1
0
Fork 0
Commit Graph

460 Commits (redonkable)

Author SHA1 Message Date
Lubomir Rintel 50ec69edf3 Revert "uapi/linux/keyctl.h: don't use C++ reserved keyword as a struct member name"
commit 8c0f9f5b30 upstream.

This changes UAPI, breaking iwd and libell:

  ell/key.c: In function 'kernel_dh_compute':
  ell/key.c:205:38: error: 'struct keyctl_dh_params' has no member named 'private'; did you mean 'dh_private'?
    struct keyctl_dh_params params = { .private = private,
                                        ^~~~~~~
                                        dh_private

This reverts commit 8a2336e549.

Fixes: 8a2336e549 ("uapi/linux/keyctl.h: don't use C++ reserved keyword as a struct member name")
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Randy Dunlap <rdunlap@infradead.org>
cc: Mat Martineau <mathew.j.martineau@linux.intel.com>
cc: Stephan Mueller <smueller@chronox.de>
cc: James Morris <jmorris@namei.org>
cc: "Serge E. Hallyn" <serge@hallyn.com>
cc: Mat Martineau <mathew.j.martineau@linux.intel.com>
cc: Andrew Morton <akpm@linux-foundation.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: <stable@vger.kernel.org>
Signed-off-by: James Morris <james.morris@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-29 03:06:04 -07:00
Randy Dunlap 448b5498f6 uapi/linux/keyctl.h: don't use C++ reserved keyword as a struct member name
commit 8a2336e549 upstream.

Since this header is in "include/uapi/linux/", apparently people want to
use it in userspace programs -- even in C++ ones.  However, the header
uses a C++ reserved keyword ("private"), so change that to "dh_private"
instead to allow the header file to be used in C++ userspace.

Fixes https://bugzilla.kernel.org/show_bug.cgi?id=191051
Link: http://lkml.kernel.org/r/0db6c314-1ef4-9bfa-1baa-7214dd2ee061@infradead.org
Fixes: ddbb411487 ("KEYS: Add KEYCTL_DH_COMPUTE command")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Mat Martineau <mathew.j.martineau@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-15 09:45:35 +02:00
Eric Biggers 28e7c9a8e5 KEYS: reject NULL restriction string when type is specified
commit 18026d8668 upstream.

keyctl_restrict_keyring() allows through a NULL restriction when the
"type" is non-NULL, which causes a NULL pointer dereference in
asymmetric_lookup_restriction() when it calls strcmp() on the
restriction string.

But no key types actually use a "NULL restriction" to mean anything, so
update keyctl_restrict_keyring() to reject it with EINVAL.

Reported-by: syzbot <syzkaller@googlegroups.com>
Fixes: 97d3aa0f31 ("KEYS: Add a lookup_restriction function for the asymmetric key type")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14 09:52:53 +01:00
Eric Biggers 69d5894ce0 KEYS: add missing permission check for request_key() destination
commit 4dca6ea1d9 upstream.

When the request_key() syscall is not passed a destination keyring, it
links the requested key (if constructed) into the "default" request-key
keyring.  This should require Write permission to the keyring.  However,
there is actually no permission check.

This can be abused to add keys to any keyring to which only Search
permission is granted.  This is because Search permission allows joining
the keyring.  keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_SESSION_KEYRING)
then will set the default request-key keyring to the session keyring.
Then, request_key() can be used to add keys to the keyring.

Both negatively and positively instantiated keys can be added using this
method.  Adding negative keys is trivial.  Adding a positive key is a
bit trickier.  It requires that either /sbin/request-key positively
instantiates the key, or that another thread adds the key to the process
keyring at just the right time, such that request_key() misses it
initially but then finds it in construct_alloc_key().

Fix this bug by checking for Write permission to the keyring in
construct_get_dest_keyring() when the default keyring is being used.

We don't do the permission check for non-default keyrings because that
was already done by the earlier call to lookup_user_key().  Also,
request_key_and_link() is currently passed a 'struct key *' rather than
a key_ref_t, so the "possessed" bit is unavailable.

We also don't do the permission check for the "requestor keyring", to
continue to support the use case described by commit 8bbf4976b5
("KEYS: Alter use of key instantiation link-to-keyring argument") where
/sbin/request-key recursively calls request_key() to add keys to the
original requestor's destination keyring.  (I don't know of any users
who actually do that, though...)

Fixes: 3e30148c3d ("[PATCH] Keys: Make request-key create an authorisation key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14 09:52:52 +01:00
Linus Torvalds ead751507d License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
 makes it harder for compliance tools to determine the correct license.
 
 By default all files without license information are under the default
 license of the kernel, which is GPL version 2.
 
 Update the files which contain no license information with the 'GPL-2.0'
 SPDX license identifier.  The SPDX identifier is a legally binding
 shorthand, which can be used instead of the full boiler plate text.
 
 This patch is based on work done by Thomas Gleixner and Kate Stewart and
 Philippe Ombredanne.
 
 How this work was done:
 
 Patches were generated and checked against linux-4.14-rc6 for a subset of
 the use cases:
  - file had no licensing information it it.
  - file was a */uapi/* one with no licensing information in it,
  - file was a */uapi/* one with existing licensing information,
 
 Further patches will be generated in subsequent months to fix up cases
 where non-standard license headers were used, and references to license
 had to be inferred by heuristics based on keywords.
 
 The analysis to determine which SPDX License Identifier to be applied to
 a file was done in a spreadsheet of side by side results from of the
 output of two independent scanners (ScanCode & Windriver) producing SPDX
 tag:value files created by Philippe Ombredanne.  Philippe prepared the
 base worksheet, and did an initial spot review of a few 1000 files.
 
 The 4.13 kernel was the starting point of the analysis with 60,537 files
 assessed.  Kate Stewart did a file by file comparison of the scanner
 results in the spreadsheet to determine which SPDX license identifier(s)
 to be applied to the file. She confirmed any determination that was not
 immediately clear with lawyers working with the Linux Foundation.
 
 Criteria used to select files for SPDX license identifier tagging was:
  - Files considered eligible had to be source code files.
  - Make and config files were included as candidates if they contained >5
    lines of source
  - File already had some variant of a license header in it (even if <5
    lines).
 
 All documentation files were explicitly excluded.
 
 The following heuristics were used to determine which SPDX license
 identifiers to apply.
 
  - when both scanners couldn't find any license traces, file was
    considered to have no license information in it, and the top level
    COPYING file license applied.
 
    For non */uapi/* files that summary was:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|-------
    GPL-2.0                                              11139
 
    and resulted in the first patch in this series.
 
    If that file was a */uapi/* path one, it was "GPL-2.0 WITH
    Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|-------
    GPL-2.0 WITH Linux-syscall-note                        930
 
    and resulted in the second patch in this series.
 
