Commit graph

332 commits

Author SHA1 Message Date
Linus Torvalds 1081230b74 Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
 "This first core part of the block IO changes contains:

   - Cleanup of the bio IO error signaling from Christoph.  We used to
     rely on the uptodate bit and passing around of an error, now we
     store the error in the bio itself.

   - Improvement of the above from myself, by shrinking the bio size
     down again to fit in two cachelines on x86-64.

   - Revert of the max_hw_sectors cap removal from a revision again,
     from Jeff Moyer.  This caused performance regressions in various
     tests.  Reinstate the limit, bump it to a more reasonable size
     instead.

   - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
     Most devices have huge trim limits, which can cause nasty latencies
     when deleting files.  Enable the admin to configure the size down.
     We will look into having a more sane default instead of UINT_MAX
     sectors.

   - Improvement of the SGP gaps logic from Keith Busch.

   - Enable the block core to handle arbitrarily sized bios, which
     enables a nice simplification of bio_add_page() (which is an IO hot
     path).  From Kent.

   - Improvements to the partition io stats accounting, making it
     faster.  From Ming Lei.

   - Also from Ming Lei, a basic fixup for overflow of the sysfs pending
     file in blk-mq, as well as a fix for a blk-mq timeout race
     condition.

   - Ming Lin has been carrying Kents above mentioned patches forward
     for a while, and testing them.  Ming also did a few fixes around
     that.

   - Sasha Levin found and fixed a use-after-free problem introduced by
     the bio->bi_error changes from Christoph.

   - Small blk cgroup cleanup from Viresh Kumar"

* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
  blk: Fix bio_io_vec index when checking bvec gaps
  block: Replace SG_GAPS with new queue limits mask
  block: bump BLK_DEF_MAX_SECTORS to 2560
  Revert "block: remove artifical max_hw_sectors cap"
  blk-mq: fix race between timeout and freeing request
  blk-mq: fix buffer overflow when reading sysfs file of 'pending'
  Documentation: update notes in biovecs about arbitrarily sized bios
  block: remove bio_get_nr_vecs()
  fs: use helper bio_add_page() instead of open coding on bi_io_vec
  block: kill merge_bvec_fn() completely
  md/raid5: get rid of bio_fits_rdev()
  md/raid5: split bio for chunk_aligned_read
  block: remove split code in blkdev_issue_{discard,write_same}
  btrfs: remove bio splitting and merge_bvec_fn() calls
  bcache: remove driver private bio splitting code
  block: simplify bio_add_page()
  block: make generic_make_request handle arbitrarily sized bios
  blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
  block: don't access bio->bi_error after bio_put()
  block: shrink struct bio down to 2 cache lines again
  ...
2015-09-02 13:10:25 -07:00
Kent Overstreet 8ae126660f block: kill merge_bvec_fn() completely
As generic_make_request() is now able to handle arbitrarily sized bios,
it's no longer necessary for each individual block driver to define its
own ->merge_bvec_fn() callback. Remove every invocation completely.

Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <drbd-dev@lists.linbit.com>
Cc: drbd-user@lists.linbit.com
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Yehuda Sadeh <yehuda@inktank.com>
Cc: Sage Weil <sage@inktank.com>
Cc: Alex Elder <elder@kernel.org>
Cc: ceph-devel@vger.kernel.org
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: dm-devel@redhat.com
Cc: Neil Brown <neilb@suse.de>
Cc: linux-raid@vger.kernel.org
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Acked-by: NeilBrown <neilb@suse.de> (for the 'md' bits)
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[dpark: also remove ->merge_bvec_fn() in dm-thin as well as
 dm-era-target, and resolve merge conflicts]
Signed-off-by: Dongsu Park <dpark@posteo.net>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13 12:31:57 -06:00
NeilBrown 423f04d63c md/raid1: extend spinlock to protect raid1_end_read_request against inconsistencies
raid1_end_read_request() assumes that the In_sync bits are consistent
with the ->degaded count.
raid1_spare_active updates the In_sync bit before the ->degraded count
and so exposes an inconsistency, as does error()
So extend the spinlock in raid1_spare_active() and error() to hide those
inconsistencies.

This should probably be part of
  Commit: 34cab6f420 ("md/raid1: fix test for 'was read error from
  last working device'.")
as it addresses the same issue.  It fixes the same bug and should go
to -stable for same reasons.

Fixes: 76073054c9 ("md/raid1: clean up read_balance.")
Cc: stable@vger.kernel.org (v3.0+)
Signed-off-by: NeilBrown <neilb@suse.com>
2015-08-03 12:29:42 +10:00
Jens Axboe b7c44ed9d2 block: manipulate bio->bi_flags through helpers
Some places use helpers now, others don't. We only have the 'is set'
helper, add helpers for setting and clearing flags too.

It was a bit of a mess of atomic vs non-atomic access. With
BIO_UPTODATE gone, we don't have any risk of concurrent access to the
flags. So relax the restriction and don't make any of them atomic. The
flags that do have serialization issues (reffed and chained), we
already handle those separately.

Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29 08:55:20 -06:00
Christoph Hellwig 4246a0b63b block: add a bi_error field to struct bio
Currently we have two different ways to signal an I/O error on a BIO:

 (1) by clearing the BIO_UPTODATE flag
 (2) by returning a Linux errno value to the bi_end_io callback

The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario.  Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.

So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29 08:55:15 -06:00
Goldwyn Rodrigues 90382ed9af Fix read-balancing during node failure
During a node failure, We need to suspend read balancing so that the
reads are directed to the first device and stale data is not read.
Suspending writes is not required because these would be recorded and
synced eventually.

