Staging: winbond: wb35reg.c Coding style fixes

I fixed the problems reported by checkpatch.pl excetp for
long lines, a couple of printks and some warnings about usb_free_urb(NULL).
I checked for regressions with Dan Carpenters strip_whitespace.pl
and diff and everything looks good.
Generated .o is identical to master.

This is a new patch against master where I fixed up a switch-statement
after comments from Pavel Machek.

Signed-off-by: Lars Lindley <lindley@coyote.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Lars Lindley 2010-03-25 14:44:53 +01:00 committed by Greg Kroah-Hartman
parent b08585fc58
commit fa448c1f41

View file

@ -6,60 +6,61 @@
extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency); extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
// true : read command process successfully /*
// false : register not support * true : read command process successfully
// RegisterNo : start base * false : register not support
// pRegisterData : data point * RegisterNo : start base
// NumberOfData : number of register data * pRegisterData : data point
// Flag : AUTO_INCREMENT - RegisterNo will auto increment 4 * NumberOfData : number of register data
// NO_INCREMENT - Function will write data into the same register * Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
unsigned char * NO_INCREMENT - Function will write data into the same register
Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag) */
unsigned char Wb35Reg_BurstWrite(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterData, u8 NumberOfData, u8 Flag)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct urb *urb = NULL; struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL; struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize; u16 UrbSize;
struct usb_ctrlrequest *dr; struct usb_ctrlrequest *dr;
u16 i, DataSize = NumberOfData*4; u16 i, DataSize = NumberOfData * 4;
// Module shutdown /* Module shutdown */
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
// Trying to use burst write function if use new hardware /* Trying to use burst write function if use new hardware */
UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest); UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC); reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC);
if( urb && reg_queue ) { if (urb && reg_queue) {
reg_queue->DIRECT = 2;// burst write register reg_queue->DIRECT = 2; /* burst write register */
reg_queue->INDEX = RegisterNo; reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
memcpy( reg_queue->pBuffer, pRegisterData, DataSize ); memcpy(reg_queue->pBuffer, pRegisterData, DataSize);
//the function for reversing register data from little endian to big endian /* the function for reversing register data from little endian to big endian */
for( i=0; i<NumberOfData ; i++ ) for (i = 0; i < NumberOfData ; i++)
reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] ); reg_queue->pBuffer[i] = cpu_to_le32(reg_queue->pBuffer[i]);
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize); dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE; dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode dr->bRequest = 0x04; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment dr->wValue = cpu_to_le16(Flag); /* 0: Register number auto-increment, 1: No auto increment */
dr->wIndex = cpu_to_le16( RegisterNo ); dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16( DataSize ); dr->wLength = cpu_to_le16(DataSize);
reg_queue->Next = NULL; reg_queue->Next = NULL;
reg_queue->pUsbReq = dr; reg_queue->pUsbReq = dr;
reg_queue->urb = urb; reg_queue->urb = urb;
spin_lock_irq( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL) if (reg->reg_first == NULL)
reg->reg_first = reg_queue; reg->reg_first = reg_queue;
else else
reg->reg_last->Next = reg_queue; reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue; reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
// Start EP0VM /* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData); Wb35Reg_EP0VM_start(pHwData);
return true; return true;
@ -73,8 +74,7 @@ Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData
return false; return false;
} }
void void Wb35Reg_Update(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
Wb35Reg_Update(struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
switch (RegisterNo) { switch (RegisterNo) {