  - if a file had some form of licensing information in it, and was one
    of the */uapi/* ones, it was denoted with the Linux-syscall-note if
    any GPL family license was found in the file or had no licensing in
    it (per prior point).  Results summary:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|------
    GPL-2.0 WITH Linux-syscall-note                       270
    GPL-2.0+ WITH Linux-syscall-note                      169
    ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
    ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
    LGPL-2.1+ WITH Linux-syscall-note                      15
    GPL-1.0+ WITH Linux-syscall-note                       14
    ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
    LGPL-2.0+ WITH Linux-syscall-note                       4
    LGPL-2.1 WITH Linux-syscall-note                        3
    ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
    ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
 
    and that resulted in the third patch in this series.
 
  - when the two scanners agreed on the detected license(s), that became
    the concluded license(s).
 
  - when there was disagreement between the two scanners (one detected a
    license but the other didn't, or they both detected different
    licenses) a manual inspection of the file occurred.
 
  - In most cases a manual inspection of the information in the file
    resulted in a clear resolution of the license that should apply (and
    which scanner probably needed to revisit its heuristics).
 
  - When it was not immediately clear, the license identifier was
    confirmed with lawyers working with the Linux Foundation.
 
  - If there was any question as to the appropriate license identifier,
    the file was flagged for further research and to be revisited later
    in time.
 
 In total, over 70 hours of logged manual review was done on the
 spreadsheet to determine the SPDX license identifiers to apply to the
 source files by Kate, Philippe, Thomas and, in some cases, confirmation
 by lawyers working with the Linux Foundation.
 
 Kate also obtained a third independent scan of the 4.13 code base from
 FOSSology, and compared selected files where the other two scanners
 disagreed against that SPDX file, to see if there was new insights.  The
 Windriver scanner is based on an older version of FOSSology in part, so
 they are related.
 
 Thomas did random spot checks in about 500 files from the spreadsheets
 for the uapi headers and agreed with SPDX license identifier in the
 files he inspected. For the non-uapi files Thomas did random spot checks
 in about 15000 files.
 
 In initial set of patches against 4.14-rc6, 3 files were found to have
 copy/paste license identifier errors, and have been fixed to reflect the
 correct identifier.
 
 Additionally Philippe spent 10 hours this week doing a detailed manual
 inspection and review of the 12,461 patched files from the initial patch
 version early this week with:
  - a full scancode scan run, collecting the matched texts, detected
    license ids and scores
  - reviewing anything where there was a license detected (about 500+
    files) to ensure that the applied SPDX license was correct
  - reviewing anything where there was no detection but the patch license
    was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
    SPDX license was correct
 
 This produced a worksheet with 20 files needing minor correction.  This
 worksheet was then exported into 3 different .csv files for the
 different types of files to be modified.
 
 These .csv files were then reviewed by Greg.  Thomas wrote a script to
 parse the csv files and add the proper SPDX tag to the file, in the
 format that the file expected.  This script was further refined by Greg
 based on the output to detect more types of files automatically and to
 distinguish between header and source .c files (which need different
 comment types.)  Finally Greg ran the script using the .csv files to
 generate the patches.
 
 Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
 Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
 Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
 6dVh26uchcEQLN/XqUDt
 =x306
 -----END PGP SIGNATURE-----

Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull initial SPDX identifiers from Greg KH:
 "License cleanup: add SPDX license identifiers to some files

  Many source files in the tree are missing licensing information, which
  makes it harder for compliance tools to determine the correct license.

  By default all files without license information are under the default
  license of the kernel, which is GPL version 2.

  Update the files which contain no license information with the
  'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
  binding shorthand, which can be used instead of the full boiler plate
  text.

  This patch is based on work done by Thomas Gleixner and Kate Stewart
  and Philippe Ombredanne.

  How this work was done:

  Patches were generated and checked against linux-4.14-rc6 for a subset
  of the use cases:

   - file had no licensing information it it.

   - file was a */uapi/* one with no licensing information in it,

   - file was a */uapi/* one with existing licensing information,

  Further patches will be generated in subsequent months to fix up cases
  where non-standard license headers were used, and references to
  license had to be inferred by heuristics based on keywords.

  The analysis to determine which SPDX License Identifier to be applied
  to a file was done in a spreadsheet of side by side results from of
  the output of two independent scanners (ScanCode & Windriver)
  producing SPDX tag:value files created by Philippe Ombredanne.
  Philippe prepared the base worksheet, and did an initial spot review
  of a few 1000 files.

  The 4.13 kernel was the starting point of the analysis with 60,537
  files assessed. Kate Stewart did a file by file comparison of the
  scanner results in the spreadsheet to determine which SPDX license
  identifier(s) to be applied to the file. She confirmed any
  determination that was not immediately clear with lawyers working with
  the Linux Foundation.

  Criteria used to select files for SPDX license identifier tagging was:

   - Files considered eligible had to be source code files.

   - Make and config files were included as candidates if they contained
     >5 lines of source

   - File already had some variant of a license header in it (even if <5
     lines).

  All documentation files were explicitly excluded.

  The following heuristics were used to determine which SPDX license
  identifiers to apply.

   - when both scanners couldn't find any license traces, file was
     considered to have no license information in it, and the top level
     COPYING file license applied.

     For non */uapi/* files that summary was:

       SPDX license identifier                            # files
       ---------------------------------------------------|-------
       GPL-2.0                                              11139

     and resulted in the first patch in this series.

     If that file was a */uapi/* path one, it was "GPL-2.0 WITH
     Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
     was:

       SPDX license identifier                            # files
       ---------------------------------------------------|-------
       GPL-2.0 WITH Linux-syscall-note                        930

     and resulted in the second patch in this series.

   - if a file had some form of licensing information in it, and was one
     of the */uapi/* ones, it was denoted with the Linux-syscall-note if
     any GPL family license was found in the file or had no licensing in
     it (per prior point). Results summary:

       SPDX license identifier                            # files
       ---------------------------------------------------|------
       GPL-2.0 WITH Linux-syscall-note                       270
       GPL-2.0+ WITH Linux-syscall-note                      169
       ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
       ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
       LGPL-2.1+ WITH Linux-syscall-note                      15
       GPL-1.0+ WITH Linux-syscall-note                       14
       ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
       LGPL-2.0+ WITH Linux-syscall-note                       4
       LGPL-2.1 WITH Linux-syscall-note                        3
       ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
       ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

     and that resulted in the third patch in this series.

   - when the two scanners agreed on the detected license(s), that
     became the concluded license(s).

   - when there was disagreement between the two scanners (one detected
     a license but the other didn't, or they both detected different
     licenses) a manual inspection of the file occurred.