A new flag MD_CLUSTER_SUSPEND_READ_BALANCING is set in recover_prep().
area_resyncing() will respond true for the entire devices if this
flag is set and the request type is READ. The flag is cleared
in recover_done().

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reported-By: David Teigland <teigland@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
2015-07-24 13:37:59 +10:00
NeilBrown 34cab6f420 md/raid1: fix test for 'was read error from last working device'.
When we get a read error from the last working device, we don't
try to repair it, and don't fail the device.  We simple report a
read error to the caller.

However the current test for 'is this the last working device' is
wrong.
When there is only one fully working device, it assumes that a
non-faulty device is that device.  However a spare which is rebuilding
would be non-faulty but so not the only working device.

So change the test from "!Faulty" to "In_sync".  If ->degraded says
there is only one fully working device and this device is in_sync,
this must be the one.

This bug has existed since we allowed read_balance to read from
a recovering spare in v3.0

Reported-and-tested-by: Alexander Lyakas <alex.bolshoy@gmail.com>
Fixes: 76073054c9 ("md/raid1: clean up read_balance.")
Cc: stable@vger.kernel.org (v3.0+)
Signed-off-by: NeilBrown <neilb@suse.com>
2015-07-24 13:37:21 +10:00
Tejun Heo 4452226ea2 writeback: move backing_dev_info->state into bdi_writeback
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear.  For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi.  To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.

This patch moves bdi->state into wb.

* enum bdi_state is renamed to wb_state and the prefix of all enums is
  changed from BDI_ to WB_.

* Explicit zeroing of bdi->state is removed without adding zeoring of
  wb->state as the whole data structure is zeroed on init anyway.

* As there's still only one bdi_writeback per backing_dev_info, all
  uses of bdi->state are mechanically replaced with bdi->wb.state
  introducing no behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: drbd-dev@lists.linbit.com
Cc: Neil Brown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:34 -06:00
NeilBrown 09314799e4 md: remove 'go_faster' option from ->sync_request()
This option is not well justified and testing suggests that
it hardly ever makes any difference.

The comment suggests there might be a need to wait for non-resync
activity indicated by ->nr_waiting, however raise_barrier()
already waits for all of that.

So just remove it to simplify reasoning about speed limiting.

This allows us to remove a 'FIXME' comment from raid5.c as that
never used the flag.

Signed-off-by: NeilBrown <neilb@suse.de>
2015-04-22 08:00:40 +10:00
NeilBrown d51e4fe6d6 Merge branch 'cluster' into for-next 2015-04-22 08:00:20 +10:00
Tomáš Hodek d1901ef099 md/raid1: fix read balance when a drive is write-mostly.
When a drive is marked write-mostly it should only be the
target of reads if there is no other option.

This behaviour was broken by

commit 9dedf60313
    md/raid1: read balance chooses idlest disk for SSD

which causes a write-mostly device to be *preferred* is some cases.

Restore correct behaviour by checking and setting
best_dist_disk and best_pending_disk rather than best_disk.

We only need to test one of these as they are both changed
from -1 or >=0 at the same time.

As we leave min_pending and best_dist unchanged, any non-write-mostly
device will appear better than the write-mostly device.

Reported-by: Tomáš Hodek <tomas.hodek@volny.cz>
Reported-by: Dark Penguin <darkpenguin@yandex.ru>
Signed-off-by: NeilBrown <neilb@suse.de>
Link: http://marc.info/?l=linux-raid&m=135982797322422
Fixes: 9dedf60313
Cc: stable@vger.kernel.org (3.6+)
2015-02-25 11:37:02 +11:00
Goldwyn Rodrigues 1aee41f637 Add new disk to clustered array
Algorithm:
1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
   ioctl(ADD_NEW_DISC with disc.state set to MD_DISK_CLUSTER_ADD)
2. Node 1 sends NEWDISK with uuid and slot number
3. Other nodes issue kobject_uevent_env with uuid and slot number
(Steps 4,5 could be a udev rule)
4. In userspace, the node searches for the disk, perhaps
   using blkid -t SUB_UUID=""
5. Other nodes issue either of the following depending on whether the disk
   was found:
   ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CANDIDATE and
	 disc.number set to slot number)
   ioctl(CLUSTERED_DISK_NACK)
6. Other nodes drop lock on no-new-devs (CR) if device is found
7. Node 1 attempts EX lock on no-new-devs
8. If node 1 gets the lock, it sends METADATA_UPDATED after unmarking the disk
   as SpareLocal
9. If not (get no-new-dev lock), it fails the operation and sends METADATA_UPDATED
10. Other nodes understand if the device is added or not by reading the superblock again after receiving the METADATA_UPDATED message.

Signed-off-by: Lidong Zhong <lzhong@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
2015-02-23 09:59:07 -06:00
Goldwyn Rodrigues 7d49ffcfa3 Read from the first device when an area is resyncing
set choose_first true for cluster read in read balance when the area
is resyncing.

Signed-off-by: Lidong Zhong <lzhong@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
2015-02-23 09:59:07 -06:00
Goldwyn Rodrigues 589a1c4916 Suspend writes in RAID1 if within range
If there is a resync going on, all nodes must suspend writes to the
range. This is recorded in the suspend_info/suspend_list.

If there is an I/O within the ranges of any of the suspend_info,
should_suspend will return 1.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
2015-02-23 09:59:07 -06:00
Nate Dailey ab713cdc6f md/raid1: round up to bdev_logical_block_size in narrow_write_error
This modifies raid1's narrow_write_error to round up block_sectors to the
device's logical block size.