@ -116,97 +116,96 @@ Wb35Reg_Update(struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue)
} }
} }
// true : read command process successfully /*
// false : register not support * true : read command process successfully
unsigned char * false : register not support
Wb35Reg_WriteSync( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue ) */
unsigned char Wb35Reg_WriteSync(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
int ret = -1; int ret = -1;
// Module shutdown /* Module shutdown */
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
RegisterValue = cpu_to_le32(RegisterValue); RegisterValue = cpu_to_le32(RegisterValue);
// update the register by send usb message------------------------------------ /* update the register by send usb message */
reg->SyncIoPause = 1; reg->SyncIoPause = 1;
// 20060717.5 Wait until EP0VM stop /* Wait until EP0VM stop */
while (reg->EP0vm_state != VM_STOP) while (reg->EP0vm_state != VM_STOP)
msleep(10); msleep(10);
// Sync IoCallDriver /* Sync IoCallDriver */
reg->EP0vm_state = VM_RUNNING; reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg( pHwData->WbUsb.udev, ret = usb_control_msg(pHwData->WbUsb.udev,
usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ), usb_sndctrlpipe(pHwData->WbUsb.udev, 0),
0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
0x0,RegisterNo, &RegisterValue, 4, HZ*100 ); 0x0, RegisterNo, &RegisterValue, 4, HZ * 100);
reg->EP0vm_state = VM_STOP; reg->EP0vm_state = VM_STOP;
reg->SyncIoPause = 0; reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start(pHwData); Wb35Reg_EP0VM_start(pHwData);
if (ret < 0) { if (ret < 0) {
#ifdef _PE_REG_DUMP_ #ifdef _PE_REG_DUMP_
printk("EP0 Write register usb message sending error\n"); printk("EP0 Write register usb message sending error\n");
#endif #endif
pHwData->SurpriseRemove = 1;
pHwData->SurpriseRemove = 1; // 20060704.2
return false; return false;
} }
return true; return true;
} }
// true : read command process successfully /*
// false : register not support * true : read command process successfully
unsigned char * false : register not support
Wb35Reg_Write( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue ) */
unsigned char Wb35Reg_Write(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr; struct usb_ctrlrequest *dr;
struct urb *urb = NULL; struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL; struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize; u16 UrbSize;
/* Module shutdown */
// Module shutdown
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
// update the register by send urb request------------------------------------ /* update the register by send urb request */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC); reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb && reg_queue) { if (urb && reg_queue) {
reg_queue->DIRECT = 1;// burst write register reg_queue->DIRECT = 1; /* burst write register */
reg_queue->INDEX = RegisterNo; reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue); reg_queue->VALUE = cpu_to_le32(RegisterValue);
reg_queue->RESERVED_VALID = false; reg_queue->RESERVED_VALID = false;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0); dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo); dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4); dr->wLength = cpu_to_le16(4);
// Enter the sending queue /* Enter the sending queue */
reg_queue->Next = NULL; reg_queue->Next = NULL;
reg_queue->pUsbReq = dr; reg_queue->pUsbReq = dr;
reg_queue->urb = urb; reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL) if (reg->reg_first == NULL)
reg->reg_first = reg_queue; reg->reg_first = reg_queue;
else else
reg->reg_last->Next = reg_queue; reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue; reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
// Start EP0VM /* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData); Wb35Reg_EP0VM_start(pHwData);
return true; return true;
@ -218,56 +217,60 @@ Wb35Reg_Write( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue )
} }
} }
//This command will be executed with a user defined value. When it completes, /*
//this value is useful. For example, hal_set_current_channel will use it. * This command will be executed with a user defined value. When it completes,
// true : read command process successfully * this value is useful. For example, hal_set_current_channel will use it.