   - In most cases a manual inspection of the information in the file
     resulted in a clear resolution of the license that should apply
     (and which scanner probably needed to revisit its heuristics).

   - When it was not immediately clear, the license identifier was
     confirmed with lawyers working with the Linux Foundation.

   - If there was any question as to the appropriate license identifier,
     the file was flagged for further research and to be revisited later
     in time.

  In total, over 70 hours of logged manual review was done on the
  spreadsheet to determine the SPDX license identifiers to apply to the
  source files by Kate, Philippe, Thomas and, in some cases,
  confirmation by lawyers working with the Linux Foundation.

  Kate also obtained a third independent scan of the 4.13 code base from
  FOSSology, and compared selected files where the other two scanners
  disagreed against that SPDX file, to see if there was new insights.
  The Windriver scanner is based on an older version of FOSSology in
  part, so they are related.

  Thomas did random spot checks in about 500 files from the spreadsheets
  for the uapi headers and agreed with SPDX license identifier in the
  files he inspected. For the non-uapi files Thomas did random spot
  checks in about 15000 files.

  In initial set of patches against 4.14-rc6, 3 files were found to have
  copy/paste license identifier errors, and have been fixed to reflect
  the correct identifier.

  Additionally Philippe spent 10 hours this week doing a detailed manual
  inspection and review of the 12,461 patched files from the initial
  patch version early this week with:

   - a full scancode scan run, collecting the matched texts, detected
     license ids and scores

   - reviewing anything where there was a license detected (about 500+
     files) to ensure that the applied SPDX license was correct

   - reviewing anything where there was no detection but the patch
     license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
     applied SPDX license was correct

  This produced a worksheet with 20 files needing minor correction. This
  worksheet was then exported into 3 different .csv files for the
  different types of files to be modified.

  These .csv files were then reviewed by Greg. Thomas wrote a script to
  parse the csv files and add the proper SPDX tag to the file, in the
  format that the file expected. This script was further refined by Greg
  based on the output to detect more types of files automatically and to
  distinguish between header and source .c files (which need different
  comment types.) Finally Greg ran the script using the .csv files to
  generate the patches.

  Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
  Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
  Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
  Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"

* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
  License cleanup: add SPDX license identifier to uapi header files with a license
  License cleanup: add SPDX license identifier to uapi header files with no license
  License cleanup: add SPDX GPL-2.0 license identifier to files with no license
2017-11-02 10:04:46 -07:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Eric Biggers a3c812f7cf KEYS: trusted: fix writing past end of buffer in trusted_read()
When calling keyctl_read() on a key of type "trusted", if the
user-supplied buffer was too small, the kernel ignored the buffer length
and just wrote past the end of the buffer, potentially corrupting
userspace memory.  Fix it by instead returning the size required, as per
the documentation for keyctl_read().

We also don't even fill the buffer at all in this case, as this is
slightly easier to implement than doing a short read, and either
behavior appears to be permitted.  It also makes it match the behavior
of the "encrypted" key type.

Fixes: d00a1c72f7 ("keys: add new trusted key-type")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v2.6.38+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-11-02 20:58:07 +11:00
Eric Biggers 3239b6f29b KEYS: return full count in keyring_read() if buffer is too small
Commit e645016abc ("KEYS: fix writing past end of user-supplied buffer
in keyring_read()") made keyring_read() stop corrupting userspace memory
when the user-supplied buffer is too small.  However it also made the
return value in that case be the short buffer size rather than the size
required, yet keyctl_read() is actually documented to return the size
required.  Therefore, switch it over to the documented behavior.

Note that for now we continue to have it fill the short buffer, since it
did that before (pre-v3.13) and dump_key_tree_aux() in keyutils arguably
relies on it.

Fixes: e645016abc ("KEYS: fix writing past end of user-supplied buffer in keyring_read()")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v3.13+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-11-02 20:58:05 +11:00
Eric Biggers ab5c69f013 KEYS: load key flags and expiry time atomically in proc_keys_show()
In proc_keys_show(), the key semaphore is not held, so the key ->flags
and ->expiry can be changed concurrently.  We therefore should read them
atomically just once.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 09:12:41 +01:00
Eric Biggers 9d6c8711b6 KEYS: Load key expiry time atomically in keyring_search_iterator()
Similar to the case for key_validate(), we should load the key ->expiry
once atomically in keyring_search_iterator(), since it can be changed
concurrently with the flags whenever the key semaphore isn't held.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 09:12:41 +01:00
Eric Biggers 1823d475a5 KEYS: load key flags and expiry time atomically in key_validate()
In key_validate(), load the flags and expiry time once atomically, since
these can change concurrently if key_validate() is called without the
key semaphore held.  And we don't want to get inconsistent results if a
variable is referenced multiple times.  For example, key->expiry was
referenced in both 'if (key->expiry)' and in 'if (now.tv_sec >=
key->expiry)', making it theoretically possible to see a spurious
EKEYEXPIRED while the expiration time was being removed, i.e. set to 0.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 09:12:41 +01:00
David Howells 60ff5b2f54 KEYS: don't let add_key() update an uninstantiated key
Currently, when passed a key that already exists, add_key() will call the
key's ->update() method if such exists.  But this is heavily broken in the
case where the key is uninstantiated because it doesn't call
__key_instantiate_and_link().  Consequently, it doesn't do most of the
things that are supposed to happen when the key is instantiated, such as
setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and
awakening tasks waiting on it, and incrementing key->user->nikeys.

It also never takes key_construction_mutex, which means that
->instantiate() can run concurrently with ->update() on the same key.  In
the case of the "user" and "logon" key types this causes a memory leak, at
best.  Maybe even worse, the ->update() methods of the "encrypted" and
"trusted" key types actually just dereference a NULL pointer when passed an
uninstantiated key.

Change key_create_or_update() to wait interruptibly for the key to finish
construction before continuing.

This patch only affects *uninstantiated* keys.  For now we still allow a
negatively instantiated key to be updated (thereby positively
instantiating it), although that's broken too (the next patch fixes it)
and I'm not sure that anyone actually uses that functionality either.

