Commit graph

386 commits

Author SHA1 Message Date
Li Zefan 39bd0d15ec cpuset: initialize top_cpuset's configured masks at mount
We now have to support different behaviors for default hierachy and
legacy hiearchy, top_cpuset's configured masks need to be initialized
accordingly.

Suppose we've offlined cpu1.

On default hierarchy:

	# mount -t cgroup -o __DEVEL__sane_behavior xxx /cpuset
	# cat /cpuset/cpuset.cpus
	0-15

On legacy hierarchy:

	# mount -t cgroup xxx /cpuset
	# cat /cpuset/cpuset.cpus
	0,2-15

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:17 -04:00
Li Zefan 8b5f1c52dc cpuset: use effective cpumask to build sched domains
We're going to have separate user-configured masks and effective ones.

Eventually configured masks can only be changed by writing cpuset.cpus
and cpuset.mems, and they won't be restricted by parent cpuset. While
effective masks reflect cpu/memory hotplug and hierachical restriction,
and these are the real masks that apply to the tasks in the cpuset.

We calculate effective mask this way:
  - top cpuset's effective_mask == online_mask, otherwise
  - cpuset's effective_mask == configured_mask & parent effective_mask,
    if the result is empty, it inherits parent effective mask.

Those behavior changes are for default hierarchy only. For legacy
hierarchy, effective_mask and configured_mask are the same, so we won't
break old interfaces.

We should partition sched domains according to effective_cpus, which
is the real cpulist that takes effects on tasks in the cpuset.

This won't introduce behavior change.

v2:
- Add a comment for the call of rebuild_sched_domains(), suggested
by Tejun.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:16 -04:00
Li Zefan 554b0d1c84 cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes empty
We're going to have separate user-configured masks and effective ones.

Eventually configured masks can only be changed by writing cpuset.cpus
and cpuset.mems, and they won't be restricted by parent cpuset. While
effective masks reflect cpu/memory hotplug and hierachical restriction,
and these are the real masks that apply to the tasks in the cpuset.

We calculate effective mask this way:
  - top cpuset's effective_mask == online_mask, otherwise
  - cpuset's effective_mask == configured_mask & parent effective_mask,
    if the result is empty, it inherits parent effective mask.

Those behavior changes are for default hierarchy only. For legacy
hierarchy, effective_mask and configured_mask are the same, so we won't
break old interfaces.

To make cs->effective_{cpus,mems} to be effective masks, we need to
  - update the effective masks at hotplug
  - update the effective masks at config change
  - take on ancestor's mask when the effective mask is empty

The last item is done here.

This won't introduce behavior change.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:16 -04:00
Li Zefan 734d45130c cpuset: update cs->effective_{cpus, mems} when config changes
We're going to have separate user-configured masks and effective ones.

Eventually configured masks can only be changed by writing cpuset.cpus
and cpuset.mems, and they won't be restricted by parent cpuset. While
effective masks reflect cpu/memory hotplug and hierachical restriction,
and these are the real masks that apply to the tasks in the cpuset.

We calculate effective mask this way:
  - top cpuset's effective_mask == online_mask, otherwise
  - cpuset's effective_mask == configured_mask & parent effective_mask,
    if the result is empty, it inherits parent effective mask.

Those behavior changes are for default hierarchy only. For legacy
hierarchy, effective_mask and configured_mask are the same, so we won't
break old interfaces.

To make cs->effective_{cpus,mems} to be effective masks, we need to
  - update the effective masks at hotplug
  - update the effective masks at config change
  - take on ancestor's mask when the effective mask is empty

The second item is done here. We don't need to treat root_cs specially
in update_cpumasks_hier().

This won't introduce behavior change.

v3:
- add a WARN_ON() to check if effective masks are the same with configured
  masks on legacy hierarchy.
- pass trialcs->cpus_allowed to update_cpumasks_hier() and add a comment for
  it. Similar change for update_nodemasks_hier(). Suggested by Tejun.

v2:
- revise the comment in update_{cpu,node}masks_hier(), suggested by Tejun.
- fix to use @cp instead of @cs in these two functions.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:16 -04:00
Li Zefan 1344ab9c29 cpuset: update cpuset->effective_{cpus,mems} at hotplug
We're going to have separate user-configured masks and effective ones.

Eventually configured masks can only be changed by writing cpuset.cpus
and cpuset.mems, and they won't be restricted by parent cpuset. While
effective masks reflect cpu/memory hotplug and hierachical restriction,
and these are the real masks that apply to the tasks in the cpuset.

