1
0
Fork 0
Commit Graph

10981 Commits (eirik/revert-vbus-gpio-factory-dts)

Author SHA1 Message Date
Jérémy Lefaure 8bec83b2cf shmem: fix compilation warnings on unused functions
commit f1f5929cd9 upstream.

Compiling shmem.c with SHMEM and TRANSAPRENT_HUGE_PAGECACHE enabled
raises warnings on two unused functions when CONFIG_TMPFS and
CONFIG_SYSFS are both disabled:

  mm/shmem.c:390:20: warning: `shmem_format_huge' defined but not used [-Wunused-function]
   static const char *shmem_format_huge(int huge)
                      ^~~~~~~~~~~~~~~~~
  mm/shmem.c:373:12: warning: `shmem_parse_huge' defined but not used [-Wunused-function]
   static int shmem_parse_huge(const char *str)
               ^~~~~~~~~~~~~~~~

A conditional compilation on tmpfs or sysfs removes the warnings.

Link: http://lkml.kernel.org/r/20161118055749.11313-1-jeremy.lefaure@lse.epita.fr
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-25 11:05:54 +01:00
Arnd Bergmann 1dc6839336 shmem: avoid maybe-uninitialized warning
commit 23f919d4ad upstream.

After enabling -Wmaybe-uninitialized warnings, we get a false-postive
warning for shmem:

  mm/shmem.c: In function `shmem_getpage_gfp':
  include/linux/spinlock.h:332:21: error: `info' may be used uninitialized in this function [-Werror=maybe-uninitialized]

This can be easily avoided, since the correct 'info' pointer is known at
the time we first enter the function, so we can simply move the
initialization up.  Moving it before the first label avoids the warning
and lets us remove two later initializations.

Note that the function is so hard to read that it not only confuses the
compiler, but also most readers and without this patch it could\ easily
break if one of the 'goto's changed.

Link: https://www.spinics.net/lists/kernel/msg2368133.html
Link: http://lkml.kernel.org/r/20161024205725.786455-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-25 11:05:50 +01:00
Dave Young 4b5b4f6f55 mm/early_ioremap: Fix boot hang with earlyprintk=efi,keep
[ Upstream commit 7f6f60a1ba ]

earlyprintk=efi,keep does not work any more with a warning
in mm/early_ioremap.c: WARN_ON(system_state != SYSTEM_BOOTING):
Boot just hangs because of the earlyprintk within the earlyprintk
implementation code itself.

This is caused by a new introduced middle state in:

  69a78ff226 ("init: Introduce SYSTEM_SCHEDULING state")

early_ioremap() is fine in both SYSTEM_BOOTING and SYSTEM_SCHEDULING
states, original condition should be updated accordingly.

Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: bp@suse.de
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20171209041610.GA3249@dhcp-128-65.nay.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-25 11:05:49 +01:00
David Howells 5cab144f07 Provide a function to create a NUL-terminated string from unterminated data
commit f351574172 upstream.

Provide a function, kmemdup_nul(), that will create a NUL-terminated string
from an unterminated character array where the length is known in advance.

This is better than kstrndup() in situations where we already know the
string length as the strnlen() in kstrndup() is superfluous.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-25 11:05:41 +01:00
Tetsuo Handa 274ee93f0b mm,vmscan: Make unregister_shrinker() no-op if register_shrinker() failed.
commit bb422a738f upstream.

Syzbot caught an oops at unregister_shrinker() because combination of
commit 1d3d4437ea ("vmscan: per-node deferred work") and fault
injection made register_shrinker() fail and the caller of
register_shrinker() did not check for failure.

----------
[  554.881422] FAULT_INJECTION: forcing a failure.
[  554.881422] name failslab, interval 1, probability 0, space 0, times 0
[  554.881438] CPU: 1 PID: 13231 Comm: syz-executor1 Not tainted 4.14.0-rc8+ #82
[  554.881443] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[  554.881445] Call Trace:
[  554.881459]  dump_stack+0x194/0x257
[  554.881474]  ? arch_local_irq_restore+0x53/0x53
[  554.881486]  ? find_held_lock+0x35/0x1d0
[  554.881507]  should_fail+0x8c0/0xa40
[  554.881522]  ? fault_create_debugfs_attr+0x1f0/0x1f0
[  554.881537]  ? check_noncircular+0x20/0x20
[  554.881546]  ? find_next_zero_bit+0x2c/0x40
[  554.881560]  ? ida_get_new_above+0x421/0x9d0
[  554.881577]  ? find_held_lock+0x35/0x1d0
[  554.881594]  ? __lock_is_held+0xb6/0x140
[  554.881628]  ? check_same_owner+0x320/0x320
[  554.881634]  ? lock_downgrade+0x990/0x990
[  554.881649]  ? find_held_lock+0x35/0x1d0
[  554.881672]  should_failslab+0xec/0x120
[  554.881684]  __kmalloc+0x63/0x760
[  554.881692]  ? lock_downgrade+0x990/0x990
[  554.881712]  ? register_shrinker+0x10e/0x2d0
[  554.881721]  ? trace_event_raw_event_module_request+0x320/0x320
[  554.881737]  register_shrinker+0x10e/0x2d0
[  554.881747]  ? prepare_kswapd_sleep+0x1f0/0x1f0
[  554.881755]  ? _down_write_nest_lock+0x120/0x120
[  554.881765]  ? memcpy+0x45/0x50
[  554.881785]  sget_userns+0xbcd/0xe20
(...snipped...)
[  554.898693] kasan: CONFIG_KASAN_INLINE enabled
[  554.898724] kasan: GPF could be caused by NULL-ptr deref or user memory access
[  554.898732] general protection fault: 0000 [#1] SMP KASAN
[  554.898737] Dumping ftrace buffer:
[  554.898741]    (ftrace buffer empty)
[  554.898743] Modules linked in:
[  554.898752] CPU: 1 PID: 13231 Comm: syz-executor1 Not tainted 4.14.0-rc8+ #82
[  554.898755] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[  554.898760] task: ffff8801d1dbe5c0 task.stack: ffff8801c9e38000
[  554.898772] RIP: 0010:__list_del_entry_valid+0x7e/0x150
[  554.898775] RSP: 0018:ffff8801c9e3f108 EFLAGS: 00010246
[  554.898780] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
[  554.898784] RDX: 0000000000000000 RSI: ffff8801c53c6f98 RDI: ffff8801c53c6fa0
[  554.898788] RBP: ffff8801c9e3f120 R08: 1ffff100393c7d55 R09: 0000000000000004
[  554.898791] R10: ffff8801c9e3ef70 R11: 0000000000000000 R12: 0000000000000000
[  554.898795] R13: dffffc0000000000 R14: 1ffff100393c7e45 R15: ffff8801c53c6f98
[  554.898800] FS:  0000000000000000(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000
[  554.898804] CS:  0010 DS: 002b ES: 002b CR0: 0000000080050033
[  554.898807] CR2: 00000000dbc23000 CR3: 00000001c7269000 CR4: 00000000001406e0
[  554.898813] DR0: 0000000020000000 DR1: 0000000020000000 DR2: 0000000000000000
[  554.898816] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
[  554.898818] Call Trace:
[  554.898828]  unregister_shrinker+0x79/0x300
[  554.898837]  ? perf_trace_mm_vmscan_writepage+0x750/0x750
[  554.898844]  ? down_write+0x87/0x120
[  554.898851]  ? deactivate_super+0x139/0x1b0
[  554.898857]  ? down_read+0x150/0x150
[  554.898864]  ? check_same_owner+0x320/0x320
[  554.898875]  deactivate_locked_super+0x64/0xd0
[  554.898883]  deactivate_super+0x141/0x1b0
----------

Since allowing register_shrinker() callers to call unregister_shrinker()
when register_shrinker() failed can simplify error recovery path, this
patch makes unregister_shrinker() no-op when register_shrinker() failed.
Also, reset shrinker->nr_deferred in case unregister_shrinker() was
by error called twice.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Glauber Costa <glauber@scylladb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-25 11:05:40 +01:00
Arnd Bergmann 7318454518 mm: hide a #warning for COMPILE_TEST
commit af27d9403f upstream.

We get a warning about some slow configurations in randconfig kernels:

  mm/memory.c:83:2: error: #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. [-Werror=cpp]

The warning is reasonable by itself, but gets in the way of randconfig
build testing, so I'm hiding it whenever CONFIG_COMPILE_TEST is set.