Here is a simple reproducer for the bug using the "encrypted" key type
(requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug
pertained to more than just the "encrypted" key type:

    #include <stdlib.h>
    #include <unistd.h>
    #include <keyutils.h>

    int main(void)
    {
        int ringid = keyctl_join_session_keyring(NULL);

        if (fork()) {
            for (;;) {
                const char payload[] = "update user:foo 32";

                usleep(rand() % 10000);
                add_key("encrypted", "desc", payload, sizeof(payload), ringid);
                keyctl_clear(ringid);
            }
        } else {
            for (;;)
                request_key("encrypted", "desc", "callout_info", ringid);
        }
    }

It causes:

    BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
    IP: encrypted_update+0xb0/0x170
    PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0
    PREEMPT SMP
    CPU: 0 PID: 340 Comm: reproduce Tainted: G      D         4.14.0-rc1-00025-g428490e38b2e #796
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
    task: ffff8a467a39a340 task.stack: ffffb15c40770000
    RIP: 0010:encrypted_update+0xb0/0x170
    RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246
    RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000
    RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303
    RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17
    R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000
    R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f
    FS:  00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0
    Call Trace:
     key_create_or_update+0x2bc/0x460
     SyS_add_key+0x10c/0x1d0
     entry_SYSCALL_64_fastpath+0x1f/0xbe
    RIP: 0033:0x7f5d7f211259
    RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8
    RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259
    RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04
    RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004
    R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868
    R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000
    Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b
    RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8
    CR2: 0000000000000018

Cc: <stable@vger.kernel.org> # v2.6.12+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@google.com>
2017-10-18 09:12:40 +01:00
David Howells 363b02dab0 KEYS: Fix race between updating and finding a negative key
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:

 (1) The instantiation state can be modified/read atomically.

 (2) The error can be accessed atomically with the state.

 (3) The error isn't stored unioned with the payload pointers.

This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.

The main side effect of this problem is that what was held in the payload
may change, depending on the state.  For instance, you might observe the
key to be in the rejected state.  You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.

The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated.  The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.

Additionally, barriering is included:

 (1) Order payload-set before state-set during instantiation.

 (2) Order state-read before payload-read when using the key.

Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.

Fixes: 146aa8b145 ("KEYS: Merge the type-specific data with the payload data")
Cc: stable@vger.kernel.org # v4.4+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-18 09:12:40 +01:00
Arnd Bergmann 3cd18d1981 security/keys: BIG_KEY requires CONFIG_CRYPTO
The recent rework introduced a possible randconfig build failure
when CONFIG_CRYPTO configured to only allow modules:

security/keys/big_key.o: In function `big_key_crypt':
big_key.c:(.text+0x29f): undefined reference to `crypto_aead_setkey'
security/keys/big_key.o: In function `big_key_init':
big_key.c:(.init.text+0x1a): undefined reference to `crypto_alloc_aead'
big_key.c:(.init.text+0x45): undefined reference to `crypto_aead_setauthsize'
big_key.c:(.init.text+0x77): undefined reference to `crypto_destroy_tfm'
crypto/gcm.o: In function `gcm_hash_crypt_remain_continue':
gcm.c:(.text+0x167): undefined reference to `crypto_ahash_finup'
crypto/gcm.o: In function `crypto_gcm_exit_tfm':
gcm.c:(.text+0x847): undefined reference to `crypto_destroy_tfm'

When we 'select CRYPTO' like the other users, we always get a
configuration that builds.

Fixes: 428490e38b ("security/keys: rewrite all of big_key crypto")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 09:12:40 +01:00
Eric Biggers 13923d0865 KEYS: encrypted: fix dereference of NULL user_key_payload
A key of type "encrypted" references a "master key" which is used to
encrypt and decrypt the encrypted key's payload.  However, when we
accessed the master key's payload, we failed to handle the case where
the master key has been revoked, which sets the payload pointer to NULL.
Note that request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.

Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.

This was an issue for master keys of type "user" only.  Master keys can
also be of type "trusted", but those cannot be revoked.

Fixes: 7e70cb4978 ("keys: add new key-type encrypted")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: <stable@vger.kernel.org>    [v2.6.38+]
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-12 15:55:09 +01:00
Jason A. Donenfeld 428490e38b security/keys: rewrite all of big_key crypto
This started out as just replacing the use of crypto/rng with
get_random_bytes_wait, so that we wouldn't use bad randomness at boot
time. But, upon looking further, it appears that there were even deeper
underlying cryptographic problems, and that this seems to have been
committed with very little crypto review. So, I rewrote the whole thing,
trying to keep to the conventions introduced by the previous author, to
fix these cryptographic flaws.

It makes no sense to seed crypto/rng at boot time and then keep
using it like this, when in fact there's already get_random_bytes_wait,
which can ensure there's enough entropy and be a much more standard way
of generating keys. Since this sensitive material is being stored
untrusted, using ECB and no authentication is simply not okay at all. I
find it surprising and a bit horrifying that this code even made it past
basic crypto review, which perhaps points to some larger issues. This
patch moves from using AES-ECB to using AES-GCM. Since keys are uniquely
generated each time, we can set the nonce to zero. There was also a race
condition in which the same key would be reused at the same time in
different threads. A mutex fixes this issue now.

So, to summarize, this commit fixes the following vulnerabilities:

  * Low entropy key generation, allowing an attacker to potentially
    guess or predict keys.
  * Unauthenticated encryption, allowing an attacker to modify the
    cipher text in particular ways in order to manipulate the plaintext,
    which is is even more frightening considering the next point.
  * Use of ECB mode, allowing an attacker to trivially swap blocks or
    compare identical plaintext blocks.
  * Key re-use.
  * Faulty memory zeroing.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
2017-09-25 23:31:58 +01:00
Jason A. Donenfeld 910801809b security/keys: properly zero out sensitive key material in big_key
Error paths forgot to zero out sensitive material, so this patch changes
some kfrees into a kzfrees.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
2017-09-25 23:31:41 +01:00
Eric Biggers e007ce9c59 KEYS: use kmemdup() in request_key_auth_new()
kmemdup() is preferred to kmalloc() followed by memcpy().

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 4aa68e07d8 KEYS: restrict /proc/keys by credentials at open time
When checking for permission to view keys whilst reading from
/proc/keys, we should use the credentials with which the /proc/keys file
was opened.  This is because, in a classic type of exploit, it can be
possible to bypass checks for the *current* credentials by passing the
file descriptor to a suid program.

Following commit 34dbbcdbf6 ("Make file credentials available to the
seqfile interfaces") we can finally fix it.  So let's do it.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 8f674565d4 KEYS: reset parent each time before searching key_user_tree
In key_user_lookup(), if there is no key_user for the given uid, we drop
key_user_lock, allocate a new key_user, and search the tree again.  But
we failed to set 'parent' to NULL at the beginning of the second search.
If the tree were to be empty for the second search, the insertion would
be done with an invalid 'parent', scribbling over freed memory.

Fortunately this can't actually happen currently because the tree always
contains at least the root_key_user.  But it still should be fixed to
make the code more robust.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 37863c43b2 KEYS: prevent KEYCTL_READ on negative key
Because keyctl_read_key() looks up the key with no permissions
requested, it may find a negatively instantiated key.  If the key is
also possessed, we went ahead and called ->read() on the key.  But the
key payload will actually contain the ->reject_error rather than the
normal payload.  Thus, the kernel oopses trying to read the
user_key_payload from memory address (int)-ENOKEY = 0x00000000ffffff82.