This prevents sd complaining about "Bad block number requested" for non-512-byte
sector disks.

Signed-off-by: Nate Dailey <nate.dailey@stratus.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-16 14:49:26 +11:00
NeilBrown afa0f557cb md: rename ->stop to ->free
Now that the ->stop function only frees the private data,
rename is accordingly.

Also pass in the private pointer as an arg rather than using
mddev->private.  This flexibility will be useful in level_store().

Finally, don't clear ->private.  It doesn't make sense to clear
it seeing that isn't what we free, and it is no longer necessary
to clear ->private (it was some time ago before  ->to_remove was
introduced).

Setting ->to_remove in ->free() is a bit of a wart, but not a
big problem at the moment.

Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-04 08:35:52 +11:00
NeilBrown 5aa61f427e md: split detach operation out from ->stop.
Each md personality has a 'stop' operation which does two
things:
 1/ it finalizes some aspects of the array to ensure nothing
    is accessing the ->private data
 2/ it frees the ->private data.

All the steps in '1' can apply to all arrays and so can be
performed in common code.

This is useful as in the case where we change the personality which
manages an array (in level_store()), it would be helpful to do
step 1 early, and step 2 later.

So split the 'step 1' functionality out into a new mddev_detach().

Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-04 08:35:52 +11:00
NeilBrown 64590f45dd md: make merge_bvec_fn more robust in face of personality changes.
There is no locking around calls to merge_bvec_fn(), so
it is possible that calls which coincide with a level (or personality)
change could go wrong.

So create a central dispatch point for these functions and use
rcu_read_lock().
If the array is suspended, reject any merge that can be rejected.
If not, we know it is safe to call the function.

Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-04 08:35:52 +11:00
NeilBrown 5c675f83c6 md: make ->congested robust against personality changes.
There is currently no locking around calls to the 'congested'
bdi function.  If called at an awkward time while an array is
being converted from one level (or personality) to another, there
is a tiny chance of running code in an unreferenced module etc.

So add a 'congested' function to the md_personality operations
structure, and call it with appropriate locking from a central
'mddev_congested'.

When the array personality is changing the array will be 'suspended'
so no IO is processed.
If mddev_congested detects this, it simply reports that the
array is congested, which is a safe guess.
As mddev_suspend calls synchronize_rcu(), mddev_congested can
avoid races by included the whole call inside an rcu_read_lock()
region.
This require that the congested functions for all subordinate devices
can be run under rcu_lock.  Fortunately this is the case.

Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-04 08:35:52 +11:00
NeilBrown f72ffdd686 md: remove unwanted white space from md.c
My editor shows much of this is RED.

Signed-off-by: NeilBrown <neilb@suse.de>
2014-10-14 13:08:29 +11:00
NeilBrown c95e6385e8 md/raid1: process_checks doesn't use its return value.
process_checks() always returns '0', so change it to 'void'.

Signed-off-by: NeilBrown <neilb@suse.de>
2014-10-14 13:08:28 +11:00
NeilBrown 3fd83717e4 md: use set_bit/clear_bit instead of shift/mask for bi_flags changes.
Using {set,clear}_bit is more consistent than shifting and masking.

No functional change.

Signed-off-by: NeilBrown <neilb@suse.de>
2014-10-09 10:07:04 +11:00
NeilBrown 5965b642ff md/raid1: minor typos and reformatting.
Signed-off-by: NeilBrown <neilb@suse.de>
2014-10-09 10:07:04 +11:00
NeilBrown b8cb6b4c12 md/raid1: fix_read_error should act on all non-faulty devices.
If a devices is being recovered it is not InSync and is not Faulty.

If a read error is experienced on that device, fix_read_error()
will be called, but it ignores non-InSync devices.  So it will
neither fix the error nor fail the device.

It is incorrect that fix_read_error() ignores non-InSync devices.
It should only ignore Faulty devices.  So fix it.

This became a bug when we allowed reading from a device that was being
recovered.  It is suitable for any subsequent -stable kernel.

Fixes: da8840a747
Cc: stable@vger.kernel.org (v3.5+)
Reported-by: Alexander Lyakas <alex.bolshoy@gmail.com>
Tested-by: Alexander Lyakas <alex.bolshoy@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown 34e97f1701 md/raid1: count resync requests in nr_pending.
Both normal IO and resync IO can be retried with reschedule_retry()
and so be counted into ->nr_queued, but only normal IO gets counted in
->nr_pending.

Before the recent improvement to RAID1 resync there could only
possibly have been one or the other on the queue.  When handling a
read failure it could only be normal IO.  So when handle_read_error()
called freeze_array() the fact that freeze_array only compares
->nr_queued against ->nr_pending was safe.

But now that these two types can interleave, we can have both normal
and resync IO requests queued, so we need to count them both in
nr_pending.

This error can lead to freeze_array() hanging if there is a read
error, so it is suitable for -stable.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Reported-by: Brassow Jonathan <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown c2fd4c94de md/raid1: update next_resync under resync_lock.
raise_barrier() uses next_resync as part of its calculations, so it
really should be updated first, instead of afterwards.

next_resync is always used under resync_lock so update it under
resync lock to, just before it is used.  That is safest.

This could cause normal IO and resync IO to interact badly so
it suitable for -stable.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown 235549605e md/raid1: Don't use next_resync to determine how far resync has progressed
next_resync is (approximately) the location for the next resync request.
However it does *not* reliably determine the earliest location
at which resync might be happening.
This is because resync requests can complete out of order, and
we only limit the number of current requests, not the distance
from the earliest pending request to the latest.

mddev->curr_resync_completed is a reliable indicator of the earliest
position at which resync could be happening.   It is updated less
frequently, but is actually reliable which is more important.