The warning was added in 2013 in commit 75980e97da ("mm: fold
page->_last_nid into page->flags where possible").

Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-22 15:43:48 +01:00
Yisheng Xie 7b8623841f kmemleak: add scheduling point to kmemleak_scan()
[ Upstream commit bde5f6bc68 ]

kmemleak_scan() will scan struct page for each node and it can be really
large and resulting in a soft lockup.  We have seen a soft lockup when
do scan while compile kernel:

  watchdog: BUG: soft lockup - CPU#53 stuck for 22s! [bash:10287]
 [...]
  Call Trace:
   kmemleak_scan+0x21a/0x4c0
   kmemleak_write+0x312/0x350
   full_proxy_write+0x5a/0xa0
   __vfs_write+0x33/0x150
   vfs_write+0xad/0x1a0
   SyS_write+0x52/0xc0
   do_syscall_64+0x61/0x1a0
   entry_SYSCALL64_slow_path+0x25/0x25

Fix this by adding cond_resched every MAX_SCAN_SIZE.

Link: http://lkml.kernel.org/r/1511439788-20099-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-03 17:05:39 +01:00
Johannes Weiner 19a7db1e2e mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
commit c73322d098 upstream.

Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".

Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage.  We have seen similar cases at Facebook.

The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages.  In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met.  Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.

This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs.  This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer.  If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.

Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.

Patch #6 is the odd one out.  It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.

If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.

This patch (of 9):

Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:

$ echo 4000 >/proc/sys/vm/nr_hugepages

top - 13:42:59 up  3:37,  1 user,  load average: 1.09, 1.03, 1.01
Tasks:   1 total,   1 running,   0 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.0 us, 12.5 sy,  0.0 ni, 85.5 id,  2.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:  31371520 total, 30915136 used,   456384 free,      320 buffers
KiB Swap:  6284224 total,   115712 used,  6168512 free.    48192 cached Mem

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND
   76 root      20   0       0      0      0 R 100.0 0.000 217:17.29 kswapd3

At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.

Kswapd needs to back away from nodes that fail to balance.  Up until
commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") kswapd had such a mechanism.  It considered zones whose
theoretically reclaimable pages it had reclaimed six times over as
unreclaimable and backed away from them.  This guard was erroneously
removed as the patch changed the definition of a balanced node.

However, simply restoring this code wouldn't help in the case reported
here: there *are* no reclaimable pages that could be scanned until the
threshold is met.  Kswapd would stay awake anyway.

Introduce a new and much simpler way of backing off.  If kswapd runs
through MAX_RECLAIM_RETRIES (16) cycles without reclaiming a single
page, make it back off from the node.  This is the same number of shots
direct reclaim takes before declaring OOM.  Kswapd will go to sleep on
that node until a direct reclaimer manages to reclaim some pages, thus
proving the node reclaimable again.

[hannes@cmpxchg.org: check kswapd failure against the cumulative nr_reclaimed count]
  Link: http://lkml.kernel.org/r/20170306162410.GB2090@cmpxchg.org
[shakeelb@google.com: fix condition for throttle_direct_reclaim]
  Link: http://lkml.kernel.org/r/20170314183228.20152-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20170228214007.5621-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Jia He <hejianet@gmail.com>
Tested-by: Jia He <hejianet@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:55:53 +01:00
Vlastimil Babka 685cce58f1 mm, page_alloc: fix potential false positive in __zone_watermark_ok
commit b050e3769c upstream.

Since commit 97a16fc82a ("mm, page_alloc: only enforce watermarks for
order-0 allocations"), __zone_watermark_ok() check for high-order
allocations will shortcut per-migratetype free list checks for
ALLOC_HARDER allocations, and return true as long as there's free page
of any migratetype.  The intention is that ALLOC_HARDER can allocate
from MIGRATE_HIGHATOMIC free lists, while normal allocations can't.

However, as a side effect, the watermark check will then also return
true when there are pages only on the MIGRATE_ISOLATE list, or (prior to
CMA conversion to ZONE_MOVABLE) on the MIGRATE_CMA list.  Since the
allocation cannot actually obtain isolated pages, and might not be able
to obtain CMA pages, this can result in a false positive.

The condition should be rare and perhaps the outcome is not a fatal one.
Still, it's better if the watermark check is correct.  There also
shouldn't be a performance tradeoff here.

Link: http://lkml.kernel.org/r/20171102125001.23708-1-vbabka@suse.cz
Fixes: 97a16fc82a ("mm, page_alloc: only enforce watermarks for order-0 allocations")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:55:51 +01:00
Doug Berger 714c19ef57 cma: fix calculation of aligned offset
commit e048cb32f6 upstream.

The align_offset parameter is used by bitmap_find_next_zero_area_off()
to represent the offset of map's base from the previous alignment
boundary; the function ensures that the returned index, plus the
align_offset, honors the specified align_mask.

The logic introduced by commit b5be83e308 ("mm: cma: align to physical
address, not CMA region position") has the cma driver calculate the
offset to the *next* alignment boundary.  In most cases, the base
alignment is greater than that specified when making allocations,
resulting in a zero offset whether we align up or down.  In the example
given with the commit, the base alignment (8MB) was half the requested
alignment (16MB) so the math also happened to work since the offset is
8MB in both directions.  However, when requesting allocations with an
alignment greater than twice that of the base, the returned index would
not be correctly aligned.

Also, the align_order arguments of cma_bitmap_aligned_mask() and
cma_bitmap_aligned_offset() should not be negative so the argument type
was made unsigned.

Fixes: b5be83e308 ("mm: cma: align to physical address, not CMA region position")
Link: http://lkml.kernel.org/r/20170628170742.2895-1-opendmb@gmail.com
Signed-off-by: Angus Clark <angus@angusclark.org>
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Gregory Fong <gregory.0xf0@gmail.com>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Angus Clark <angus@angusclark.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Shiraz Hashim <shashim@codeaurora.org>
Cc: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:55:51 +01:00
Michal Hocko bc0e2174b0 hwpoison, memcg: forcibly uncharge LRU pages
commit 18365225f0 upstream.

Laurent Dufour has noticed that hwpoinsoned pages are kept charged.  In
his particular case he has hit a bad_page("page still charged to
cgroup") when onlining a hwpoison page.  While this looks like something
that shouldn't happen in the first place because onlining hwpages and
returning them to the page allocator makes only little sense it shows a
real problem.

hwpoison pages do not get freed usually so we do not uncharge them (at
least not since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge
API")).  Each charge pins memcg (since e8ea14cc6e ("mm: memcontrol:
take a css reference for each charged page")) as well and so the
mem_cgroup and the associated state will never go away.  Fix this leak
by forcibly uncharging a LRU hwpoisoned page in delete_from_lru_cache().
We also have to tweak uncharge_list because it cannot rely on zero ref
count for these pages.

[akpm@linux-foundation.org: coding-style fixes]
Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Link: http://lkml.kernel.org/r/20170502185507.GB19165@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:55:51 +01:00
Michal Hocko c57664bd12 mm/mmap.c: do not blow on PROT_NONE MAP_FIXED holes in the stack
commit 561b5e0709 upstream.

Commit 1be7107fbe ("mm: larger stack guard gap, between vmas") has
introduced a regression in some rust and Java environments which are
trying to implement their own stack guard page.  They are punching a new
MAP_FIXED mapping inside the existing stack Vma.

This will confuse expand_{downwards,upwards} into thinking that the
stack expansion would in fact get us too close to an existing non-stack
vma which is a correct behavior wrt safety.  It is a real regression on
the other hand.

Let's work around the problem by considering PROT_NONE mapping as a part
of the stack.  This is a gros hack but overflowing to such a mapping
would trap anyway an we only can hope that usespace knows what it is
doing and handle it propely.

Fixes: 1be7107fbe ("mm: larger stack guard gap, between vmas")
Link: http://lkml.kernel.org/r/20170705182849.GA18027@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:55:51 +01:00
Dan Streetman 1ecdfc1ee9 zswap: don't param_set_charp while holding spinlock
commit fd5bb66cd9 upstream.

Change the zpool/compressor param callback function to release the
zswap_pools_lock spinlock before calling param_set_charp, since that
function may sleep when it calls kmalloc with GFP_KERNEL.