// false : register not support * true : read command process successfully
unsigned char * false : register not support
Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue, */
s8 *pValue, s8 Len) unsigned char Wb35Reg_WriteWithCallbackValue(struct hw_data *pHwData,
u16 RegisterNo,
u32 RegisterValue,
s8 *pValue,
s8 Len)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr; struct usb_ctrlrequest *dr;
struct urb *urb = NULL; struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL; struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize; u16 UrbSize;
// Module shutdown /* Module shutdown */
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
// update the register by send urb request------------------------------------ /* update the register by send urb request */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC); reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb && reg_queue) { if (urb && reg_queue) {
reg_queue->DIRECT = 1;// burst write register reg_queue->DIRECT = 1; /* burst write register */
reg_queue->INDEX = RegisterNo; reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue); reg_queue->VALUE = cpu_to_le32(RegisterValue);
//NOTE : Users must guarantee the size of value will not exceed the buffer size. /* NOTE : Users must guarantee the size of value will not exceed the buffer size. */
memcpy(reg_queue->RESERVED, pValue, Len); memcpy(reg_queue->RESERVED, pValue, Len);
reg_queue->RESERVED_VALID = true; reg_queue->RESERVED_VALID = true;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0); dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo); dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4); dr->wLength = cpu_to_le16(4);
// Enter the sending queue /* Enter the sending queue */
reg_queue->Next = NULL; reg_queue->Next = NULL;
reg_queue->pUsbReq = dr; reg_queue->pUsbReq = dr;
reg_queue->urb = urb; reg_queue->urb = urb;
spin_lock_irq (&reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
if( reg->reg_first == NULL ) if (reg->reg_first == NULL)
reg->reg_first = reg_queue; reg->reg_first = reg_queue;
else else
reg->reg_last->Next = reg_queue; reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue; reg->reg_last = reg_queue;
spin_unlock_irq ( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
// Start EP0VM /* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData); Wb35Reg_EP0VM_start(pHwData);
return true; return true;
} else { } else {
@ -278,115 +281,114 @@ Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 Re
} }
} }
// true : read command process successfully /*
// false : register not support * true : read command process successfully
// pRegisterValue : It must be a resident buffer due to asynchronous read register. * false : register not support
unsigned char * pRegisterValue : It must be a resident buffer due to
Wb35Reg_ReadSync( struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue ) * asynchronous read register.
*/
unsigned char Wb35Reg_ReadSync(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
u32 * pltmp = pRegisterValue; u32 *pltmp = pRegisterValue;
int ret = -1; int ret = -1;
// Module shutdown /* Module shutdown */
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
// Read the register by send usb message------------------------------------ /* Read the register by send usb message */
reg->SyncIoPause = 1; reg->SyncIoPause = 1;
// 20060717.5 Wait until EP0VM stop /* Wait until EP0VM stop */
while (reg->EP0vm_state != VM_STOP) while (reg->EP0vm_state != VM_STOP)
msleep(10); msleep(10);
reg->EP0vm_state = VM_RUNNING; reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg( pHwData->WbUsb.udev, ret = usb_control_msg(pHwData->WbUsb.udev,
usb_rcvctrlpipe(pHwData->WbUsb.udev, 0), usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN, 0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0x0, RegisterNo, pltmp, 4, HZ*100 ); 0x0, RegisterNo, pltmp, 4, HZ * 100);
*pRegisterValue = cpu_to_le32(*pltmp); *pRegisterValue = cpu_to_le32(*pltmp);
reg->EP0vm_state = VM_STOP; reg->EP0vm_state = VM_STOP;
Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue ); Wb35Reg_Update(pHwData, RegisterNo, *pRegisterValue);
reg->SyncIoPause = 0; reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start( pHwData ); Wb35Reg_EP0VM_start(pHwData);
if (ret < 0) { if (ret < 0) {
#ifdef _PE_REG_DUMP_ #ifdef _PE_REG_DUMP_
printk("EP0 Read register usb message sending error\n"); printk("EP0 Read register usb message sending error\n");
#endif #endif
pHwData->SurpriseRemove = 1;
pHwData->SurpriseRemove = 1; // 20060704.2
return false; return false;
} }
return true; return true;
} }
// true : read command process successfully /*
// false : register not support * true : read command process successfully
// pRegisterValue : It must be a resident buffer due to asynchronous read register. * false : register not support
unsigned char * pRegisterValue : It must be a resident buffer due to
Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue ) * asynchronous read register.