So use it to determine if a write request is before the region
being resynced and so safe from conflict.

This error can allow resync IO to interfere with normal IO which
could lead to data corruption. Hence: stable.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown 2f73d3c55d md/raid1: make sure resync waits for conflicting writes to complete.
The resync/recovery process for raid1 was recently changed
so that writes could happen in parallel with resync providing
they were in different regions of the device.

There is a problem though:  While a write request will always
wait for conflicting resync to complete, a resync request
will *not* always wait for conflicting writes to complete.

Two changes are needed to fix this:

1/ raise_barrier (which waits until it is safe to do resync)
   must wait until current_window_requests is zero
2/ wait_battier (which waits at the start of a new write request)
   must update current_window_requests if the request could
   possible conflict with a concurrent resync.

As concurrent writes and resync can lead to data loss,
this patch is suitable for -stable.

Fixes: 79ef3a8aa1
Cc: stable@vger.kernel.org (v3.13+)
Cc: majianpeng <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown 669cc7ba77 md/raid1: clean up request counts properly in close_sync()
If there are outstanding writes when close_sync is called,
the change to ->start_next_window might cause them to
decrement the wrong counter when they complete.  Fix this
by merging the two counters into the one that will be decremented.

Having an incorrect value in a counter can cause raise_barrier()
to hangs, so this is suitable for -stable.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 11:26:01 +10:00
NeilBrown c6d119cf1b md/raid1: be more cautious where we read-balance during resync.
commit 79ef3a8aa1 made
it possible for reads to happen concurrently with resync.
This means that we need to be more careful where read_balancing
is allowed during resync - we can no longer be sure that any
resync that has already started will definitely finish.

So keep read_balancing to before recovery_cp, which is conservative
but safe.

This bug makes it possible to read from a device that doesn't
have up-to-date data, so it can cause data corruption.
So it is suitable for any kernel since 3.11.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 10:26:41 +10:00
NeilBrown f0cc9a0571 md/raid1: intialise start_next_window for READ case to avoid hang
r1_bio->start_next_window is not initialised in the READ
case, so allow_barrier may incorrectly decrement
   conf->current_window_requests
which can cause raise_barrier() to block forever.

Fixes: 79ef3a8aa1
cc: stable@vger.kernel.org (v3.13+)
Reported-by: Brassow Jonathan <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-09-22 10:18:03 +10:00
NeilBrown 2446dba03f md/raid1,raid10: always abort recover on write error.
Currently we don't abort recovery on a write error if the write error
to the recovering device was triggerd by normal IO (as opposed to
recovery IO).

This means that for one bitmap region, the recovery might write to the
recovering device for a few sectors, then not bother for subsequent
sectors (as it never writes to failed devices).  In this case
the bitmap bit will be cleared, but it really shouldn't.

The result is that if the recovering device fails and is then re-added
(after fixing whatever hardware problem triggerred the failure),
the second recovery won't redo the region it was in the middle of,
so some of the device will not be recovered properly.

If we abort the recovery, the region being processes will be cancelled
(bit not cleared) and the whole region will be retried.

As the bug can result in data corruption the patch is suitable for
-stable.  For kernels prior to 3.11 there is a conflict in raid10.c
which will require care.

Original-from: jiao hui <jiaohui@bwstor.com.cn>
Reported-and-tested-by: jiao hui <jiaohui@bwstor.com.cn>
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@vger.kernel.org
2014-07-31 10:16:52 +10:00
NeilBrown da1aab3dca md/raid1: r1buf_pool_alloc: free allocate pages when subsequent allocation fails.
When performing a user-request check/repair (MD_RECOVERY_REQUEST is set)
on a raid1, we allocate multiple bios each with their own set of pages.

If the page allocations for one bio fails, we currently do *not* free
the pages allocated for the previous bios, nor do we free the bio itself.

This patch frees all the already-allocate pages, and makes sure that
all the bios are freed as well.

This bug can cause a memory leak which can ultimately OOM a machine.
It was introduced in 3.10-rc1.

Fixes: a07876064a
Cc: Kent Overstreet <koverstreet@google.com>
Cc: stable@vger.kernel.org (3.10+)
Reported-by: Russell King - ARM Linux <linux@arm.linux.org.uk>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-04-09 14:42:23 +10:00
NeilBrown 1877db7558 md/raid1: restore ability for check and repair to fix read errors.
commit 30bc9b5387
    md/raid1: fix bio handling problems in process_checks()

Move the bio_reset() to a point before where BIO_UPTODATE is checked,
so that check now always report that the bio is uptodate, even if it is not.

This causes process_check() to sometimes treat read-errors as
successful matches so the good data isn't written out.

This patch preserves the flag until it is needed.

Bug was introduced in 3.11, but backported to 3.10-stable (as it fixed
an even worse bug).  So suitable for any -stable since 3.10.

Reported-and-tested-by: Michael Tokarev <mjt@tls.msk.ru>
Cc: stable@vger.kernel.org (3.10+)
Fixed: 30bc9b5387
Signed-off-by: NeilBrown <neilb@suse.de>
2014-02-05 12:26:04 +11:00
Linus Torvalds f568849eda Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block
Pull core block IO changes from Jens Axboe:
 "The major piece in here is the immutable bio_ve series from Kent, the
  rest is fairly minor.  It was supposed to go in last round, but
  various issues pushed it to this release instead.  The pull request
  contains:

   - Various smaller blk-mq fixes from different folks.  Nothing major
     here, just minor fixes and cleanups.