While this problem has existed for a while, I wasn't able to trigger it
using a tight loop changing either/both the zpool and compressor params; I
think it's very unlikely to be an issue on the stable kernels, especially
since most zswap users will change the compressor and/or zpool from sysfs
only one time each boot - or zero times, if they add the params to the
kernel boot.

Fixes: c99b42c352 ("zswap: use charp for zswap param strings")
Link: http://lkml.kernel.org/r/20170126155821.4545-1-ddstreet@ieee.org
Signed-off-by: Dan Streetman <dan.streetman@canonical.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17 09:38:52 +01:00
Hugh Dickins 1972bb9d92 kaiser: vmstat show NR_KAISERTABLE as nr_overhead
The kaiser update made an interesting choice, never to free any shadow
page tables.  Contention on global spinlock was worrying, particularly
with it held across page table scans when freeing.  Something had to be
done: I was going to add refcounting; but simply never to free them is
an appealing choice, minimizing contention without complicating the code
(the more a page table is found already, the less the spinlock is used).

But leaking pages in this way is also a worry: can we get away with it?
At the very least, we need a count to show how bad it actually gets:
in principle, one might end up wasting about 1/256 of memory that way
(1/512 for when direct-mapped pages have to be user-mapped, plus 1/512
for when they are user-mapped from the vmalloc area on another occasion
(but we don't have vmalloc'ed stacks, so only large ldts are vmalloc'ed).

Add per-cpu stat NR_KAISERTABLE: including 256 at startup for the
shared pgd entries, and 1 for each intermediate page table added
thereafter for user-mapping - but leave out the 1 per mm, for its
shadow pgd, because that distracts from the monotonic increase.
Shown in /proc/vmstat as nr_overhead (0 if kaiser not enabled).

In practice, it doesn't look so bad so far: more like 1/12000 after
nine hours of gtests below; and movable pageblock segregation should
tend to cluster the kaiser tables into a subset of the address space
(if not, they will be bad for compaction too).  But production may
tell a different story: keep an eye on this number, and bring back
lighter freeing if it gets out of control (maybe a shrinker).

["nr_overhead" should of course say "nr_kaisertable", if it needs
to stay; but for the moment we are being coy, preferring that when
Joe Blow notices a new line in his /proc/vmstat, he does not get
too curious about what this "kaiser" stuff might be.]

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-05 15:46:33 +01:00
Sergey Senozhatsky 1618400444 zsmalloc: calling zs_map_object() from irq is a bug
[ Upstream commit 1aedcafbf3 ]

Use BUG_ON(in_interrupt()) in zs_map_object().  This is not a new
BUG_ON(), it's always been there, but was recently changed to
VM_BUG_ON().  There are several problems there.  First, we use use
per-CPU mappings both in zsmalloc and in zram, and interrupt may easily
corrupt those buffers.  Second, and more importantly, we believe it's
possible to start leaking sensitive information.  Consider the following
case:

-> process P
	swap out
	 zram
	  per-cpu mapping CPU1
	   compress page A
-> IRQ

	swap out
	 zram
	  per-cpu mapping CPU1
	   compress page B
	    write page from per-cpu mapping CPU1 to zsmalloc pool
	iret

-> process P
	    write page from per-cpu mapping CPU1 to zsmalloc pool  [*]
	return

* so we store overwritten data that actually belongs to another
  page (task) and potentially contains sensitive data. And when
  process P will page fault it's going to read (swap in) that
  other task's data.

Link: http://lkml.kernel.org/r/20170929045140.4055-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14 09:28:23 +01:00
Kirill A. Shutemov c2edc33d4a thp: fix MADV_DONTNEED vs. numa balancing race
commit ced108037c upstream.

In case prot_numa, we are under down_read(mmap_sem).  It's critical to
not clear pmd intermittently to avoid race with MADV_DONTNEED which is
also under down_read(mmap_sem):

	CPU0:				CPU1:
				change_huge_pmd(prot_numa=1)
				 pmdp_huge_get_and_clear_notify()
madvise_dontneed()
 zap_pmd_range()
  pmd_trans_huge(*pmd) == 0 (without ptl)
  // skip the pmd
				 set_pmd_at();
				 // pmd is re-established

The race makes MADV_DONTNEED miss the huge pmd and don't clear it
which may break userspace.

Found by code analysis, never saw triggered.

Link: http://lkml.kernel.org/r/20170302151034.27829-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[jwang: adjust context for 4.9 ]
Signed-off-by: Jack Wang <jinpu.wang@profitbricks.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14 09:28:16 +01:00
Kirill A. Shutemov 7bdd685cef thp: reduce indentation level in change_huge_pmd()
commit 0a85e51d37 upstream.

Patch series "thp: fix few MADV_DONTNEED races"

For MADV_DONTNEED to work properly with huge pages, it's critical to not
clear pmd intermittently unless you hold down_write(mmap_sem).

Otherwise MADV_DONTNEED can miss the THP which can lead to userspace
breakage.

See example of such race in commit message of patch 2/4.

All these races are found by code inspection.  I haven't seen them
triggered.  I don't think it's worth to apply them to stable@.

This patch (of 4):

Restructure code in preparation for a fix.

Link: http://lkml.kernel.org/r/20170302151034.27829-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[jwang: adjust context for 4.9]
Signed-off-by: Jack Wang <jinpu.wang@profitbricks.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14 09:28:16 +01:00
Michal Hocko fae478cd93 mm: fix remote numa hits statistics
[ Upstream commit 2df26639e7 ]

Jia He has noticed that commit b9f00e147f ("mm, page_alloc: reduce
branches in zone_statistics") has an unintentional side effect that
remote node allocation requests are accounted as NUMA_MISS rathat than
NUMA_HIT and NUMA_OTHER if such a request doesn't use __GFP_OTHER_NODE.

There are many of these potentially because the flag is used very rarely
while we have many users of __alloc_pages_node.

Fix this by simply ignoring __GFP_OTHER_NODE (it can be removed in a
follow up patch) and treat all allocations that were satisfied from the
preferred zone's node as NUMA_HITS because this is the same node we
requested the allocation from in most cases.  If this is not the local
node then we just account it as NUMA_OTHER rather than NUMA_LOCAL.

One downsize would be that an allocation request for a node which is
outside of the mempolicy nodemask would be reported as a hit which is a
bit weird but that was the case before b9f00e147f already.

Fixes: b9f00e147f ("mm, page_alloc: reduce branches in zone_statistics")
Link: http://lkml.kernel.org/r/20170102153057.9451-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz> # with cbmc[1] superpowers
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-09 22:01:51 +01:00
Wang Nan ee23ae915f mm, oom_reaper: gather each vma to prevent leaking TLB entry
commit 687cb0884a upstream.

tlb_gather_mmu(&tlb, mm, 0, -1) means gathering the whole virtual memory
space.  In this case, tlb->fullmm is true.  Some archs like arm64
doesn't flush TLB when tlb->fullmm is true:

  commit 5a7862e830 ("arm64: tlbflush: avoid flushing when fullmm == 1").

Which causes leaking of tlb entries.

Will clarifies his patch:
 "Basically, we tag each address space with an ASID (PCID on x86) which
  is resident in the TLB. This means we can elide TLB invalidation when
  pulling down a full mm because we won't ever assign that ASID to
  another mm without doing TLB invalidation elsewhere (which actually
  just nukes the whole TLB).

  I think that means that we could potentially not fault on a kernel
  uaccess, because we could hit in the TLB"

There could be a window between complete_signal() sending IPI to other
cores and all threads sharing this mm are really kicked off from cores.
In this window, the oom reaper may calls tlb_flush_mmu_tlbonly() to
flush TLB then frees pages.  However, due to the above problem, the TLB
entries are not really flushed on arm64.  Other threads are possible to
access these pages through TLB entries.  Moreover, a copy_to_user() can
also write to these pages without generating page fault, causes
use-after-free bugs.

This patch gathers each vma instead of gathering full vm space.  In this
case tlb->fullmm is not true.  The behavior of oom reaper become similar
to munmapping before do_exit, which should be safe for all archs.

Link: http://lkml.kernel.org/r/20171107095453.179940-1-wangnan0@huawei.com
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Bob Liu <liubo95@huawei.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[backported to 4.9 stable tree]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-09 22:01:47 +01:00
chenjie ba32d7dce4 mm/madvise.c: fix madvise() infinite loop under special circumstances
commit 6ea8d958a2 upstream.