We calculate effective mask this way:
  - top cpuset's effective_mask == online_mask, otherwise
  - cpuset's effective_mask == configured_mask & parent effective_mask,
    if the result is empty, it inherits parent effective mask.

Those behavior changes are for default hierarchy only. For legacy
hierarchy, effective_mask and configured_mask are the same, so we won't
break old interfaces.

To make cs->effective_{cpus,mems} to be effective masks, we need to
  - update the effective masks at hotplug
  - update the effective masks at config change
  - take on ancestor's mask when the effective mask is empty

The first item is done here.

This won't introduce behavior change.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:15 -04:00
Li Zefan e2b9a3d7d8 cpuset: add cs->effective_cpus and cs->effective_mems
We're going to have separate user-configured masks and effective ones.

Eventually configured masks can only be changed by writing cpuset.cpus
and cpuset.mems, and they won't be restricted by parent cpuset. While
effective masks reflect cpu/memory hotplug and hierachical restriction,
and these are the real masks that apply to the tasks in the cpuset.

We calculate effective mask this way:
  - top cpuset's effective_mask == online_mask, otherwise
  - cpuset's effective_mask == configured_mask & parent effective_mask,
    if the result is empty, it inherits parent effective mask.

Those behavior changes are for default hierarchy only. For legacy
hierachy, effective_mask and configured_mask are the same, so we won't
break old interfaces.

This patch adds the effective masks to struct cpuset and initializes
them. The effective masks of the top cpuset is the same with configured
masks, and a child cpuset inherits its parent's effective masks.

This won't introduce behavior change.

v2:
- s/real_{mems,cpus}_allowed/effective_{mems,cpus}, suggested by Tejun.
- don't init effective masks in cpuset_css_online() if !cgroup_on_dfl.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-07-09 15:56:15 -04:00
Tejun Heo aa6ec29bee cgroup: remove sane_behavior support on non-default hierarchies
sane_behavior has been used as a development vehicle for the default
unified hierarchy.  Now that the default hierarchy is in place, the
flag became redundant and confusing as its usage is allowed on all
hierarchies.  There are gonna be either the default hierarchy or
legacy ones.  Let's make that clear by removing sane_behavior support
on non-default hierarchies.

This patch replaces cgroup_sane_behavior() with cgroup_on_dfl().  The
comment on top of CGRP_ROOT_SANE_BEHAVIOR is moved to on top of
cgroup_on_dfl() with sane_behavior specific part dropped.

On the default and legacy hierarchies w/o sane_behavior, this
shouldn't cause any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
2014-07-09 10:08:08 -04:00
Tejun Heo 76bb5ab8f6 cpuset: break kernfs active protection in cpuset_write_resmask()
Writing to either "cpuset.cpus" or "cpuset.mems" file flushes
cpuset_hotplug_work so that cpu or memory hotunplug doesn't end up
migrating tasks off a cpuset after new resources are added to it.

As cpuset_hotplug_work calls into cgroup core via
cgroup_transfer_tasks(), this flushing adds the dependency to cgroup
core locking from cpuset_write_resmak().  This used to be okay because
cgroup interface files were protected by a different mutex; however,
8353da1f91 ("cgroup: remove cgroup_tree_mutex") simplified the
cgroup core locking and this dependency became a deadlock hazard -
cgroup file removal performed under cgroup core lock tries to drain
on-going file operation which is trying to flush cpuset_hotplug_work
blocked on the same cgroup core lock.

The locking simplification was done because kernfs added an a lot
easier way to deal with circular dependencies involving kernfs active
protection.  Let's use the same strategy in cpuset and break active
protection in cpuset_write_resmask().  While it isn't the prettiest,
this is a very rare, likely unique, situation which also goes away on
the unified hierarchy.

The commands to trigger the deadlock warning without the patch and the
lockdep output follow.

 localhost:/ # mount -t cgroup -o cpuset xxx /cpuset
 localhost:/ # mkdir /cpuset/tmp
 localhost:/ # echo 1 > /cpuset/tmp/cpuset.cpus
 localhost:/ # echo 0 > cpuset/tmp/cpuset.mems
 localhost:/ # echo $$ > /cpuset/tmp/tasks
 localhost:/ # echo 0 > /sys/devices/system/cpu/cpu1/online

