1
0
Fork 0
Commit Graph

6 Commits (redonkable)

Author SHA1 Message Date
Josh Poimboeuf 3ec24776bf livepatch: allow removal of a disabled patch
Currently we do not allow patch module to unload since there is no
method to determine if a task is still running in the patched code.

The consistency model gives us the way because when the unpatching
finishes we know that all tasks were marked as safe to call an original
function. Thus every new call to the function calls the original code
and at the same time no task can be somewhere in the patched code,
because it had to leave that code to be marked as safe.

We can safely let the patch module go after that.

Completion is used for synchronization between module removal and sysfs
infrastructure in a similar way to commit 942e443127 ("module: Fix
mod->mkobj.kobj potentially freed too early").

Note that we still do not allow the removal for immediate model, that is
no consistency model. The module refcount may increase in this case if
somebody disables and enables the patch several times. This should not
cause any harm.

With this change a call to try_module_get() is moved to
__klp_enable_patch from klp_register_patch to make module reference
counting symmetric (module_put() is in a patch disable path) and to
allow to take a new reference to a disabled module when being enabled.

Finally, we need to be very careful about possible races between
klp_unregister_patch(), kobject_put() functions and operations
on the related sysfs files.

kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise,
it might be blocked by enabled_store() that needs the mutex as well.
In addition, enabled_store() must check if the patch was not
unregisted in the meantime.

There is no need to do the same for other kobject_put() callsites
at the moment. Their sysfs operations neither take the lock nor
they access any data that might be freed in the meantime.

There was an attempt to use kobjects the right way and prevent these
races by design. But it made the patch definition more complicated
and opened another can of worms. See
https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com

[Thanks to Petr Mladek for improving the commit message.]

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:38:43 +01:00
Josh Poimboeuf d83a7cb375 livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model.  This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics.  This is the
biggest remaining piece needed to make livepatch more generally useful.

This code stems from the design proposal made by Vojtech [1] in November
2014.  It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching.  There are also a number of fallback options which make
it quite flexible.

Patches are applied on a per-task basis, when the task is deemed safe to
switch over.  When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds.  The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.

An interrupt handler inherits the patched state of the task it
interrupts.  The same is true for forked tasks: the child inherits the
patched state of the parent.

Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:

1. The first and most effective approach is stack checking of sleeping
   tasks.  If no affected functions are on the stack of a given task,
   the task is patched.  In most cases this will patch most or all of
   the tasks on the first try.  Otherwise it'll keep trying
   periodically.  This option is only available if the architecture has
   reliable stacks (HAVE_RELIABLE_STACKTRACE).

2. The second approach, if needed, is kernel exit switching.  A
   task is switched when it returns to user space from a system call, a
   user space IRQ, or a signal.  It's useful in the following cases:

   a) Patching I/O-bound user tasks which are sleeping on an affected
      function.  In this case you have to send SIGSTOP and SIGCONT to
      force it to exit the kernel and be patched.
   b) Patching CPU-bound user tasks.  If the task is highly CPU-bound
      then it will get patched the next time it gets interrupted by an
      IRQ.
   c) In the future it could be useful for applying patches for
      architectures which don't yet have HAVE_RELIABLE_STACKTRACE.  In
      this case you would have to signal most of the tasks on the
      system.  However this isn't supported yet because there's
      currently no way to patch kthreads without
      HAVE_RELIABLE_STACKTRACE.

3. For idle "swapper" tasks, since they don't ever exit the kernel, they
   instead have a klp_update_patch_state() call in the idle loop which
   allows them to be patched before the CPU enters the idle state.

   (Note there's not yet such an approach for kthreads.)

All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately.  This can be useful if the patch doesn't
change any function or data semantics.  Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.

There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency.  This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.

For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately.  This option should be used with care, only when the patch
doesn't change any function or data semantics.

In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.

The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition.  Only a single patch (the topmost patch on the stack)
can be in transition at a given time.  A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.

A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress.  Then all the tasks will attempt to
converge back to the original patch state.

[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org>        # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:36:21 +01:00
Jessica Yu 425595a7fc livepatch: reuse module loader code to write relocations
Reuse module loader code to write relocations, thereby eliminating the need
for architecture specific relocation code in livepatch. Specifically, reuse
the apply_relocate_add() function in the module loader to write relocations
instead of duplicating functionality in livepatch's arch-dependent
klp_write_module_reloc() function.

In order to accomplish this, livepatch modules manage their own relocation
sections (marked with the SHF_RELA_LIVEPATCH section flag) and
livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section
index). To apply livepatch relocation sections, livepatch symbols
referenced by relocs are resolved and then apply_relocate_add() is called
to apply those relocations.

In addition, remove x86 livepatch relocation code and the s390
klp_write_module_reloc() function stub. They are no longer needed since
relocation work has been offloaded to module loader.

Lastly, mark the module as a livepatch module so that the module loader
canappropriately identify and initialize it.

Signed-off-by: Jessica Yu <jeyu@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>   # for s390 changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2016-04-01 15:00:11 +02:00
Josh Poimboeuf 12cf89b550 livepatch: rename config to CONFIG_LIVEPATCH
Rename CONFIG_LIVE_PATCHING to CONFIG_LIVEPATCH to make the naming of
the config and the code more consistent.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-02-04 11:25:51 +01:00
Josh Poimboeuf 700a3048aa livepatch: samples: fix usage example comments
Fix a few typos in the livepatch-sample.c usage example comments and add
some whitespace to make the comments a little more legible.

Reported-by: Udo Seidel <udoseidel@gmx.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-12-24 00:10:00 +01:00
Seth Jennings 13d1cf7e70 livepatch: samples: add sample live patching module
Add a sample live patching module.

Signed-off-by: Seth Jennings <sjenning@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-12-22 15:40:49 +01:00