*/
unsigned char Wb35Reg_Read(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest * dr; struct usb_ctrlrequest *dr;
struct urb *urb; struct urb *urb;
struct wb35_reg_queue *reg_queue; struct wb35_reg_queue *reg_queue;
u16 UrbSize; u16 UrbSize;
// Module shutdown /* Module shutdown */
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
// update the variable by send Urb to read register ------------------------------------ /* update the variable by send Urb to read register */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC); reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC);
if( urb && reg_queue ) if (urb && reg_queue) {
{ reg_queue->DIRECT = 0; /* read register */
reg_queue->DIRECT = 0;// read register
reg_queue->INDEX = RegisterNo; reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = pRegisterValue; reg_queue->pBuffer = pRegisterValue;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN; dr->bRequestType = USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN;
dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode dr->bRequest = 0x01; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0); dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16 (RegisterNo); dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16 (4); dr->wLength = cpu_to_le16(4);
// Enter the sending queue /* Enter the sending queue */
reg_queue->Next = NULL; reg_queue->Next = NULL;
reg_queue->pUsbReq = dr; reg_queue->pUsbReq = dr;
reg_queue->urb = urb; reg_queue->urb = urb;
spin_lock_irq ( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
if( reg->reg_first == NULL ) if (reg->reg_first == NULL)
reg->reg_first = reg_queue; reg->reg_first = reg_queue;
else else
reg->reg_last->Next = reg_queue; reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue; reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
// Start EP0VM /* Start EP0VM */
Wb35Reg_EP0VM_start( pHwData ); Wb35Reg_EP0VM_start(pHwData);
return true; return true;
} else { } else {
if (urb) if (urb)
usb_free_urb( urb ); usb_free_urb(urb);
kfree(reg_queue); kfree(reg_queue);
return false; return false;
} }
} }
void void Wb35Reg_EP0VM_start(struct hw_data *pHwData)
Wb35Reg_EP0VM_start( struct hw_data * pHwData )
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
@ -397,15 +399,14 @@ Wb35Reg_EP0VM_start( struct hw_data * pHwData )
atomic_dec(&reg->RegFireCount); atomic_dec(&reg->RegFireCount);
} }
void void Wb35Reg_EP0VM(struct hw_data *pHwData)
Wb35Reg_EP0VM(struct hw_data * pHwData )
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct urb *urb; struct urb *urb;
struct usb_ctrlrequest *dr; struct usb_ctrlrequest *dr;
u32 * pBuffer; u32 *pBuffer;
int ret = -1; int ret = -1;
struct wb35_reg_queue *reg_queue; struct wb35_reg_queue *reg_queue;
if (reg->SyncIoPause) if (reg->SyncIoPause)
@ -414,27 +415,27 @@ Wb35Reg_EP0VM(struct hw_data * pHwData )
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
goto cleanup; goto cleanup;
// Get the register data and send to USB through Irp /* Get the register data and send to USB through Irp */
spin_lock_irq( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first; reg_queue = reg->reg_first;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
if (!reg_queue) if (!reg_queue)
goto cleanup; goto cleanup;
// Get an Urb, send it /* Get an Urb, send it */
urb = (struct urb *)reg_queue->urb; urb = (struct urb *)reg_queue->urb;
dr = reg_queue->pUsbReq; dr = reg_queue->pUsbReq;
urb = reg_queue->urb; urb = reg_queue->urb;
pBuffer = reg_queue->pBuffer; pBuffer = reg_queue->pBuffer;
if (reg_queue->DIRECT == 1) // output if (reg_queue->DIRECT == 1) /* output */
pBuffer = &reg_queue->VALUE; pBuffer = &reg_queue->VALUE;
usb_fill_control_urb( urb, pHwData->WbUsb.udev, usb_fill_control_urb(urb, pHwData->WbUsb.udev,
REG_DIRECTION(pHwData->WbUsb.udev,reg_queue), REG_DIRECTION(pHwData->WbUsb.udev, reg_queue),
(u8 *)dr,pBuffer,cpu_to_le16(dr->wLength), (u8 *)dr, pBuffer, cpu_to_le16(dr->wLength),
Wb35Reg_EP0VM_complete, (void*)pHwData); Wb35Reg_EP0VM_complete, (void *)pHwData);