MADVISE_WILLNEED has always been a noop for DAX (formerly XIP) mappings.
Unfortunately madvise_willneed() doesn't communicate this information
properly to the generic madvise syscall implementation.  The calling
convention is quite subtle there.  madvise_vma() is supposed to either
return an error or update &prev otherwise the main loop will never
advance to the next vma and it will keep looping for ever without a way
to get out of the kernel.

It seems this has been broken since introduction.  Nobody has noticed
because nobody seems to be using MADVISE_WILLNEED on these DAX mappings.

[mhocko@suse.com: rewrite changelog]
Link: http://lkml.kernel.org/r/20171127115318.911-1-guoxuenan@huawei.com
Fixes: fe77ba6f4f ("[PATCH] xip: madvice/fadvice: execute in place")
Signed-off-by: chenjie <chenjie6@huawei.com>
Signed-off-by: guoxuenan <guoxuenan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-05 11:24:32 +01:00
Dan Williams cebe139e57 mm, hugetlbfs: introduce ->split() to vm_operations_struct
commit 31383c6865 upstream.

Patch series "device-dax: fix unaligned munmap handling"

When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges.  It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint.  Instead, these patches introduce a new ->split() vm
operation.

This patch (of 2):

The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units.  Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.

Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: dee4107924 ("/dev/dax, core: file operations and dax-mmap")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-05 11:24:32 +01:00
Mike Kravetz 436f19a2e4 mm/cma: fix alloc_contig_range ret code/potential leak
commit 63cd448908 upstream.

If the call __alloc_contig_migrate_range() in alloc_contig_range returns
-EBUSY, processing continues so that test_pages_isolated() is called
where there is a tracepoint to identify the busy pages.  However, it is
possible for busy pages to become available between the calls to these
two routines.  In this case, the range of pages may be allocated.
Unfortunately, the original return code (ret == -EBUSY) is still set and
returned to the caller.  Therefore, the caller believes the pages were
not allocated and they are leaked.

Update the comment to indicate that allocation is still possible even if
__alloc_contig_migrate_range returns -EBUSY.  Also, clear return code in
this case so that it is not accidentally used or returned to caller.

Link: http://lkml.kernel.org/r/20171122185214.25285-1-mike.kravetz@oracle.com
Fixes: 8ef5849fa8 ("mm/cma: always check which page caused allocation failure")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-05 11:24:31 +01:00
Kirill A. Shutemov 7031ae2ab3 mm, thp: Do not make page table dirty unconditionally in touch_p[mu]d()
commit a8f9736645 upstream.

Currently, we unconditionally make page table dirty in touch_pmd().
It may result in false-positive can_follow_write_pmd().

We may avoid the situation, if we would only make the page table entry
dirty if caller asks for write access -- FOLL_WRITE.

The patch also changes touch_pud() in the same way.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Salvatore Bonaccorso: backport for 4.9:
 - Adjust context
 - Drop specific part for PUD-sized transparent hugepages. Support
   for PUD-sized transparent hugepages was added in v4.11-rc1
]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-05 11:24:31 +01:00
Jann Horn ceaec6e8cd mm/pagewalk.c: report holes in hugetlb ranges
commit 373c4557d2 upstream.

This matters at least for the mincore syscall, which will otherwise copy
uninitialized memory from the page allocator to userspace.  It is
probably also a correctness error for /proc/$pid/pagemap, but I haven't
tested that.

Removing the `walk->hugetlb_entry` condition in walk_hugetlb_range() has
no effect because the caller already checks for that.

This only reports holes in hugetlb ranges to callers who have specified
a hugetlb_entry callback.

This issue was found using an AFL-based fuzzer.

v2:
 - don't crash on ->pte_hole==NULL (Andrew Morton)
 - add Cc stable (Andrew Morton)

Changed for 4.4/4.9 stable backport:
 - fix up conflict in the huge_pte_offset() call

Fixes: 1e25a271c8 ("mincore: apply page table walker on do_mincore()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-24 08:33:42 +01:00
Pavel Tatashin 9980b82783 mm/page_alloc.c: broken deferred calculation
commit d135e57502 upstream.

In reset_deferred_meminit() we determine number of pages that must not
be deferred.  We initialize pages for at least 2G of memory, but also
pages for reserved memory in this node.

The reserved memory is determined in this function:
memblock_reserved_memory_within(), which operates over physical
addresses, and returns size in bytes.  However, reset_deferred_meminit()
assumes that that this function operates with pfns, and returns page
count.

The result is that in the best case machine boots slower than expected
due to initializing more pages than needed in single thread, and in the
worst case panics because fewer than needed pages are initialized early.

Link: http://lkml.kernel.org/r/20171021011707.15191-1-pasha.tatashin@oracle.com
Fixes: 864b9a393d ("mm: consider memblock reservations for deferred memory initialization sizing")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-24 08:33:42 +01:00
Grygorii Maistrenko 076a6220bc slub: do not merge cache if slub_debug contains a never-merge flag
[ Upstream commit c6e28895a4 ]

In case CONFIG_SLUB_DEBUG_ON=n, find_mergeable() gets debug features from
commandline but never checks if there are features from the
SLAB_NEVER_MERGE set.

As a result selected by slub_debug caches are always mergeable if they
have been created without a custom constructor set or without one of the
SLAB_* debug features on.

This moves the SLAB_NEVER_MERGE check below the flags update from
commandline to make sure it won't merge the slab cache if one of the debug
features is on.

Link: http://lkml.kernel.org/r/20170101124451.GA4740@lp-laptop-d
Signed-off-by: Grygorii Maistrenko <grygoriimkd@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-21 17:21:36 +02:00
Yasuaki Ishimatsu a5f043b241 mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next
[ Upstream commit ddffe98d16 ]

To identify that pages of page table are allocated from bootmem
allocator, magic number sets to page->lru.next.

But page->lru list is initialized in reserve_bootmem_region().  So when
calling free_pagetable(), the function cannot find the magic number of
pages.  And free_pagetable() frees the pages by free_reserved_page() not
put_page_bootmem().

But if the pages are allocated from bootmem allocator and used as page
table, the pages have private flag.  So before freeing the pages, we
should clear the private flag by put_page_bootmem().

Before applying the commit 7bfec6f47b ("mm, page_alloc: check multiple
page fields with a single branch"), we could find the following visible
issue:

  BUG: Bad page state in process kworker/u1024:1
  page:ffffea103cfd8040 count:0 mapcount:0 mappi
  flags: 0x6fffff80000800(private)
  page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
  bad because of flags: 0x800(private)
  <snip>
  Call Trace:
  [...] dump_stack+0x63/0x87
  [...] bad_page+0x114/0x130
  [...] free_pages_prepare+0x299/0x2d0
  [...] free_hot_cold_page+0x31/0x150
  [...] __free_pages+0x25/0x30
  [...] free_pagetable+0x6f/0xb4
  [...] remove_pagetable+0x379/0x7ff
  [...] vmemmap_free+0x10/0x20
  [...] sparse_remove_one_section+0x149/0x180
  [...] __remove_pages+0x2e9/0x4f0
  [...] arch_remove_memory+0x63/0xc0
  [...] remove_memory+0x8c/0xc0
  [...] acpi_memory_device_remove+0x79/0xa5
  [...] acpi_bus_trim+0x5a/0x8d
  [...] acpi_bus_trim+0x38/0x8d
  [...] acpi_device_hotplug+0x1b7/0x418
  [...] acpi_hotplug_work_fn+0x1e/0x29
  [...] process_one_work+0x152/0x400
  [...] worker_thread+0x125/0x4b0
  [...] kthread+0xd8/0xf0
  [...] ret_from_fork+0x22/0x40

And the issue still silently occurs.

Until freeing the pages of page table allocated from bootmem allocator,
the page->freelist is never used.  So the patch sets magic number to
page->freelist instead of page->lru.next.

[isimatu.yasuaki@jp.fujitsu.com: fix merge issue]
  Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com
Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-21 17:21:36 +02:00
Michal Hocko 2b8197073a mm, oom_reaper: skip mm structs with mmu notifiers
commit 4d4bbd8526 upstream.

