*/
void synchronize_srcu_expedited(struct srcu_struct *sp)
{
__synchronize_srcu(sp, synchronize_sched_expedited);
__synchronize_srcu(sp, 1);
}
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);