   - Fix for a memory leak in the error path in the block ioctl code
     from Christian Engelmayer.

   - Header export fix from CaiZhiyong.

   - Finally the immutable biovec changes from Kent Overstreet.  This
     enables some nice future work on making arbitrarily sized bios
     possible, and splitting more efficient.  Related fixes to immutable
     bio_vecs:

        - dm-cache immutable fixup from Mike Snitzer.
        - btrfs immutable fixup from Muthu Kumar.

  - bio-integrity fix from Nic Bellinger, which is also going to stable"

* 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits)
  xtensa: fixup simdisk driver to work with immutable bio_vecs
  block/blk-mq-cpu.c: use hotcpu_notifier()
  blk-mq: for_each_* macro correctness
  block: Fix memory leak in rw_copy_check_uvector() handling
  bio-integrity: Fix bio_integrity_verify segment start bug
  block: remove unrelated header files and export symbol
  blk-mq: uses page->list incorrectly
  blk-mq: use __smp_call_function_single directly
  btrfs: fix missing increment of bi_remaining
  Revert "block: Warn and free bio if bi_end_io is not set"
  block: Warn and free bio if bi_end_io is not set
  blk-mq: fix initializing request's start time
  block: blk-mq: don't export blk_mq_free_queue()
  block: blk-mq: make blk_sync_queue support mq
  block: blk-mq: support draining mq queue
  dm cache: increment bi_remaining when bi_end_io is restored
  block: fixup for generic bio chaining
  block: Really silence spurious compiler warnings
  block: Silence spurious compiler warnings
  block: Kill bio_pair_split()
  ...
2014-01-30 11:19:05 -08:00
NeilBrown 41a336e011 md/raid1: fix request counting bug in new 'barrier' code.
The new iobarrier implementation in raid1 (which keeps normal writes
and resync activity separate) counts every request what is not before
the current resync point in either next_window_requests or
current_window_requests.
It flags that the request is counted by setting ->start_next_window.

allow_barrier follows this model exactly and decrements one of the
*_window_requests if and only if ->start_next_window is set.

However wait_barrier(), which increments *_window_requests uses a
slightly different test for setting -.start_next_window (which is set
from the return value of this function).
So there is a possibility of the counts getting out of sync, and this
leads to the resync hanging.

So change wait_barrier() to return a non-zero value in exactly the
same cases that it increments *_window_requests.

But was introduced in 3.13-rc1.

Reported-by: Bruno Wolff III <bruno@wolff.to>
URL: https://bugzilla.kernel.org/show_bug.cgi?id=68061
Fixes: 79ef3a8aa1
Cc: majianpeng <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-01-14 16:44:07 +11:00
Kent Overstreet 4f024f3797 block: Abstract out bvec iterator
Immutable biovecs are going to require an explicit iterator. To
implement immutable bvecs, a later patch is going to add a bi_bvec_done
member to this struct; for now, this patch effectively just renames
things.

Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Ed L. Cashin" <ecashin@coraid.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Lars Ellenberg <drbd-dev@lists.linbit.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Yehuda Sadeh <yehuda@inktank.com>
Cc: Sage Weil <sage@inktank.com>
Cc: Alex Elder <elder@inktank.com>
Cc: ceph-devel@vger.kernel.org
Cc: Joshua Morris <josh.h.morris@us.ibm.com>
Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: dm-devel@redhat.com
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux390@de.ibm.com
Cc: Boaz Harrosh <bharrosh@panasas.com>
Cc: Benny Halevy <bhalevy@tonian.com>
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Ben Myers <bpm@sgi.com>
Cc: xfs@oss.sgi.com
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Guo Chao <yan@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: "Roger Pau Monné" <roger.pau@citrix.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: Ian Campbell <Ian.Campbell@citrix.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchand@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Peng Tao <tao.peng@emc.com>
Cc: Andy Adamson <andros@netapp.com>
Cc: fanchaoting <fanchaoting@cn.fujitsu.com>
Cc: Jie Liu <jeff.liu@oracle.com>
Cc: Sunil Mushran <sunil.mushran@gmail.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Namjae Jeon <namjae.jeon@samsung.com>
Cc: Pankaj Kumar <pankaj.km@samsung.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>6
2013-11-23 22:33:47 -08:00
Linus Torvalds 6d6e352c80 md update for 3.13.
Mostly optimisations and obscure bug fixes.
  - raid5 gets less lock contention
  - raid1 gets less contention between normal-io and resync-io
    during resync.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIVAwUAUovzDznsnt1WYoG5AQJ1pQ//bDuXadoJ5dwjWjVxFOKoQ9j/9joEI0yH
 XTApD3ADKckdBc4TSLOIbCNLW1Pbe23HlOI/GjCiJ/7mePL3OwHd7Fx8Rfq3BubV
 f7NgjVwu8nwYD0OXEZsshImptEtrbYwQdy+qlKcHXcZz1MUfR+Egih3r/ouTEfEt
 FNq/6MpyN0IKSY82xP/jFZgesBucgKz/YOUIbwClxm7UiyISKvWQLBIAfLB3dyI3
 HoEdEzQX6I56Rw0mkSUG4Mk+8xx/8twxL+yqEUqfdJREWuB56Km8kl8y/e465Nk0
 ZZg6j/TrslVEwbEeVMx0syvYcaAWFZ4X2jdKfo1lI0g9beZp7H1GRF8yR1s2t/h4
 g/vb55MEN++4LPaE9ut4z7SG2yLyGkZgFTzTjyq5of+DFL0cayO7wXxbgpcD7JYf
 Doef/OSa6csKiGiJI48iQa08Bolmz9ZWzZQXhAthKfFQ9Rv+GEtIAi4kLR8EZPbu
 0/FL1ylYNUY9O7p0g+iy9Kcoc+xW36I95pPZf8pO8GFcXTjyuCCBVh/SNvFZZHPl
 3xk3aZJknAEID8VrVG2IJPkeDI8WK8YxmpU/nARCoytn07Df6Ye8jGvLdR8pL3lB
 TIZV6eRY4yciB8LtoK9Kg4XTmOMhBtjt4c3znkljp98vhOQQb/oHN+BXMGcwqvr9
 fk0KGrg31VA=
 =8RCg
 -----END PGP SIGNATURE-----