reg->EP0vm_state = VM_RUNNING; reg->EP0vm_state = VM_RUNNING;
@ -446,7 +447,6 @@ Wb35Reg_EP0VM(struct hw_data * pHwData )
#endif #endif
goto cleanup; goto cleanup;
} }
return; return;
cleanup: cleanup:
@ -455,29 +455,28 @@ Wb35Reg_EP0VM(struct hw_data * pHwData )
} }
void void Wb35Reg_EP0VM_complete(struct urb *urb)
Wb35Reg_EP0VM_complete(struct urb *urb)
{ {
struct hw_data * pHwData = (struct hw_data *)urb->context; struct hw_data *pHwData = (struct hw_data *)urb->context;
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct wb35_reg_queue *reg_queue; struct wb35_reg_queue *reg_queue;
// Variable setting /* Variable setting */
reg->EP0vm_state = VM_COMPLETED; reg->EP0vm_state = VM_COMPLETED;
reg->EP0VM_status = urb->status; reg->EP0VM_status = urb->status;
if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove if (pHwData->SurpriseRemove) { /* Let WbWlanHalt to handle surprise remove */
reg->EP0vm_state = VM_STOP; reg->EP0vm_state = VM_STOP;
atomic_dec(&reg->RegFireCount); atomic_dec(&reg->RegFireCount);
} else { } else {
// Complete to send, remove the URB from the first /* Complete to send, remove the URB from the first */
spin_lock_irq( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first; reg_queue = reg->reg_first;
if (reg_queue == reg->reg_last) if (reg_queue == reg->reg_last)
reg->reg_last = NULL; reg->reg_last = NULL;
reg->reg_first = reg->reg_first->Next; reg->reg_first = reg->reg_first->Next;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
if (reg->EP0VM_status) { if (reg->EP0VM_status) {
#ifdef _PE_REG_DUMP_ #ifdef _PE_REG_DUMP_
@ -486,37 +485,35 @@ Wb35Reg_EP0VM_complete(struct urb *urb)
reg->EP0vm_state = VM_STOP; reg->EP0vm_state = VM_STOP;
pHwData->SurpriseRemove = 1; pHwData->SurpriseRemove = 1;
} else { } else {
// Success. Update the result /* Success. Update the result */
// Start the next send /* Start the next send */
Wb35Reg_EP0VM(pHwData); Wb35Reg_EP0VM(pHwData);
} }
kfree(reg_queue); kfree(reg_queue);
} }
usb_free_urb(urb); usb_free_urb(urb);
} }
void void Wb35Reg_destroy(struct hw_data *pHwData)
Wb35Reg_destroy(struct hw_data * pHwData)
{ {
struct wb35_reg *reg = &pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
struct urb *urb; struct urb *urb;
struct wb35_reg_queue *reg_queue; struct wb35_reg_queue *reg_queue;
Uxx_power_off_procedure(pHwData); Uxx_power_off_procedure(pHwData);
// Wait for Reg operation completed /* Wait for Reg operation completed */
do { do {
msleep(10); // Delay for waiting function enter 940623.1.a msleep(10); /* Delay for waiting function enter */
} while (reg->EP0vm_state != VM_STOP); } while (reg->EP0vm_state != VM_STOP);
msleep(10); // Delay for waiting function enter 940623.1.b msleep(10); /* Delay for waiting function enter */
// Release all the data in RegQueue /* Release all the data in RegQueue */
spin_lock_irq( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first; reg_queue = reg->reg_first;
while (reg_queue) { while (reg_queue) {
if (reg_queue == reg->reg_last) if (reg_queue == reg->reg_last)
@ -524,84 +521,88 @@ Wb35Reg_destroy(struct hw_data * pHwData)
reg->reg_first = reg->reg_first->Next; reg->reg_first = reg->reg_first->Next;
urb = reg_queue->urb; urb = reg_queue->urb;
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
if (urb) { if (urb) {
usb_free_urb(urb); usb_free_urb(urb);
kfree(reg_queue); kfree(reg_queue);
} else { } else {
#ifdef _PE_REG_DUMP_ #ifdef _PE_REG_DUMP_
printk("EP0 queue release error\n"); printk("EP0 queue release error\n");
#endif #endif
} }
spin_lock_irq( &reg->EP0VM_spin_lock ); spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first; reg_queue = reg->reg_first;
} }
spin_unlock_irq( &reg->EP0VM_spin_lock ); spin_unlock_irq(&reg->EP0VM_spin_lock);
} }
//==================================================================================== /*
// The function can be run in passive-level only. * =======================================================================
//==================================================================================== * The function can be run in passive-level only.