Fortunately the payload data is stored inline, so it shouldn't be
possible to abuse this as an arbitrary memory read primitive...

Reproducer:
    keyctl new_session
    keyctl request2 user desc '' @s
    keyctl read $(keyctl show | awk '/user: desc/ {print $1}')

It causes a crash like the following:
     BUG: unable to handle kernel paging request at 00000000ffffff92
     IP: user_read+0x33/0xa0
     PGD 36a54067 P4D 36a54067 PUD 0
     Oops: 0000 [#1] SMP
     CPU: 0 PID: 211 Comm: keyctl Not tainted 4.14.0-rc1 #337
     Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
     task: ffff90aa3b74c3c0 task.stack: ffff9878c0478000
     RIP: 0010:user_read+0x33/0xa0
     RSP: 0018:ffff9878c047bee8 EFLAGS: 00010246
     RAX: 0000000000000001 RBX: ffff90aa3d7da340 RCX: 0000000000000017
     RDX: 0000000000000000 RSI: 00000000ffffff82 RDI: ffff90aa3d7da340
     RBP: ffff9878c047bf00 R08: 00000024f95da94f R09: 0000000000000000
     R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
     R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
     FS:  00007f58ece69740(0000) GS:ffff90aa3e200000(0000) knlGS:0000000000000000
     CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
     CR2: 00000000ffffff92 CR3: 0000000036adc001 CR4: 00000000003606f0
     Call Trace:
      keyctl_read_key+0xac/0xe0
      SyS_keyctl+0x99/0x120
      entry_SYSCALL_64_fastpath+0x1f/0xbe
     RIP: 0033:0x7f58ec787bb9
     RSP: 002b:00007ffc8d401678 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa
     RAX: ffffffffffffffda RBX: 00007ffc8d402800 RCX: 00007f58ec787bb9
     RDX: 0000000000000000 RSI: 00000000174a63ac RDI: 000000000000000b
     RBP: 0000000000000004 R08: 00007ffc8d402809 R09: 0000000000000020
     R10: 0000000000000000 R11: 0000000000000206 R12: 00007ffc8d402800
     R13: 00007ffc8d4016e0 R14: 0000000000000000 R15: 0000000000000000
     Code: e5 41 55 49 89 f5 41 54 49 89 d4 53 48 89 fb e8 a4 b4 ad ff 85 c0 74 09 80 3d b9 4c 96 00 00 74 43 48 8b b3 20 01 00 00 4d 85 ed <0f> b7 5e 10 74 29 4d 85 e4 74 24 4c 39 e3 4c 89 e2 4c 89 ef 48
     RIP: user_read+0x33/0xa0 RSP: ffff9878c047bee8
     CR2: 00000000ffffff92

Fixes: 61ea0c0ba9 ("KEYS: Skip key state checks when checking for possession")
Cc: <stable@vger.kernel.org>	[v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 237bbd29f7 KEYS: prevent creating a different user's keyrings
It was possible for an unprivileged user to create the user and user
session keyrings for another user.  For example:

    sudo -u '#3000' sh -c 'keyctl add keyring _uid.4000 "" @u
                           keyctl add keyring _uid_ses.4000 "" @u
                           sleep 15' &
    sleep 1
    sudo -u '#4000' keyctl describe @u
    sudo -u '#4000' keyctl describe @us

This is problematic because these "fake" keyrings won't have the right
permissions.  In particular, the user who created them first will own
them and will have full access to them via the possessor permissions,
which can be used to compromise the security of a user's keys:

    -4: alswrv-----v------------  3000     0 keyring: _uid.4000
    -5: alswrv-----v------------  3000     0 keyring: _uid_ses.4000

Fix it by marking user and user session keyrings with a flag
KEY_FLAG_UID_KEYRING.  Then, when searching for a user or user session
keyring by name, skip all keyrings that don't have the flag set.

Fixes: 69664cf16a ("keys: don't generate user and user session keyrings unless they're accessed")
Cc: <stable@vger.kernel.org>	[v2.6.26+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers e645016abc KEYS: fix writing past end of user-supplied buffer in keyring_read()
Userspace can call keyctl_read() on a keyring to get the list of IDs of
keys in the keyring.  But if the user-supplied buffer is too small, the
kernel would write the full list anyway --- which will corrupt whatever
userspace memory happened to be past the end of the buffer.  Fix it by
only filling the space that is available.

Fixes: b2a4df200d ("KEYS: Expand the capacity of a keyring")
Cc: <stable@vger.kernel.org>	[v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 7fc0786d95 KEYS: fix key refcount leak in keyctl_read_key()
In keyctl_read_key(), if key_permission() were to return an error code
other than EACCES, we would leak a the reference to the key.  This can't
actually happen currently because key_permission() can only return an
error code other than EACCES if security_key_permission() does, only
SELinux and Smack implement that hook, and neither can return an error
code other than EACCES.  But it should still be fixed, as it is a bug
waiting to happen.

Fixes: 29db919063 ("[PATCH] Keys: Add LSM hooks for key management [try #3]")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers 884bee0215 KEYS: fix key refcount leak in keyctl_assume_authority()
In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to
fail, we would leak the reference to the 'authkey'.  Currently this can
only happen if prepare_creds() fails to allocate memory.  But it still
should be fixed, as it is a more severe bug waiting to happen.

This patch also moves the read of 'authkey->serial' to before the
reference to the authkey is dropped.  Doing the read after dropping the
reference is very fragile because it assumes we still hold another
reference to the key.  (Which we do, in current->cred->request_key_auth,
but there's no reason not to write it in the "obviously correct" way.)

Fixes: d84f4f992c ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers f7b48cf08f KEYS: don't revoke uninstantiated key in request_key_auth_new()
If key_instantiate_and_link() were to fail (which fortunately isn't
possible currently), the call to key_revoke(authkey) would crash with a
NULL pointer dereference in request_key_auth_revoke() because the key
has not yet been instantiated.

Fix this by removing the call to key_revoke().  key_put() is sufficient,
as it's not possible for an uninstantiated authkey to have been used for
anything yet.

Fixes: b5f545c880 ("[PATCH] keys: Permit running process to instantiate keys")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:56 +01:00
Eric Biggers 44d8143340 KEYS: fix cred refcount leak in request_key_auth_new()
In request_key_auth_new(), if key_alloc() or key_instantiate_and_link()
were to fail, we would leak a reference to the 'struct cred'.  Currently
this can only happen if key_alloc() fails to allocate memory.  But it
still should be fixed, as it is a more severe bug waiting to happen.