Andrea has noticed that the oom_reaper doesn't invalidate the range via
mmu notifiers (mmu_notifier_invalidate_range_start/end) and that can
corrupt the memory of the kvm guest for example.

tlb_flush_mmu_tlbonly already invokes mmu notifiers but that is not
sufficient as per Andrea:

 "mmu_notifier_invalidate_range cannot be used in replacement of
  mmu_notifier_invalidate_range_start/end. For KVM
  mmu_notifier_invalidate_range is a noop and rightfully so. A MMU
  notifier implementation has to implement either ->invalidate_range
  method or the invalidate_range_start/end methods, not both. And if you
  implement invalidate_range_start/end like KVM is forced to do, calling
  mmu_notifier_invalidate_range in common code is a noop for KVM.

  For those MMU notifiers that can get away only implementing
  ->invalidate_range, the ->invalidate_range is implicitly called by
  mmu_notifier_invalidate_range_end(). And only those secondary MMUs
  that share the same pagetable with the primary MMU (like AMD iommuv2)
  can get away only implementing ->invalidate_range"

As the callback is allowed to sleep and the implementation is out of
hand of the MM it is safer to simply bail out if there is an mmu
notifier registered.  In order to not fail too early make the
mm_has_notifiers check under the oom_lock and have a little nap before
failing to give the current oom victim some more time to exit.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170913113427.2291-1-mhocko@kernel.org
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-12 11:51:19 +02:00
Laurent Dufour a495f72f8a mm/cgroup: avoid panic when init with low memory
[ Upstream commit bfc7228b9a ]

The system may panic when initialisation is done when almost all the
memory is assigned to the huge pages using the kernel command line
parameter hugepage=xxxx.  Panic may occur like this:

  Unable to handle kernel paging request for data at address 0x00000000
  Faulting instruction address: 0xc000000000302b88
  Oops: Kernel access of bad area, sig: 11 [#1]
  SMP NR_CPUS=2048 [    0.082424] NUMA
  pSeries
  Modules linked in:
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.9.0-15-generic #16-Ubuntu
  task: c00000021ed01600 task.stack: c00000010d108000
  NIP: c000000000302b88 LR: c000000000270e04 CTR: c00000000016cfd0
  REGS: c00000010d10b2c0 TRAP: 0300   Not tainted (4.9.0-15-generic)
  MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE>[ 0.082770]   CR: 28424422  XER: 00000000
  CFAR: c0000000003d28b8 DAR: 0000000000000000 DSISR: 40000000 SOFTE: 1
  GPR00: c000000000270e04 c00000010d10b540 c00000000141a300 c00000010fff6300
  GPR04: 0000000000000000 00000000026012c0 c00000010d10b630 0000000487ab0000
  GPR08: 000000010ee90000 c000000001454fd8 0000000000000000 0000000000000000
  GPR12: 0000000000004400 c00000000fb80000 00000000026012c0 00000000026012c0
  GPR16: 00000000026012c0 0000000000000000 0000000000000000 0000000000000002
  GPR20: 000000000000000c 0000000000000000 0000000000000000 00000000024200c0
  GPR24: c0000000016eef48 0000000000000000 c00000010fff7d00 00000000026012c0
  GPR28: 0000000000000000 c00000010fff7d00 c00000010fff6300 c00000010d10b6d0
  NIP mem_cgroup_soft_limit_reclaim+0xf8/0x4f0
  LR do_try_to_free_pages+0x1b4/0x450
  Call Trace:
    do_try_to_free_pages+0x1b4/0x450
    try_to_free_pages+0xf8/0x270
    __alloc_pages_nodemask+0x7a8/0xff0
    new_slab+0x104/0x8e0
    ___slab_alloc+0x620/0x700
    __slab_alloc+0x34/0x60
    kmem_cache_alloc_node_trace+0xdc/0x310
    mem_cgroup_init+0x158/0x1c8
    do_one_initcall+0x68/0x1d0
    kernel_init_freeable+0x278/0x360
    kernel_init+0x24/0x170
    ret_from_kernel_thread+0x5c/0x74
  Instruction dump:
  eb81ffe0 eba1ffe8 ebc1fff0 ebe1fff8 4e800020 3d230001 e9499a42 3d220004
  3929acd8 794a1f24 7d295214 eac90100 <e9360000> 2fa90000 419eff74 3b200000
  ---[ end trace 342f5208b00d01b6 ]---

This is a chicken and egg issue where the kernel try to get free memory
when allocating per node data in mem_cgroup_init(), but in that path
mem_cgroup_soft_limit_reclaim() is called which assumes that these data
are allocated.

As mem_cgroup_soft_limit_reclaim() is best effort, it should return when
these data are not yet allocated.

This patch also fixes potential null pointer access in
mem_cgroup_remove_from_trees() and mem_cgroup_update_tree().

Link: http://lkml.kernel.org/r/1487856999-16581-2-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-08 10:26:10 +02:00
Minchan Kim 39f5677232 mm: prevent double decrease of nr_reserved_highatomic
commit 4855e4a7f2 upstream.

There is race between page freeing and unreserved highatomic.

 CPU 0				    CPU 1

    free_hot_cold_page
      mt = get_pfnblock_migratetype
      set_pcppage_migratetype(page, mt)
    				    unreserve_highatomic_pageblock
    				    spin_lock_irqsave(&zone->lock)
    				    move_freepages_block
    				    set_pageblock_migratetype(page)
    				    spin_unlock_irqrestore(&zone->lock)
      free_pcppages_bulk
        __free_one_page(mt) <- mt is stale

By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed.  By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.

So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.

Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-27 14:39:18 +02:00
Laurent Dufour 3c8381df2a mm/memory.c: fix mem_cgroup_oom_disable() call missing
commit de0c799bba upstream.

Seen while reading the code, in handle_mm_fault(), in the case
arch_vma_access_permitted() is failing the call to
mem_cgroup_oom_disable() is not made.

To fix that, move the call to mem_cgroup_oom_enable() after calling
arch_vma_access_permitted() as it should not have entered the memcg OOM.

Link: http://lkml.kernel.org/r/1504625439-31313-1-git-send-email-ldufour@linux.vnet.ibm.com
Fixes: bae473a423 ("mm: introduce fault_env")
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-13 14:13:36 -07:00
Mel Gorman 8cc3acff5f mm, madvise: ensure poisoned pages are removed from per-cpu lists
commit c461ad6a63 upstream.

Wendy Wang reported off-list that a RAS HWPOISON-SOFT test case failed
and bisected it to the commit 479f854a20 ("mm, page_alloc: defer
debugging checks of pages allocated from the PCP").

The problem is that a page that was poisoned with madvise() is reused.
The commit removed a check that would trigger if DEBUG_VM was enabled
but re-enabling the check only fixes the problem as a side-effect by
printing a bad_page warning and recovering.

The root of the problem is that an madvise() can leave a poisoned page
on the per-cpu list.  This patch drains all per-cpu lists after pages
are poisoned so that they will not be reused.  Wendy reports that the
test case in question passes with this patch applied.  While this could
be done in a targeted fashion, it is over-complicated for such a rare
operation.

Link: http://lkml.kernel.org/r/20170828133414.7qro57jbepdcyz5x@techsingularity.net
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Wang, Wendy <wendy.wang@intel.com>
Tested-by: Wang, Wendy <wendy.wang@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Hansen, Dave" <dave.hansen@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-07 08:35:39 +02:00
Pavel Tatashin 9d263321d7 mm/memblock.c: reversed logic in memblock_discard()
commit 91b540f988 upstream.

In recently introduced memblock_discard() there is a reversed logic bug.
Memory is freed of static array instead of dynamically allocated one.

Link: http://lkml.kernel.org/r/1503511441-95478-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 3010f87650 ("mm: discard memblock data later")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reported-by: Woody Suwalski <terraluna977@gmail.com>
Tested-by: Woody Suwalski <terraluna977@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-30 10:21:47 +02:00
Eric Biggers 0f49b0519f mm/madvise.c: fix freeing of locked page with MADV_FREE
commit 263630e8d1 upstream.

If madvise(..., MADV_FREE) split a transparent hugepage, it called
put_page() before unlock_page().

This was wrong because put_page() can free the page, e.g. if a
concurrent madvise(..., MADV_DONTNEED) has removed it from the memory
mapping. put_page() then rightfully complained about freeing a locked
page.

Fix this by moving the unlock_page() before put_page().