unsigned char Wb35Reg_initial(struct hw_data * pHwData) * =========================================================================
*/
unsigned char Wb35Reg_initial(struct hw_data *pHwData)
{ {
struct wb35_reg *reg=&pHwData->reg; struct wb35_reg *reg = &pHwData->reg;
u32 ltmp; u32 ltmp;
u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval; u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
// Spin lock is acquired for read and write IRP command /* Spin lock is acquired for read and write IRP command */
spin_lock_init( &reg->EP0VM_spin_lock ); spin_lock_init(&reg->EP0VM_spin_lock);
// Getting RF module type from EEPROM ------------------------------------ /* Getting RF module type from EEPROM */
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_WriteSync(pHwData, 0x03b4, 0x080d0000); /* Start EEPROM access + Read + address(0x0d) */
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp ); Wb35Reg_ReadSync(pHwData, 0x03b4, &ltmp);
//Update RF module type and determine the PHY type by inf or EEPROM /* Update RF module type and determine the PHY type by inf or EEPROM */
reg->EEPROMPhyType = (u8)( ltmp & 0xff ); reg->EEPROMPhyType = (u8)(ltmp & 0xff);
// 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829 /*
// 16V AL2230, 17 - AL7230, 18 - AL2230S * 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
// 32 Reserved * 16V AL2230, 17 - AL7230, 18 - AL2230S
// 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34) * 32 Reserved
* 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
*/
if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) { if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
if( (reg->EEPROMPhyType == RF_MAXIM_2825) || if ((reg->EEPROMPhyType == RF_MAXIM_2825) ||
(reg->EEPROMPhyType == RF_MAXIM_2827) || (reg->EEPROMPhyType == RF_MAXIM_2827) ||
(reg->EEPROMPhyType == RF_MAXIM_2828) || (reg->EEPROMPhyType == RF_MAXIM_2828) ||
(reg->EEPROMPhyType == RF_MAXIM_2829) || (reg->EEPROMPhyType == RF_MAXIM_2829) ||
(reg->EEPROMPhyType == RF_MAXIM_V1) || (reg->EEPROMPhyType == RF_MAXIM_V1) ||
(reg->EEPROMPhyType == RF_AIROHA_2230) || (reg->EEPROMPhyType == RF_AIROHA_2230) ||
(reg->EEPROMPhyType == RF_AIROHA_2230S) || (reg->EEPROMPhyType == RF_AIROHA_2230S) ||
(reg->EEPROMPhyType == RF_AIROHA_7230) || (reg->EEPROMPhyType == RF_AIROHA_7230) ||
(reg->EEPROMPhyType == RF_WB_242) || (reg->EEPROMPhyType == RF_WB_242) ||
(reg->EEPROMPhyType == RF_WB_242_1)) (reg->EEPROMPhyType == RF_WB_242_1))
pHwData->phy_type = reg->EEPROMPhyType; pHwData->phy_type = reg->EEPROMPhyType;
} }
// Power On procedure running. The relative parameter will be set according to phy_type /* Power On procedure running. The relative parameter will be set according to phy_type */
Uxx_power_on_procedure( pHwData ); Uxx_power_on_procedure(pHwData);
// Reading MAC address /* Reading MAC address */
Uxx_ReadEthernetAddress( pHwData ); Uxx_ReadEthernetAddress(pHwData);
// Read VCO trim for RF parameter /* Read VCO trim for RF parameter */
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 ); Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08200000);
Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim ); Wb35Reg_ReadSync(pHwData, 0x03b4, &VCO_trim);
// Read Antenna On/Off of software flag /* Read Antenna On/Off of software flag */
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 ); Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08210000);
Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet ); Wb35Reg_ReadSync(pHwData, 0x03b4, &SoftwareSet);
// Read TXVGA /* Read TXVGA */
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 ); Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08100000);
Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga ); Wb35Reg_ReadSync(pHwData, 0x03b4, &TxVga);
// Get Scan interval setting from EEPROM offset 0x1c /* Get Scan interval setting from EEPROM offset 0x1c */
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 ); Wb35Reg_WriteSync(pHwData, 0x03b4, 0x081d0000);
Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval ); Wb35Reg_ReadSync(pHwData, 0x03b4, &Region_ScanInterval);
// Update Ethernet address /* Update Ethernet address */
memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN ); memcpy(pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN);
// Update software variable /* Update software variable */
pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff); pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
TxVga &= 0x000000ff; TxVga &= 0x000000ff;
pHwData->PowerIndexFromEEPROM = (u8)TxVga; pHwData->PowerIndexFromEEPROM = (u8)TxVga;
@ -609,22 +610,22 @@ unsigned char Wb35Reg_initial(struct hw_data * pHwData)
if (pHwData->VCO_trim == 0xff) if (pHwData->VCO_trim == 0xff)
pHwData->VCO_trim = 0x28; pHwData->VCO_trim = 0x28;
reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720 reg->EEPROMRegion = (u8)(Region_ScanInterval >> 8);
if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 ) if (reg->EEPROMRegion < 1 || reg->EEPROMRegion > 6)
reg->EEPROMRegion = REGION_AUTO; reg->EEPROMRegion = REGION_AUTO;
//For Get Tx VGA from EEPROM 20060315.5 move here /* For Get Tx VGA from EEPROM */
GetTxVgaFromEEPROM( pHwData ); GetTxVgaFromEEPROM(pHwData);
// Set Scan Interval /* Set Scan Interval */
pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10; pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10 if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) /* Is default setting 0xff * 10 */
pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME; pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
// Initial register /* Initial register */
RFSynthesizer_initial(pHwData); RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); // Async write, must wait until complete BBProcessor_initial(pHwData); /* Async write, must wait until complete */
Wb35Reg_phy_calibration(pHwData); Wb35Reg_phy_calibration(pHwData);
@ -634,113 +635,104 @@ unsigned char Wb35Reg_initial(struct hw_data * pHwData)
if (pHwData->SurpriseRemove) if (pHwData->SurpriseRemove)
return false; return false;
else else
return true; // Initial fail return true; /* Initial fail */
} }
//=================================================================================== /*
// CardComputeCrc -- * ================================================================
// * CardComputeCrc --
// Description: *
// Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length. * Description:
// * Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
// Arguments: *
// Buffer - the input buffer * Arguments:
// Length - the length of Buffer * Buffer - the input buffer
// * Length - the length of Buffer
// Return Value: *
// The 32-bit CRC value. * Return Value:
// * The 32-bit CRC value.