Fix it by cleaning things up to use a helper function which frees a
'struct request_key_auth' correctly.

Fixes: d84f4f992c ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:03:55 +01:00
Christoph Hellwig e13ec939e9 fs: fix kernel_write prototype
Make the position an in/out argument like all the other read/write
helpers and and make the buf argument a void pointer.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-09-04 19:05:15 -04:00
Christoph Hellwig bdd1d2d3d2 fs: fix kernel_read prototype
Use proper ssize_t and size_t types for the return value and count
argument, move the offset last and make it an in/out argument like
all other read/write helpers, and make the buf argument a void pointer
to get rid of lots of casts in the callers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-09-04 19:05:15 -04:00
Linus Torvalds e06fdaf40a Now that IPC and other changes have landed, enable manual markings for
randstruct plugin, including the task_struct.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJZbRgGAAoJEIly9N/cbcAmk2AQAIL60aQ+9RIcFAXriFhnd7Z2
 x9Jqi9JNc8NgPFXx8GhE4J4eTZ5PwcjgXBpNRWY/laBkRyoBHn24ku09YxrJjmHz
 ZSUsP+/iO9lVeEfbmU9Tnk50afkfwx6bHXBwkiVGQWHtybNVUqA19JbqkHeg8ubx
 myKLGeUv5PPCodRIcBDD0+HaAANcsqtgbDpgmWU8s+IXWwvWCE2p7PuBw7v3HHgH
 qzlPDHYQCRDw+LWsSqPaHj+9mbRO18P/ydMoZHGH4Hl3YYNtty8ZbxnraI3A7zBL
 6mLUVcZ+/l88DqHc5I05T8MmLU1yl2VRxi8/jpMAkg9wkvZ5iNAtlEKIWU6eqsvk
 vaImNOkViLKlWKF+oUD1YdG16d8Segrc6m4MGdI021tb+LoGuUbkY7Tl4ee+3dl/
 9FM+jPv95HjJnyfRNGidh2TKTa9KJkh6DYM9aUnktMFy3ca1h/LuszOiN0LTDiHt
 k5xoFURk98XslJJyXM8FPwXCXiRivrXMZbg5ixNoS4aYSBLv7Cn1M6cPnSOs7UPh
 FqdNPXLRZ+vabSxvEg5+41Ioe0SHqACQIfaSsV5BfF2rrRRdaAxK4h7DBcI6owV2
 7ziBN1nBBq2onYGbARN6ApyCqLcchsKtQfiZ0iFsvW7ZawnkVOOObDTCgPl3tdkr
 403YXzphQVzJtpT5eRV6
 =ngAW
 -----END PGP SIGNATURE-----

Merge tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull structure randomization updates from Kees Cook:
 "Now that IPC and other changes have landed, enable manual markings for
  randstruct plugin, including the task_struct.

  This is the rest of what was staged in -next for the gcc-plugins, and
  comes in three patches, largest first:

   - mark "easy" structs with __randomize_layout

   - mark task_struct with an optional anonymous struct to isolate the
     __randomize_layout section

   - mark structs to opt _out_ of automated marking (which will come
     later)

  And, FWIW, this continues to pass allmodconfig (normal and patched to
  enable gcc-plugins) builds of x86_64, i386, arm64, arm, powerpc, and
  s390 for me"

* tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  randstruct: opt-out externally exposed function pointer structs
  task_struct: Allow randomized layout
  randstruct: Mark various structs for randomization
2017-07-19 08:55:18 -07:00
Eric Biggers 4f9dabfaf8 KEYS: DH: validate __spare field
Syscalls must validate that their reserved arguments are zero and return
EINVAL otherwise.  Otherwise, it will be impossible to actually use them
for anything in the future because existing programs may be passing
garbage in.  This is standard practice when adding new APIs.

Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-07-14 11:01:38 +10:00
Linus Torvalds 650fc870a2 There has been a fair amount of activity in the docs tree this time
around.  Highlights include:
 
  - Conversion of a bunch of security documentation into RST
 
  - The conversion of the remaining DocBook templates by The Amazing
    Mauro Machine.  We can now drop the entire DocBook build chain.
 
  - The usual collection of fixes and minor updates.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJZWkGAAAoJEI3ONVYwIuV6rf0P/0B3JTiVPKS/WUx53+jzbAi4
 1BN7dmmuMxE1bWpgdEq+ac4aKxm07iAojuntuMj0qz/ZB1WARcmvEqqzI5i4wfq9
 5MrLduLkyuWfr4MOPseKJ2VK83p8nkMOiO7jmnBsilu7fE4nF+5YY9j4cVaArfMy
 cCQvAGjQzvej2eiWMGUSLHn4QFKh00aD7cwKyBVsJ08b27C9xL0J2LQyCDZ4yDgf
 37/MH3puEd3HX/4qAwLonIxT3xrIrrbDturqLU7OSKcWTtGZNrYyTFbwR3RQtqWd
 H8YZVg2Uyhzg9MYhkbQ2E5dEjUP4mkegcp6/JTINH++OOPpTbdTJgirTx7VTkSf1
 +kL8t7+Ayxd0FH3+77GJ5RMj8LUK6rj5cZfU5nClFQKWXP9UL3IelQ3Nl+SpdM8v
 ZAbR2KjKgH9KS6+cbIhgFYlvY+JgPkOVruwbIAc7wXVM3ibk1sWoBOFEujcbueWh
 yDpQv3l1UX0CKr3jnevJoW26LtEbGFtC7gSKZ+3btyeSBpWFGlii42KNycEGwUW0
 ezlwryDVHzyTUiKllNmkdK4v73mvPsZHEjgmme4afKAIiUilmcUF4XcqD86hISFT
 t+UJLA/zEU+0sJe26o2nK6GNJzmo4oCtVyxfhRe26Ojs1n80xlYgnZRfuIYdd31Z
 nwLBnwDCHAOyX91WXp9G
 =cVjZ
 -----END PGP SIGNATURE-----

Merge tag 'docs-4.13' of git://git.lwn.net/linux

Pull documentation updates from Jonathan Corbet:
 "There has been a fair amount of activity in the docs tree this time
  around. Highlights include:

   - Conversion of a bunch of security documentation into RST

   - The conversion of the remaining DocBook templates by The Amazing
     Mauro Machine. We can now drop the entire DocBook build chain.