Merge tag 'md/3.13' of git://neil.brown.name/md

Pull md update from Neil Brown:
 "Mostly optimisations and obscure bug fixes.
   - raid5 gets less lock contention
   - raid1 gets less contention between normal-io and resync-io during
     resync"

* tag 'md/3.13' of git://neil.brown.name/md:
  md/raid5: Use conf->device_lock protect changing of multi-thread resources.
  md/raid5: Before freeing old multi-thread worker, it should flush them.
  md/raid5: For stripe with R5_ReadNoMerge, we replace REQ_FLUSH with REQ_NOMERGE.
  UAPI: include <asm/byteorder.h> in linux/raid/md_p.h
  raid1: Rewrite the implementation of iobarrier.
  raid1: Add some macros to make code clearly.
  raid1: Replace raise_barrier/lower_barrier with freeze_array/unfreeze_array when reconfiguring the array.
  raid1: Add a field array_frozen to indicate whether raid in freeze state.
  md: Convert use of typedef ctl_table to struct ctl_table
  md/raid5: avoid deadlock when raid5 array has unack badblocks during md_stop_writes.
  md: use MD_RECOVERY_INTR instead of kthread_should_stop in resync thread.
  md: fix some places where mddev_lock return value is not checked.
  raid5: Retry R5_ReadNoMerge flag when hit a read error.
  raid5: relieve lock contention in get_active_stripe()
  raid5: relieve lock contention in get_active_stripe()
  wait: add wait_event_cmd()
  md/raid5.c: add proper locking to error path of raid5_start_reshape.
  md: fix calculation of stacking limits on level change.
  raid5: Use slow_path to release stripe when mddev->thread is null
2013-11-20 13:05:25 -08:00
majianpeng 79ef3a8aa1 raid1: Rewrite the implementation of iobarrier.
There is an iobarrier in raid1 because of contention between normal IO and
resync IO.  It suspends all normal IO when resync/recovery happens.

However if normal IO is out side the resync window, there is no contention.
So this patch changes the barrier mechanism to only block IO that
could contend with the resync that is currently happening.

We partition the whole space into five parts.
|---------|-----------|------------|----------------|-------|
        start   next_resync   start_next_window    end_window

start + RESYNC_WINDOW = next_resync
next_resync + NEXT_NORMALIO_DISTANCE = start_next_window
start_next_window + NEXT_NORMALIO_DISTANCE = end_window

Firstly we introduce some concepts:

1 - RESYNC_WINDOW: For resync, there are 32 resync requests at most at the
      same time. A sync request is RESYNC_BLOCK_SIZE(64*1024).
      So the RESYNC_WINDOW is 32 * RESYNC_BLOCK_SIZE, that is 2MB.
2 - NEXT_NORMALIO_DISTANCE: the distance between next_resync
      and start_next_window.  It also indicates the distance between
      start_next_window and end_window.
      It is currently 3 * RESYNC_WINDOW_SIZE but could be tuned if
      this turned out not to be optimal.
3 - next_resync: the next sector at which we will do sync IO.
4 - start: a position which is at most RESYNC_WINDOW before
      next_resync.
5 - start_next_window:  a position which is NEXT_NORMALIO_DISTANCE
      beyond next_resync.  Normal-io after this position doesn't need to
      wait for resync-io to complete.
6 - end_window:  a position which is 2 * NEXT_NORMALIO_DISTANCE beyond
      next_resync.  This also doesn't need to wait, but is counted
      differently.
7 - current_window_requests:  the count of normalIO between
      start_next_window and end_window.
8 - next_window_requests: the count of normalIO after end_window.

NormalIO will be partitioned into four types:

NormIO1:  the end sector of bio is smaller or equal the start
NormIO2:  the start sector of bio larger or equal to end_window
NormIO3:  the start sector of bio larger or equal to
          start_next_window.
NormIO4:  the location between start_next_window and end_window

|--------|-----------|--------------------|----------------|-------------|
    | start   |   next_resync   |  start_next_window   |  end_window |
 NormIO1   NormIO4            NormIO4                NormIO3      NormIO2

For NormIO1, we don't need any io barrier.
For NormIO4, we used a similar approach to the original iobarrier
    mechanism.  The normalIO and resyncIO must be kept separate.
For NormIO2/3, we add two fields to struct r1conf: "current_window_requests"
    and "next_window_requests". They indicate the count of active
    requests in the two window.
    For these, we don't wait for resync io to complete.

For resync action, if there are NormIO4s, we must wait for it.
If not, we can proceed.
But if resync action reaches start_next_window and
current_window_requests > 0 (that is there are NormIO3s), we must
wait until the current_window_requests becomes zero.
When current_window_requests becomes zero,  start_next_window also
moves forward. Then current_window_requests will replaced by
next_window_requests.