This bug was found by syzkaller, which encountered the following splat:

    BUG: Bad page state in process syzkaller412798  pfn:1bd800
    page:ffffea0006f60000 count:0 mapcount:0 mapping:          (null) index:0x20a00
    flags: 0x200000000040019(locked|uptodate|dirty|swapbacked)
    raw: 0200000000040019 0000000000000000 0000000000020a00 00000000ffffffff
    raw: ffffea0006f60020 ffffea0006f60020 0000000000000000 0000000000000000
    page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
    bad because of flags: 0x1(locked)
    Modules linked in:
    CPU: 1 PID: 3037 Comm: syzkaller412798 Not tainted 4.13.0-rc5+ #35
    Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
    Call Trace:
     __dump_stack lib/dump_stack.c:16 [inline]
     dump_stack+0x194/0x257 lib/dump_stack.c:52
     bad_page+0x230/0x2b0 mm/page_alloc.c:565
     free_pages_check_bad+0x1f0/0x2e0 mm/page_alloc.c:943
     free_pages_check mm/page_alloc.c:952 [inline]
     free_pages_prepare mm/page_alloc.c:1043 [inline]
     free_pcp_prepare mm/page_alloc.c:1068 [inline]
     free_hot_cold_page+0x8cf/0x12b0 mm/page_alloc.c:2584
     __put_single_page mm/swap.c:79 [inline]
     __put_page+0xfb/0x160 mm/swap.c:113
     put_page include/linux/mm.h:814 [inline]
     madvise_free_pte_range+0x137a/0x1ec0 mm/madvise.c:371
     walk_pmd_range mm/pagewalk.c:50 [inline]
     walk_pud_range mm/pagewalk.c:108 [inline]
     walk_p4d_range mm/pagewalk.c:134 [inline]
     walk_pgd_range mm/pagewalk.c:160 [inline]
     __walk_page_range+0xc3a/0x1450 mm/pagewalk.c:249
     walk_page_range+0x200/0x470 mm/pagewalk.c:326
     madvise_free_page_range.isra.9+0x17d/0x230 mm/madvise.c:444
     madvise_free_single_vma+0x353/0x580 mm/madvise.c:471
     madvise_dontneed_free mm/madvise.c:555 [inline]
     madvise_vma mm/madvise.c:664 [inline]
     SYSC_madvise mm/madvise.c:832 [inline]
     SyS_madvise+0x7d3/0x13c0 mm/madvise.c:760
     entry_SYSCALL_64_fastpath+0x1f/0xbe

Here is a C reproducer:

    #define _GNU_SOURCE
    #include <pthread.h>
    #include <sys/mman.h>
    #include <unistd.h>

    #define MADV_FREE	8
    #define PAGE_SIZE	4096

    static void *mapping;
    static const size_t mapping_size = 0x1000000;

    static void *madvise_thrproc(void *arg)
    {
        madvise(mapping, mapping_size, (long)arg);
    }

    int main(void)
    {
        pthread_t t[2];

        for (;;) {
            mapping = mmap(NULL, mapping_size, PROT_WRITE,
                           MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);

            munmap(mapping + mapping_size / 2, PAGE_SIZE);

            pthread_create(&t[0], 0, madvise_thrproc, (void*)MADV_DONTNEED);
            pthread_create(&t[1], 0, madvise_thrproc, (void*)MADV_FREE);
            pthread_join(t[0], NULL);
            pthread_join(t[1], NULL);
            munmap(mapping, mapping_size);
        }
    }

Note: to see the splat, CONFIG_TRANSPARENT_HUGEPAGE=y and
CONFIG_DEBUG_VM=y are needed.

Google Bug Id: 64696096

Link: http://lkml.kernel.org/r/20170823205235.132061-1-ebiggers3@gmail.com
Fixes: 854e9ed09d ("mm: support madvise(MADV_FREE)")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-30 10:21:47 +02:00
Kirill A. Shutemov 5d8b3cc246 mm, shmem: fix handling /sys/kernel/mm/transparent_hugepage/shmem_enabled
commit 435c0b87d6 upstream.

/sys/kernel/mm/transparent_hugepage/shmem_enabled controls if we want
to allocate huge pages when allocate pages for private in-kernel shmem
mount.

Unfortunately, as Dan noticed, I've screwed it up and the only way to
make kernel allocate huge page for the mount is to use "force" there.
All other values will be effectively ignored.

Link: http://lkml.kernel.org/r/20170822144254.66431-1-kirill.shutemov@linux.intel.com
Fixes: 5a6e75f811 ("shmem: prepare huge= mount option and sysfs knob")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-30 10:21:46 +02:00
Linus Torvalds 61332dc598 Sanitize 'move_pages()' permission checks
commit 197e7e5213 upstream.

The 'move_paghes()' system call was introduced long long ago with the
same permission checks as for sending a signal (except using
CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability).

That turns out to not be a great choice - while the system call really
only moves physical page allocations around (and you need other
capabilities to do a lot of it), you can check the return value to map
out some the virtual address choices and defeat ASLR of a binary that
still shares your uid.

So change the access checks to the more common 'ptrace_may_access()'
model instead.

This tightens the access checks for the uid, and also effectively
changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that
anybody really _uses_ this legacy system call any more (we hav ebetter
NUMA placement models these days), so I expect nobody to notice.

Famous last words.

Reported-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-24 17:12:21 -07:00
zhong jiang 91105f2c62 mm/mempolicy: fix use after free when calling get_mempolicy
commit 73223e4e2e upstream.

I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled.  The related call trace is as follows.

  BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
  Read of size 2 by task syz-executor1/798

  INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
     __slab_alloc+0x768/0x970
     kmem_cache_alloc+0x2e7/0x450
     mpol_new.part.2+0x74/0x160
     mpol_new+0x66/0x80
     SyS_mbind+0x267/0x9f0
     system_call_fastpath+0x16/0x1b
  INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
     __slab_free+0x495/0x8e0
     kmem_cache_free+0x2f3/0x4c0
     __mpol_put+0x2b/0x40
     SyS_mbind+0x383/0x9f0
     system_call_fastpath+0x16/0x1b
  INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
  INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600

  Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a  ........ZZZZZZZZ
  Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5                          kkkkkkk.
  Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb                          ........
  Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a                          ZZZZZZZZ
  Memory state around the buggy address:
  ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
  ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
  >ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc

!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem.  do_get_mempolicy,
however, drops the lock midway while we can still access it later.

Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffb ("[PATCH] Implement sys_* do_*
layering in the memory policy layer.").  but when we have the the
current mempolicy ref count model.  The issue was introduced
accordingly.

Fix the issue by removing the premature release.

Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-24 17:12:20 -07:00
Michal Hocko 59ee25d09f mm: fix double mmap_sem unlock on MMF_UNSTABLE enforced SIGBUS
commit 5b53a6ea88 upstream.

Tetsuo Handa has noticed that MMF_UNSTABLE SIGBUS path in
handle_mm_fault causes a lockdep splat

  Out of memory: Kill process 1056 (a.out) score 603 or sacrifice child
  Killed process 1056 (a.out) total-vm:4268108kB, anon-rss:2246048kB, file-rss:0kB, shmem-rss:0kB
  a.out (1169) used greatest stack depth: 11664 bytes left
  DEBUG_LOCKS_WARN_ON(depth <= 0)
  ------------[ cut here ]------------
  WARNING: CPU: 6 PID: 1339 at kernel/locking/lockdep.c:3617 lock_release+0x172/0x1e0
  CPU: 6 PID: 1339 Comm: a.out Not tainted 4.13.0-rc3-next-20170803+ #142
  Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/02/2015
  RIP: 0010:lock_release+0x172/0x1e0
  Call Trace:
     up_read+0x1a/0x40
     __do_page_fault+0x28e/0x4c0
     do_page_fault+0x30/0x80
     page_fault+0x28/0x30

The reason is that the page fault path might have dropped the mmap_sem
and returned with VM_FAULT_RETRY.  MMF_UNSTABLE check however rewrites
the error path to VM_FAULT_SIGBUS and we always expect mmap_sem taken in
that path.  Fix this by taking mmap_sem when VM_FAULT_RETRY is held in
the MMF_UNSTABLE path.

We cannot simply add VM_FAULT_SIGBUS to the existing error code because
all arch specific page fault handlers and g-u-p would have to learn a
new error code combination.