   - The usual collection of fixes and minor updates"

* tag 'docs-4.13' of git://git.lwn.net/linux: (90 commits)
  scripts/kernel-doc: handle DECLARE_HASHTABLE
  Documentation: atomic_ops.txt is core-api/atomic_ops.rst
  Docs: clean up some DocBook loose ends
  Make the main documentation title less Geocities
  Docs: Use kernel-figure in vidioc-g-selection.rst
  Docs: fix table problems in ras.rst
  Docs: Fix breakage with Sphinx 1.5 and upper
  Docs: Include the Latex "ifthen" package
  doc/kokr/howto: Only send regression fixes after -rc1
  docs-rst: fix broken links to dynamic-debug-howto in kernel-parameters
  doc: Document suitability of IBM Verse for kernel development
  Doc: fix a markup error in coding-style.rst
  docs: driver-api: i2c: remove some outdated information
  Documentation: DMA API: fix a typo in a function name
  Docs: Insert missing space to separate link from text
  doc/ko_KR/memory-barriers: Update control-dependencies example
  Documentation, kbuild: fix typo "minimun" -> "minimum"
  docs: Fix some formatting issues in request-key.rst
  doc: ReSTify keys-trusted-encrypted.txt
  doc: ReSTify keys-request-key.txt
  ...
2017-07-03 21:13:25 -07:00
Kees Cook 3859a271a0 randstruct: Mark various structs for randomization
This marks many critical kernel structures for randomization. These are
structures that have been targeted in the past in security exploits, or
contain functions pointers, pointers to function pointer tables, lists,
workqueues, ref-counters, credentials, permissions, or are otherwise
sensitive. This initial list was extracted from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.

Left out of this list is task_struct, which requires special handling
and will be covered in a subsequent patch.

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-06-30 12:00:51 -07:00
Ingo Molnar 5dd43ce2f6 sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.

Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.

So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:

  include/linux/wait_bit.h  for types and APIs
  kernel/sched/wait_bit.c   for the implementation

Update all header dependencies.

This reduces the size of wait.h rather significantly, by about 30%.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:19:09 +02:00
Mark Rutland 92347cfd62 KEYS: fix refcount_inc() on zero
If a key's refcount is dropped to zero between key_lookup() peeking at
the refcount and subsequently attempting to increment it, refcount_inc()
will see a zero refcount.  Here, refcount_inc() will WARN_ONCE(), and
will *not* increment the refcount, which will remain zero.

Once key_lookup() drops key_serial_lock, it is possible for the key to
be freed behind our back.

This patch uses refcount_inc_not_zero() to perform the peek and increment
atomically.

Fixes: fff292914d ("security, keys: convert key.usage from atomic_t to refcount_t")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Hans Liljestrand <ishkamiel@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:50 +10:00
Mat Martineau 7cbe0932c2 KEYS: Convert KEYCTL_DH_COMPUTE to use the crypto KPP API
The initial Diffie-Hellman computation made direct use of the MPI
library because the crypto module did not support DH at the time. Now
that KPP is implemented, KEYCTL_DH_COMPUTE should use it to get rid of
duplicate code and leverage possible hardware acceleration.

This fixes an issue whereby the input to the KDF computation would
include additional uninitialized memory when the result of the
Diffie-Hellman computation was shorter than the input prime number.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:50 +10:00
Eric Biggers 0ddd9f1a6b KEYS: DH: ensure the KDF counter is properly aligned
Accessing a 'u8[4]' through a '__be32 *' violates alignment rules.  Just
make the counter a __be32 instead.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:49 +10:00
Eric Biggers 281590b422 KEYS: DH: don't feed uninitialized "otherinfo" into KDF
If userspace called KEYCTL_DH_COMPUTE with kdf_params containing NULL
otherinfo but nonzero otherinfolen, the kernel would allocate a buffer
for the otherinfo, then feed it into the KDF without initializing it.
Fix this by always doing the copy from userspace (which will fail with
EFAULT in this scenario).

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:49 +10:00
Eric Biggers bbe240454d KEYS: DH: forbid using digest_null as the KDF hash
Requesting "digest_null" in the keyctl_kdf_params caused an infinite
loop in kdf_ctr() because the "null" hash has a digest size of 0.  Fix
it by rejecting hash algorithms with a digest size of 0.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:49 +10:00
Eric Biggers 0620fddb56 KEYS: sanitize key structs before freeing
While a 'struct key' itself normally does not contain sensitive
information, Documentation/security/keys.txt actually encourages this:

     "Having a payload is not required; and the payload can, in fact,
     just be a value stored in the struct key itself."

In case someone has taken this advice, or will take this advice in the
future, zero the key structure before freeing it.  We might as well, and
as a bonus this could make it a bit more difficult for an adversary to
determine which keys have recently been in use.

This is safe because the key_jar cache does not use a constructor.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers ee618b4619 KEYS: trusted: sanitize all key material
As the previous patch did for encrypted-keys, zero sensitive any
potentially sensitive data related to the "trusted" key type before it
is freed.  Notably, we were not zeroing the tpm_buf structures in which
the actual key is stored for TPM seal and unseal, nor were we zeroing
the trusted_key_payload in certain error paths.

Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers a9dd74b252 KEYS: encrypted: sanitize all key material
For keys of type "encrypted", consistently zero sensitive key material
before freeing it.  This was already being done for the decrypted
payloads of encrypted keys, but not for the master key and the keys
derived from the master key.

Out of an abundance of caution and because it is trivial to do so, also
zero buffers containing the key payload in encrypted form, although
depending on how the encrypted-keys feature is used such information
does not necessarily need to be kept secret.

Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers 6966c74932 KEYS: user_defined: sanitize key payloads
Zero the payloads of user and logon keys before freeing them.  This
prevents sensitive key material from being kept around in the slab
caches after a key is released.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers 57070c850a KEYS: sanitize add_key() and keyctl() key payloads
Before returning from add_key() or one of the keyctl() commands that
takes in a key payload, zero the temporary buffer that was allocated to
hold the key payload copied from userspace.  This may contain sensitive
key material that should not be kept around in the slab caches.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers 63a0b0509e KEYS: fix freeing uninitialized memory in key_update()
key_update() freed the key_preparsed_payload even if it was not
initialized first.  This would cause a crash if userspace called
keyctl_update() on a key with type like "asymmetric" that has a
->preparse() method but not an ->update() method.  Possibly it could
even be triggered for other key types by racing with keyctl_setperm() to
make the KEY_NEED_WRITE check fail (the permission was already checked,
so normally it wouldn't fail there).