// Note: * ===================================================================
// This is adapted from the comments in the assembly language */
// version in _GENREQ.ASM of the DWB NE1000/2000 driver. u32 CardComputeCrc(u8 *Buffer, u32 Length)
//==================================================================================
u32
CardComputeCrc(u8 * Buffer, u32 Length)
{ {
u32 Crc, Carry; u32 Crc, Carry;
u32 i, j; u32 i, j;
u8 CurByte; u8 CurByte;
Crc = 0xffffffff; Crc = 0xffffffff;
for (i = 0; i < Length; i++) { for (i = 0; i < Length; i++) {
CurByte = Buffer[i];
CurByte = Buffer[i]; for (j = 0; j < 8; j++) {
Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
for (j = 0; j < 8; j++) { Crc <<= 1;
CurByte >>= 1;
Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01); if (Carry)
Crc <<= 1; Crc = (Crc ^ 0x04c11db6) | Carry;
CurByte >>= 1; }
}
if (Carry) { return Crc;
Crc =(Crc ^ 0x04c11db6) | Carry;
}
}
}
return Crc;
} }
//================================================================== /*
// BitReverse -- * ==================================================================
// Reverse the bits in the input argument, dwData, which is * BitReverse --
// regarded as a string of bits with the length, DataLength. * Reverse the bits in the input argument, dwData, which is
// * regarded as a string of bits with the length, DataLength.
// Arguments: *
// dwData : * Arguments:
// DataLength : * dwData :
// * DataLength :
// Return: *
// The converted value. * Return:
//================================================================== * The converted value.
u32 BitReverse( u32 dwData, u32 DataLength) * ==================================================================
*/
u32 BitReverse(u32 dwData, u32 DataLength)
{ {
u32 HalfLength, i, j; u32 HalfLength, i, j;
u32 BitA, BitB; u32 BitA, BitB;
if ( DataLength <= 0) return 0; // No conversion is done. if (DataLength <= 0)
return 0; /* No conversion is done. */
dwData = dwData & (0xffffffff >> (32 - DataLength)); dwData = dwData & (0xffffffff >> (32 - DataLength));
HalfLength = DataLength / 2; HalfLength = DataLength / 2;
for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--) for (i = 0, j = DataLength - 1; i < HalfLength; i++, j--) {
{ BitA = GetBit(dwData, i);
BitA = GetBit( dwData, i); BitB = GetBit(dwData, j);
BitB = GetBit( dwData, j);
if (BitA && !BitB) { if (BitA && !BitB) {
dwData = ClearBit( dwData, i); dwData = ClearBit(dwData, i);
dwData = SetBit( dwData, j); dwData = SetBit(dwData, j);
} else if (!BitA && BitB) { } else if (!BitA && BitB) {
dwData = SetBit( dwData, i); dwData = SetBit(dwData, i);
dwData = ClearBit( dwData, j); dwData = ClearBit(dwData, j);
} else } else {
{ /* Do nothing since these two bits are of the save values. */
// Do nothing since these two bits are of the save values.
} }
} }
return dwData; return dwData;
} }
void Wb35Reg_phy_calibration( struct hw_data * pHwData ) void Wb35Reg_phy_calibration(struct hw_data *pHwData)
{ {
u32 BB3c, BB54; u32 BB3c, BB54;
if ((pHwData->phy_type == RF_WB_242) || if ((pHwData->phy_type == RF_WB_242) ||
(pHwData->phy_type == RF_WB_242_1)) { (pHwData->phy_type == RF_WB_242_1)) {
phy_calibration_winbond ( pHwData, 2412 ); // Sync operation phy_calibration_winbond(pHwData, 2412); /* Sync operation */
Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c ); Wb35Reg_ReadSync(pHwData, 0x103c, &BB3c);
Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 ); Wb35Reg_ReadSync(pHwData, 0x1054, &BB54);
pHwData->BB3c_cal = BB3c; pHwData->BB3c_cal = BB3c;
pHwData->BB54_cal = BB54; pHwData->BB54_cal = BB54;
RFSynthesizer_initial(pHwData); RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); // Async operation BBProcessor_initial(pHwData); /* Async operation */
Wb35Reg_WriteSync( pHwData, 0x103c, BB3c ); Wb35Reg_WriteSync(pHwData, 0x103c, BB3c);
Wb35Reg_WriteSync( pHwData, 0x1054, BB54 ); Wb35Reg_WriteSync(pHwData, 0x1054, BB54);
} }
} }