Link: http://lkml.kernel.org/r/20170807113839.16695-2-mhocko@kernel.org
Fixes: 3f70dc38ce ("mm: make sure that kthreads will not refault oom reaped memory")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Wenwei Tao <wenwei.tww@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-24 17:12:19 -07:00
Pavel Tatashin 87395eeb28 mm: discard memblock data later
commit 3010f87650 upstream.

There is existing use after free bug when deferred struct pages are
enabled:

The memblock_add() allocates memory for the memory array if more than
128 entries are needed.  See comment in e820__memblock_setup():

  * The bootstrap memblock region count maximum is 128 entries
  * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
  * than that - so allow memblock resizing.

This memblock memory is freed here:
        free_low_memory_core_early()

We access the freed memblock.memory later in boot when deferred pages
are initialized in this path:

        deferred_init_memmap()
                for_each_mem_pfn_range()
                  __next_mem_pfn_range()
                    type = &memblock.memory;

One possible explanation for why this use-after-free hasn't been hit
before is that the limit of INIT_MEMBLOCK_REGIONS has never been
exceeded at least on systems where deferred struct pages were enabled.

Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128,
and verifying in qemu that this code is getting excuted and that the
freed pages are sane.

Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 7e18adb4f8 ("mm: meminit: initialise remaining struct pages in parallel with kswapd")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-24 17:12:19 -07:00
Cong Wang e2286916ac mm: fix list corruptions on shmem shrinklist
commit d041353dc9 upstream.

We saw many list corruption warnings on shmem shrinklist:

  WARNING: CPU: 18 PID: 177 at lib/list_debug.c:59 __list_del_entry+0x9e/0xc0
  list_del corruption. prev->next should be ffff9ae5694b82d8, but was ffff9ae5699ba960
  Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
  CPU: 18 PID: 177 Comm: kswapd1 Not tainted 4.9.34-t3.el7.twitter.x86_64 #1
  Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
  Call Trace:
    dump_stack+0x4d/0x66
    __warn+0xcb/0xf0
    warn_slowpath_fmt+0x4f/0x60
    __list_del_entry+0x9e/0xc0
    shmem_unused_huge_shrink+0xfa/0x2e0
    shmem_unused_huge_scan+0x20/0x30
    super_cache_scan+0x193/0x1a0
    shrink_slab.part.41+0x1e3/0x3f0
    shrink_slab+0x29/0x30
    shrink_node+0xf9/0x2f0
    kswapd+0x2d8/0x6c0
    kthread+0xd7/0xf0
    ret_from_fork+0x22/0x30

  WARNING: CPU: 23 PID: 639 at lib/list_debug.c:33 __list_add+0x89/0xb0
  list_add corruption. prev->next should be next (ffff9ae5699ba960), but was ffff9ae5694b82d8. (prev=ffff9ae5694b82d8).
  Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
  CPU: 23 PID: 639 Comm: systemd-udevd Tainted: G        W       4.9.34-t3.el7.twitter.x86_64 #1
  Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
  Call Trace:
    dump_stack+0x4d/0x66
    __warn+0xcb/0xf0
    warn_slowpath_fmt+0x4f/0x60
    __list_add+0x89/0xb0
    shmem_setattr+0x204/0x230
    notify_change+0x2ef/0x440
    do_truncate+0x5d/0x90
    path_openat+0x331/0x1190
    do_filp_open+0x7e/0xe0
    do_sys_open+0x123/0x200
    SyS_open+0x1e/0x20
    do_syscall_64+0x61/0x170
    entry_SYSCALL64_slow_path+0x25/0x25

The problem is that shmem_unused_huge_shrink() moves entries from the
global sbinfo->shrinklist to its local lists and then releases the
spinlock.  However, a parallel shmem_setattr() could access one of these
entries directly and add it back to the global shrinklist if it is
removed, with the spinlock held.

The logic itself looks solid since an entry could be either in a local
list or the global list, otherwise it is removed from one of them by
list_del_init().  So probably the race condition is that, one CPU is in
the middle of INIT_LIST_HEAD() but the other CPU calls list_empty()
which returns true too early then the following list_add_tail() sees a
corrupted entry.

list_empty_careful() is designed to fix this situation.

[akpm@linux-foundation.org: add comments]
Link: http://lkml.kernel.org/r/20170803054630.18775-1-xiyou.wangcong@gmail.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-16 13:43:15 -07:00
Jonathan Toppins b56cd77c12 mm: ratelimit PFNs busy info message
commit 75dddef325 upstream.

The RDMA subsystem can generate several thousand of these messages per
second eventually leading to a kernel crash.  Ratelimit these messages
to prevent this crash.

Doug said:
 "I've been carrying a version of this for several kernel versions. I
  don't remember when they started, but we have one (and only one) class
  of machines: Dell PE R730xd, that generate these errors. When it
  happens, without a rate limit, we get rcu timeouts and kernel oopses.
  With the rate limit, we just get a lot of annoying kernel messages but
  the machine continues on, recovers, and eventually the memory
  operations all succeed"

And:
 "> Well... why are all these EBUSY's occurring? It sounds inefficient
  > (at least) but if it is expected, normal and unavoidable then
  > perhaps we should just remove that message altogether?

  I don't have an answer to that question. To be honest, I haven't
  looked real hard. We never had this at all, then it started out of the
  blue, but only on our Dell 730xd machines (and it hits all of them),
  but no other classes or brands of machines. And we have our 730xd
  machines loaded up with different brands and models of cards (for
  instance one dedicated to mlx4 hardware, one for qib, one for mlx5, an
  ocrdma/cxgb4 combo, etc), so the fact that it hit all of the machines
  meant it wasn't tied to any particular brand/model of RDMA hardware.
  To me, it always smelled of a hardware oddity specific to maybe the
  CPUs or mainboard chipsets in these machines, so given that I'm not an
  mm expert anyway, I never chased it down.

  A few other relevant details: it showed up somewhere around 4.8/4.9 or
  thereabouts. It never happened before, but the prinkt has been there
  since the 3.18 days, so possibly the test to trigger this message was
  changed, or something else in the allocator changed such that the
  situation started happening on these machines?

  And, like I said, it is specific to our 730xd machines (but they are
  all identical, so that could mean it's something like their specific
  ram configuration is causing the allocator to hit this on these
  machine but not on other machines in the cluster, I don't want to say
  it's necessarily the model of chipset or CPU, there are other bits of
  identicalness between these machines)"

Link: http://lkml.kernel.org/r/499c0f6cc10d6eb829a67f2a4d75b4228a9b356e.1501695897.git.jtoppins@redhat.com
Signed-off-by: Jonathan Toppins <jtoppins@redhat.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Tested-by: Doug Ledford <dledford@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-16 13:43:14 -07:00
Ard Biesheuvel 22cccef1fc mm: don't dereference struct page fields of invalid pages
[ Upstream commit f073bdc517 ]

The VM_BUG_ON() check in move_freepages() checks whether the node id of
a page matches the node id of its zone.  However, it does this before
having checked whether the struct page pointer refers to a valid struct
page to begin with.  This is guaranteed in most cases, but may not be
the case if CONFIG_HOLES_IN_ZONE=y.

So reorder the VM_BUG_ON() with the pfn_valid_within() check.

Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Robert Richter <rrichter@cavium.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-11 08:49:36 -07:00
Josh Poimboeuf 7b95b74563 mm/page_alloc: Remove kernel address exposure in free_reserved_area()
commit adb1fe9ae2 upstream.

Linus suggested we try to remove some of the low-hanging fruit related
to kernel address exposure in dmesg.  The only leaks I see on my local
system are:

  Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000)
  Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000)
  Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000)
  Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000)
  Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000)

Linus says:

  "I suspect we should just remove [the addresses in the 'Freeing'
   messages]. I'm sure they are useful in theory, but I suspect they
   were more useful back when the whole "free init memory" was
   originally done.

   These days, if we have a use-after-free, I suspect the init-mem
   situation is the easiest situation by far. Compared to all the dynamic
   allocations which are much more likely to show it anyway. So having
   debug output for that case is likely not all that productive."

With this patch the freeing messages now look like this:

  Freeing SMP alternatives memory: 32K
  Freeing initrd memory: 10588K
  Freeing unused kernel memory: 3592K
  Freeing unused kernel memory: 1352K
  Freeing unused kernel memory: 632K

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-11 08:49:29 -07:00
Mel Gorman 5a1eef71aa mm, mprotect: flush TLB if potentially racing with a parallel reclaim leaving stale TLB entries
commit 3ea277194d upstream.

Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.