Reproducer with key type "asymmetric", given a valid cert.der:

keyctl new_session
keyid=$(keyctl padd asymmetric desc @s < cert.der)
keyctl setperm $keyid 0x3f000000
keyctl update $keyid data

[  150.686666] BUG: unable to handle kernel NULL pointer dereference at 0000000000000001
[  150.687601] IP: asymmetric_key_free_kids+0x12/0x30
[  150.688139] PGD 38a3d067
[  150.688141] PUD 3b3de067
[  150.688447] PMD 0
[  150.688745]
[  150.689160] Oops: 0000 [#1] SMP
[  150.689455] Modules linked in:
[  150.689769] CPU: 1 PID: 2478 Comm: keyctl Not tainted 4.11.0-rc4-xfstests-00187-ga9f6b6b8cd2f #742
[  150.690916] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
[  150.692199] task: ffff88003b30c480 task.stack: ffffc90000350000
[  150.692952] RIP: 0010:asymmetric_key_free_kids+0x12/0x30
[  150.693556] RSP: 0018:ffffc90000353e58 EFLAGS: 00010202
[  150.694142] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000004
[  150.694845] RDX: ffffffff81ee3920 RSI: ffff88003d4b0700 RDI: 0000000000000001
[  150.697569] RBP: ffffc90000353e60 R08: ffff88003d5d2140 R09: 0000000000000000
[  150.702483] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[  150.707393] R13: 0000000000000004 R14: ffff880038a4d2d8 R15: 000000000040411f
[  150.709720] FS:  00007fcbcee35700(0000) GS:ffff88003fd00000(0000) knlGS:0000000000000000
[  150.711504] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  150.712733] CR2: 0000000000000001 CR3: 0000000039eab000 CR4: 00000000003406e0
[  150.714487] Call Trace:
[  150.714975]  asymmetric_key_free_preparse+0x2f/0x40
[  150.715907]  key_update+0xf7/0x140
[  150.716560]  ? key_default_cmp+0x20/0x20
[  150.717319]  keyctl_update_key+0xb0/0xe0
[  150.718066]  SyS_keyctl+0x109/0x130
[  150.718663]  entry_SYSCALL_64_fastpath+0x1f/0xc2
[  150.719440] RIP: 0033:0x7fcbce75ff19
[  150.719926] RSP: 002b:00007ffd5d167088 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa
[  150.720918] RAX: ffffffffffffffda RBX: 0000000000404d80 RCX: 00007fcbce75ff19
[  150.721874] RDX: 00007ffd5d16785e RSI: 000000002866cd36 RDI: 0000000000000002
[  150.722827] RBP: 0000000000000006 R08: 000000002866cd36 R09: 00007ffd5d16785e
[  150.723781] R10: 0000000000000004 R11: 0000000000000206 R12: 0000000000404d80
[  150.724650] R13: 00007ffd5d16784d R14: 00007ffd5d167238 R15: 000000000040411f
[  150.725447] Code: 83 c4 08 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 85 ff 74 23 55 48 89 e5 53 48 89 fb <48> 8b 3f e8 06 21 c5 ff 48 8b 7b 08 e8 fd 20 c5 ff 48 89 df e8
[  150.727489] RIP: asymmetric_key_free_kids+0x12/0x30 RSP: ffffc90000353e58
[  150.728117] CR2: 0000000000000001
[  150.728430] ---[ end trace f7f8fe1da2d5ae8d ]---

Fixes: 4d8c0250b8 ("KEYS: Call ->free_preparse() even after ->preparse() returns an error")
Cc: stable@vger.kernel.org # 3.17+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:47 +10:00
Eric Biggers 5649645d72 KEYS: fix dereferencing NULL payload with nonzero length
sys_add_key() and the KEYCTL_UPDATE operation of sys_keyctl() allowed a
NULL payload with nonzero length to be passed to the key type's
->preparse(), ->instantiate(), and/or ->update() methods.  Various key
types including asymmetric, cifs.idmap, cifs.spnego, and pkcs7_test did
not handle this case, allowing an unprivileged user to trivially cause a
NULL pointer dereference (kernel oops) if one of these key types was
present.  Fix it by doing the copy_from_user() when 'plen' is nonzero
rather than when '_payload' is non-NULL, causing the syscall to fail
with EFAULT as expected when an invalid buffer is specified.

Cc: stable@vger.kernel.org # 2.6.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:47 +10:00
Eric Biggers 0f534e4a13 KEYS: encrypted: use constant-time HMAC comparison
MACs should, in general, be compared using crypto_memneq() to prevent
timing attacks.

Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:47 +10:00
Eric Biggers 64d107d3ac KEYS: encrypted: fix race causing incorrect HMAC calculations
The encrypted-keys module was using a single global HMAC transform,
which could be rekeyed by multiple threads concurrently operating on
different keys, causing incorrect HMAC values to be calculated.  Fix
this by allocating a new HMAC transform whenever we need to calculate a
HMAC.  Also simplify things a bit by allocating the shash_desc's using
SHASH_DESC_ON_STACK() for both the HMAC and unkeyed hashes.

The following script reproduces the bug:

    keyctl new_session
    keyctl add user master "abcdefghijklmnop" @s
    for i in $(seq 2); do
        (
            set -e
            for j in $(seq 1000); do
                keyid=$(keyctl add encrypted desc$i "new user:master 25" @s)
                datablob="$(keyctl pipe $keyid)"
                keyctl unlink $keyid > /dev/null
                keyid=$(keyctl add encrypted desc$i "load $datablob" @s)
                keyctl unlink $keyid > /dev/null
            done
        ) &
    done

Output with bug:

    [  439.691094] encrypted_key: bad hmac (-22)
    add_key: Invalid argument
    add_key: Invalid argument

Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:47 +10:00
Eric Biggers 794b4bc292 KEYS: encrypted: fix buffer overread in valid_master_desc()
With the 'encrypted' key type it was possible for userspace to provide a
data blob ending with a master key description shorter than expected,
e.g. 'keyctl add encrypted desc "new x" @s'.  When validating such a
master key description, validate_master_desc() could read beyond the end
of the buffer.  Fix this by using strncmp() instead of memcmp().  [Also
clean up the code to deduplicate some logic.]

Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:46 +10:00
Eric Biggers e9ff56ac35 KEYS: encrypted: avoid encrypting/decrypting stack buffers
Since v4.9, the crypto API cannot (normally) be used to encrypt/decrypt
stack buffers because the stack may be virtually mapped.  Fix this for
the padding buffers in encrypted-keys by using ZERO_PAGE for the
encryption padding and by allocating a temporary heap buffer for the
decryption padding.

Tested with CONFIG_DEBUG_SG=y:
	keyctl new_session
	keyctl add user master "abcdefghijklmnop" @s
	keyid=$(keyctl add encrypted desc "new user:master 25" @s)
	datablob="$(keyctl pipe $keyid)"
	keyctl unlink $keyid
	keyid=$(keyctl add encrypted desc "load $datablob" @s)
	datablob2="$(keyctl pipe $keyid)"
	[ "$datablob" = "$datablob2" ] && echo "Success!"

Cc: Andy Lutomirski <luto@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # 4.9+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:46 +10:00