There is a problem which when and how to change from NormIO2 to
NormIO3.  Only then can sync action progress.

We add a field in struct r1conf "start_next_window".

A: if start_next_window == MaxSector, it means there are no NormIO2/3.
   So start_next_window = next_resync + NEXT_NORMALIO_DISTANCE
B: if current_window_requests == 0 && next_window_requests != 0, it
   means start_next_window move to end_window

There is another problem which how to differentiate between
old NormIO2(now it is NormIO3) and NormIO2.
For example, there are many bios which are NormIO2 and a bio which is
NormIO3. NormIO3 firstly completed, so the bios of NormIO2 became NormIO3.

We add a field in struct r1bio "start_next_window".
This is used to record the position conf->start_next_window when the call
to wait_barrier() is made in make_request().

In allow_barrier(), we check the conf->start_next_window.
If r1bio->stat_next_window == conf->start_next_window, it means
there is no transition between NormIO2 and NormIO3.
If r1bio->start_next_window != conf->start_next_window, it mean
there was a transition between NormIO2 and NormIO3.  There can only
have been one transition.  So it only means the bio is old NormIO2.

For one bio, there may be many r1bio's. So we make sure
all the r1bio->start_next_window are the same value.
If we met blocked_dev in make_request(), it must call allow_barrier
and wait_barrier. So the former and the later value of
conf->start_next_window will be change.
If there are many r1bio's with differnet start_next_window,
for the relevant bio, it depend on the last value of r1bio.
It will cause error. To avoid this, we must wait for previous r1bios
to complete.

Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-11-19 15:19:18 +11:00
majianpeng 8e005f7c02 raid1: Add some macros to make code clearly.
In a subsequent patch, we'll use some const parameters.
Using macros will make the code clearly.

Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-11-19 15:19:18 +11:00
majianpeng 07169fd478 raid1: Replace raise_barrier/lower_barrier with freeze_array/unfreeze_array when reconfiguring the array.
We used to use raise_barrier to suspend normal IO while we reconfigure
the array.  However raise_barrier will soon only suspend some normal
IO, not all.  So we need something else.
Change it to use freeze_array.
But freeze_array not only suspends normal io, it also suspends
resync io.
For the place where call raise_barrier for reconfigure, it isn't a
problem.

Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-11-19 15:19:18 +11:00
majianpeng b364e3d048 raid1: Add a field array_frozen to indicate whether raid in freeze state.
Because the following patch will rewrite the content between normal IO
and resync IO. So we used a parameter to indicate whether raid is in freeze
array.

Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-11-19 15:19:18 +11:00
Kent Overstreet 6678d83f18 block: Consolidate duplicated bio_trim() implementations
Someone cut and pasted md's md_trim_bio() into xen-blkfront.c. Come on,
we should know better than this.

Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Neil Brown <neilb@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-11-08 09:02:31 -07:00
Lukasz Dorau 61e4947c99 md: Fix skipping recovery for read-only arrays.
Since:
        commit 7ceb17e87b
        md: Allow devices to be re-added to a read-only array.

spares are activated on a read-only array. In case of raid1 and raid10
personalities it causes that not-in-sync devices are marked in-sync
without checking if recovery has been finished.

If a read-only array is degraded and one of its devices is not in-sync
(because the array has been only partially recovered) recovery will be skipped.

This patch adds checking if recovery has been finished before marking a device
in-sync for raid1 and raid10 personalities. In case of raid5 personality
such condition is already present (at raid5.c:6029).

Bug was introduced in 3.10 and causes data corruption.

Cc: stable@vger.kernel.org
Signed-off-by: Pawel Baldysiak <pawel.baldysiak@intel.com>
Signed-off-by: Lukasz Dorau <lukasz.dorau@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-10-24 12:55:17 +11:00
NeilBrown 30bc9b5387 md/raid1: fix bio handling problems in process_checks()
Recent change to use bio_copy_data() in raid1 when repairing
an array is faulty.

The underlying may have changed the bio in various ways using
bio_advance and these need to be undone not just for the 'sbio' which
is being copied to, but also the 'pbio' (primary) which is being
copied from.

So perform the reset on all bios that were read from and do it early.

This also ensure that the sbio->bi_io_vec[j].bv_len passed to
memcmp is correct.

This fixes a crash during a 'check' of a RAID1 array.  The crash was
introduced in 3.10 so this is suitable for 3.10-stable.

Cc: stable@vger.kernel.org (3.10)
Reported-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-07-18 14:18:04 +10:00
Jonathan Brassow 9092c02d94 DM RAID: Add ability to restore transiently failed devices on resume
DM RAID: Add ability to restore transiently failed devices on resume

This patch adds code to the resume function to check over the devices
in the RAID array.  If any are found to be marked as failed and their
superblocks can be read, an attempt is made to reintegrate them into
the array.  This allows the user to refresh the array with a simple
suspend and resume of the array - rather than having to load a
completely new table, allocate and initialize all the structures and
throw away the old instantiation.

Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-06-14 08:10:24 +10:00
Linus Torvalds 82ea4be61f A few bugfixes for md
Some tagged for -stable.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIVAwUAUbl1mznsnt1WYoG5AQKGlQ//eixdawF+DUK5hadqZ9EDni+BAVzb7m69
 +zU6ilQ7UOh7bxtAoJqrgFVykK+LG8wvYsEBwMjB9oRDLA96/YDXXiBzXHvd6mGh
 g271lwMTQ9h+O8L6psLUX6qsrH3i7SJmF8ySPKi6Fe5ruT8ToOB8Ii8XQebEZdXo
 VOzRz2VgSTcBdrTyKPDsBJByDQX36hsK8Gs5YSl5F3nvyV4dvGWMlyoTF1TRRt9K
 YCCZ8pSk3kTXaSdl0syrJxI17pEUC8mtcA01S6JD/GV49CGO8LYAckVJ4ijWw7VV
 IGGlH0DsYSMgJ7yyuLz4ifaqRnsWsAGW0WyiZYYKvjtNUiyBuBBbo2cQ1lNkR5p4
 jnLhpJJVh0hLCPn6wcCWIBIdT/mFaBpXkvZPd3ks5kefGXsfpVPm0fK8r0fzkzgy
 tJCZtZFZHeK1qsgaDsiS76S2ZNcFh0HQVIa84Q200/XUDgh8dYlD0+7oIsVu0UBZ
 72Aop+Ak9+k4vKTvB9/hpcY+Rt0MI7zKewXBDSDK1sXhIHLQqv8rCEeNYiuPPqr/
 ghRukn+C/Wtr7JYBsX+jMjxtmSzYtwBOihwLoZCH9pp3C5jTvyQk9s8n1j13V2RK
 sAFtfpCVoQ8tTa7IITKRMfftzHn1WiPlPsj6VbigJ6A4N98csgv7x2rF7FyqcF0X
 aoj69nQ3i/4=
 =8iy3
 -----END PGP SIGNATURE-----

Merge tag 'md-3.10-fixes' of git://neil.brown.name/md

Pull md bugfixes from Neil Brown:
 "A few bugfixes for md

  Some tagged for -stable"

* tag 'md-3.10-fixes' of git://neil.brown.name/md:
  md/raid1,5,10: Disable WRITE SAME until a recovery strategy is in place
  md/raid1,raid10: use freeze_array in place of raise_barrier in various places.
  md/raid1: consider WRITE as successful only if at least one non-Faulty and non-rebuilding drive completed it.
  md: md_stop_writes() should always freeze recovery.
2013-06-13 10:13:29 -07:00
H. Peter Anvin 5026d7a9b2 md/raid1,5,10: Disable WRITE SAME until a recovery strategy is in place
There are cases where the kernel will believe that the WRITE SAME
command is supported by a block device which does not, in fact,
support WRITE SAME.  This currently happens for SATA drivers behind a
SAS controller, but there are probably a hundred other ways that can
happen, including drive firmware bugs.

After receiving an error for WRITE SAME the block layer will retry the
request as a plain write of zeroes, but mdraid will consider the
failure as fatal and consider the drive failed.  This has the effect
that all the mirrors containing a specific set of data are each
offlined in very rapid succession resulting in data loss.

However, just bouncing the request back up to the block layer isn't
ideal either, because the whole initial request-retry sequence should
be inside the write bitmap fence, which probably means that md needs
to do its own conversion of WRITE SAME to write zero.

Until the failure scenario has been sorted out, disable WRITE SAME for
raid1, raid5, and raid10.

[neilb: added raid5]

This patch is appropriate for any -stable since 3.7 when write_same
support was added.

Cc: stable@vger.kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-06-13 14:49:54 +10:00
NeilBrown e2d5992522 md/raid1,raid10: use freeze_array in place of raise_barrier in various places.
Various places in raid1 and raid10 are calling raise_barrier when they
really should call freeze_array.
The former is only intended to be called from "make_request".
The later has extra checks for 'nr_queued' and makes a call to
flush_pending_writes(), so it is safe to call it from within the
management thread.

Using raise_barrier will sometimes deadlock.  Using freeze_array
should not.

As 'freeze_array' currently expects one request to be pending (in
handle_read_error - the only previous caller), we need to pass
it the number of pending requests (extra) to ignore.

The deadlock was made particularly noticeable by commits
050b66152f (raid10) and 6b740b8d79 (raid1) which
appeared in 3.4, so the fix is appropriate for any -stable
kernel since then.

This patch probably won't apply directly to some early kernels and
will need to be applied by hand.

Cc: stable@vger.kernel.org
Reported-by: Alexander Lyakas <alex.bolshoy@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-06-13 13:40:48 +10:00
Alex Lyakas 3056e3aec8 md/raid1: consider WRITE as successful only if at least one non-Faulty and non-rebuilding drive completed it.
Without that fix, the following scenario could happen:

- RAID1 with drives A and B; drive B was freshly-added and is rebuilding
- Drive A fails
- WRITE request arrives to the array. It is failed by drive A, so
r1_bio is marked as R1BIO_WriteError, but the rebuilding drive B
succeeds in writing it, so the same r1_bio is marked as
R1BIO_Uptodate.
- r1_bio arrives to handle_write_finished, badblocks are disabled,
md_error()->error() does nothing because we don't fail the last drive
of raid1
- raid_end_bio_io()  calls call_bio_endio()
- As a result, in call_bio_endio():
        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
                clear_bit(BIO_UPTODATE, &bio->bi_flags);
this code doesn't clear the BIO_UPTODATE flag, and the whole master
WRITE succeeds, back to the upper layer.

So we returned success to the upper layer, even though we had written
the data onto the rebuilding drive only. But when we want to read the
data back, we would not read from the rebuilding drive, so this data
is lost.

[neilb - applied identical change to raid10 as well]

This bug can result in lost data, so it is suitable for any
-stable kernel.

Cc: stable@vger.kernel.org
Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-06-13 13:20:03 +10:00