He described the race as follows:

        CPU0                            CPU1
        ----                            ----
                                        user accesses memory using RW PTE
                                        [PTE now cached in TLB]
        try_to_unmap_one()
        ==> ptep_get_and_clear()
        ==> set_tlb_ubc_flush_pending()
                                        mprotect(addr, PROT_READ)
                                        ==> change_pte_range()
                                        ==> [ PTE non-present - no flush ]

                                        user writes using cached RW PTE
        ...

        try_to_unmap_flush()

The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.

For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access.  For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB.  However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.

Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption.  In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch.  Other users such as gup as a race with
reclaim looks just at PTEs.  huge page variants should be ok as they
don't race with reclaim.  mincore only looks at PTEs.  userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.

Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected.  His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.

[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-11 08:49:29 -07:00
Helge Deller 38dfd2e3a6 mm: fix overflow check in expand_upwards()
commit 37511fb5c9 upstream.

Jörn Engel noticed that the expand_upwards() function might not return
-ENOMEM in case the requested address is (unsigned long)-PAGE_SIZE and
if the architecture didn't defined TASK_SIZE as multiple of PAGE_SIZE.

Affected architectures are arm, frv, m68k, blackfin, h8300 and xtensa
which all define TASK_SIZE as 0xffffffff, but since none of those have
an upwards-growing stack we currently have no actual issue.

Nevertheless let's fix this just in case any of the architectures with
an upward-growing stack (currently parisc, metag and partly ia64) define
TASK_SIZE similar.

Link: http://lkml.kernel.org/r/20170702192452.GA11868@p100.box
Fixes: bd726c90b6 ("Allow stack to grow up to address space limit")
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: Jörn Engel <joern@purestorage.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21 07:42:22 +02:00
Sahitya Tummala a48542e8b4 mm/list_lru.c: fix list_lru_count_node() to be race free
commit 2c80cd57c7 upstream.

list_lru_count_node() iterates over all memcgs to get the total number of
entries on the node but it can race with memcg_drain_all_list_lrus(),
which migrates the entries from a dead cgroup to another.  This can return
incorrect number of entries from list_lru_count_node().

Fix this by keeping track of entries per node and simply return it in
list_lru_count_node().

Link: http://lkml.kernel.org/r/1498707555-30525-1-git-send-email-stummala@codeaurora.org
Signed-off-by: Sahitya Tummala <stummala@codeaurora.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Polakov <apolyakov@beget.ru>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21 07:42:21 +02:00
Kirill A. Shutemov d2b64687b3 thp, mm: fix crash due race in MADV_FREE handling
commit bbf29ffc7f upstream.

Reinette reported the following crash:

  BUG: Bad page state in process log2exe  pfn:57600
  page:ffffea00015d8000 count:0 mapcount:0 mapping:          (null) index:0x20200
  flags: 0x4000000000040019(locked|uptodate|dirty|swapbacked)
  raw: 4000000000040019 0000000000000000 0000000000020200 00000000ffffffff
  raw: ffffea00015d8020 ffffea00015d8020 0000000000000000 0000000000000000
  page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
  bad because of flags: 0x1(locked)
  Modules linked in: rfcomm 8021q bnep intel_rapl x86_pkg_temp_thermal coretemp efivars btusb btrtl btbcm pwm_lpss_pci snd_hda_codec_hdmi btintel pwm_lpss snd_hda_codec_realtek snd_soc_skl snd_hda_codec_generic snd_soc_skl_ipc spi_pxa2xx_platform snd_soc_sst_ipc snd_soc_sst_dsp i2c_designware_platform i2c_designware_core snd_hda_ext_core snd_soc_sst_match snd_hda_intel snd_hda_codec mei_me snd_hda_core mei snd_soc_rt286 snd_soc_rl6347a snd_soc_core efivarfs
  CPU: 1 PID: 354 Comm: log2exe Not tainted 4.12.0-rc7-test-test #19
  Hardware name: Intel corporation NUC6CAYS/NUC6CAYB, BIOS AYAPLCEL.86A.0027.2016.1108.1529 11/08/2016
  Call Trace:
   bad_page+0x16a/0x1f0
   free_pages_check_bad+0x117/0x190
   free_hot_cold_page+0x7b1/0xad0
   __put_page+0x70/0xa0
   madvise_free_huge_pmd+0x627/0x7b0
   madvise_free_pte_range+0x6f8/0x1150
   __walk_page_range+0x6b5/0xe30
   walk_page_range+0x13b/0x310
   madvise_free_page_range.isra.16+0xad/0xd0
   madvise_free_single_vma+0x2e4/0x470
   SyS_madvise+0x8ce/0x1450

If somebody frees the page under us and we hold the last reference to
it, put_page() would attempt to free the page before unlocking it.

The fix is trivial reorder of operations.

Dave said:
 "I came up with the exact same patch.  For posterity, here's the test
  case, generated by syzkaller and trimmed down by Reinette:

  	https://www.sr71.net/~dave/intel/log2.c

  And the config that helps detect this:

  	https://www.sr71.net/~dave/intel/config-log2"

Fixes: b8d3c4c300 ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called")
Link: http://lkml.kernel.org/r/20170628101249.17879-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21 07:42:21 +02:00
Ard Biesheuvel 647f605276 mm/vmalloc.c: huge-vmap: fail gracefully on unexpected huge vmap mappings
commit 029c54b095 upstream.

Existing code that uses vmalloc_to_page() may assume that any address
for which is_vmalloc_addr() returns true may be passed into
vmalloc_to_page() to retrieve the associated struct page.

This is not un unreasonable assumption to make, but on architectures
that have CONFIG_HAVE_ARCH_HUGE_VMAP=y, it no longer holds, and we need
to ensure that vmalloc_to_page() does not go off into the weeds trying
to dereference huge PUDs or PMDs as table entries.

Given that vmalloc() and vmap() themselves never create huge mappings or
deal with compound pages at all, there is no correct answer in this
case, so return NULL instead, and issue a warning.

When reading /proc/kcore on arm64, you will hit an oops as soon as you
hit the huge mappings used for the various segments that make up the
mapping of vmlinux.  With this patch applied, you will no longer hit the
oops, but the kcore contents willl be incorrect (these regions will be
zeroed out)

We are fixing this for kcore specifically, so it avoids vread() for
those regions.  At least one other problematic user exists, i.e.,
/dev/kmem, but that is currently broken on arm64 for other reasons.

Link: http://lkml.kernel.org/r/20170609082226.26152-1-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ardb: non-trivial backport to v4.9]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05 14:40:28 +02:00
Mark Rutland 2aa6d036b7 mm: numa: avoid waiting on freed migrated pages
commit 3c226c637b upstream.

In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by
waiting until the pmd is unlocked before we return and retry.  However,
we can race with migrate_misplaced_transhuge_page():

    // do_huge_pmd_numa_page                // migrate_misplaced_transhuge_page()
    // Holds 0 refs on page                 // Holds 2 refs on page

    vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
    /* ... */
    if (pmd_trans_migrating(*vmf->pmd)) {
            page = pmd_page(*vmf->pmd);
            spin_unlock(vmf->ptl);
                                            ptl = pmd_lock(mm, pmd);
                                            if (page_count(page) != 2)) {
                                                    /* roll back */
                                            }
                                            /* ... */
                                            mlock_migrate_page(new_page, page);
                                            /* ... */
                                            spin_unlock(ptl);
                                            put_page(page);
                                            put_page(page); // page freed here
            wait_on_page_locked(page);
            goto out;
    }

This can result in the freed page having its waiters flag set
unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the
page alloc/free functions.  This has been observed on arm64 KVM guests.

We can avoid this by having do_huge_pmd_numa_page() take a reference on
the page before dropping the pmd lock, mirroring what we do in
__migration_entry_wait().

When we hit the race, migrate_misplaced_transhuge_page() will see the
reference and abort the migration, as it may do today in other cases.

Fixes: b8916634b7 ("mm: Prevent parallel splits during THP migration")
Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05 14:40:19 +02:00
David Rientjes b1355226a6 mm, swap_cgroup: reschedule when neeed in swap_cgroup_swapoff()
commit 460bcec84e upstream.

We got need_resched() warnings in swap_cgroup_swapoff() because
swap_cgroup_ctrl[type].length is particularly large.

Reschedule when needed.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1704061315270.80559@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05 14:40:17 +02:00