  ======================================================
  [ INFO: possible circular locking dependency detected ]
  3.16.0-rc1-0.1-default+ #7 Not tainted
  -------------------------------------------------------
  kworker/1:0/32649 is trying to acquire lock:
   (cgroup_mutex){+.+.+.}, at: [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150

  but task is already holding lock:
   (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #2 (cpuset_hotplug_work){+.+...}:
  ...
  -> #1 (s_active#175){++++.+}:
  ...
  -> #0 (cgroup_mutex){+.+.+.}:
  ...

  other info that might help us debug this:

  Chain exists of:
    cgroup_mutex --> s_active#175 --> cpuset_hotplug_work

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(cpuset_hotplug_work);
				 lock(s_active#175);
				 lock(cpuset_hotplug_work);
    lock(cgroup_mutex);

   *** DEADLOCK ***

  2 locks held by kworker/1:0/32649:
   #0:  ("events"){.+.+.+}, at: [<ffffffff81085412>] process_one_work+0x192/0x520
   #1:  (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520

  stack backtrace:
  CPU: 1 PID: 32649 Comm: kworker/1:0 Not tainted 3.16.0-rc1-0.1-default+ #7
 ...
  Call Trace:
   [<ffffffff815a5f78>] dump_stack+0x72/0x8a
   [<ffffffff810c263f>] print_circular_bug+0x10f/0x120
   [<ffffffff810c481e>] check_prev_add+0x43e/0x4b0
   [<ffffffff810c4ee6>] validate_chain+0x656/0x7c0
   [<ffffffff810c53d2>] __lock_acquire+0x382/0x660
   [<ffffffff810c57a9>] lock_acquire+0xf9/0x170
   [<ffffffff815aa13f>] mutex_lock_nested+0x6f/0x380
   [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150
   [<ffffffff811129c0>] hotplug_update_tasks_insane+0x110/0x1d0
   [<ffffffff81112bbd>] cpuset_hotplug_update_tasks+0x13d/0x180
   [<ffffffff811148ec>] cpuset_hotplug_workfn+0x18c/0x630
   [<ffffffff810854d4>] process_one_work+0x254/0x520
   [<ffffffff810875dd>] worker_thread+0x13d/0x3d0
   [<ffffffff8108e0c8>] kthread+0xf8/0x100
   [<ffffffff815acaec>] ret_from_fork+0x7c/0xb0

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Li Zefan <lizefan@huawei.com>
Tested-by: Li Zefan <lizefan@huawei.com>
2014-07-01 16:42:28 -04:00
Gu Zheng 391acf970d cpuset,mempolicy: fix sleeping function called from invalid context
When runing with the kernel(3.15-rc7+), the follow bug occurs:
[ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586
[ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python
[ 9969.441175] INFO: lockdep is turned off.
[ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G       A      3.15.0-rc7+ #85
[ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012
[ 9969.706052]  ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18
[ 9969.795323]  ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c
[ 9969.884710]  ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000
[ 9969.974071] Call Trace:
[ 9970.003403]  [<ffffffff8162f523>] dump_stack+0x4d/0x66
[ 9970.065074]  [<ffffffff8109995a>] __might_sleep+0xfa/0x130
[ 9970.130743]  [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0
[ 9970.200638]  [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210
[ 9970.272610]  [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140
[ 9970.344584]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.409282]  [<ffffffff811b1385>] __mpol_dup+0xe5/0x150
[ 9970.471897]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.536585]  [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40
[ 9970.613763]  [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10
[ 9970.683660]  [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50
[ 9970.759795]  [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40
[ 9970.834885]  [<ffffffff8106a598>] do_fork+0xd8/0x380
[ 9970.894375]  [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0
[ 9970.969470]  [<ffffffff8106a8c6>] SyS_clone+0x16/0x20
[ 9971.030011]  [<ffffffff81642009>] stub_clone+0x69/0x90
[ 9971.091573]  [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b

The cause is that cpuset_mems_allowed() try to take
mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in
__mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is
under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock
protection region to protect the access to cpuset only in
current_cpuset_is_being_rebound(). So that we can avoid this bug.

This patch is a temporary solution that just addresses the bug
mentioned above, can not fix the long-standing issue about cpuset.mems
rebinding on fork():

"When the forker's task_struct is duplicated (which includes
 ->mems_allowed) and it races with an update to cpuset_being_rebound
 in update_tasks_nodemask() then the task's mems_allowed doesn't get
 updated. And the child task's mems_allowed can be wrong if the
 cpuset's nodemask changes before the child has been added to the
 cgroup's tasklist."

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable <stable@vger.kernel.org>
2014-06-25 09:42:11 -04:00
Linus Torvalds 14208b0ec5 Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "A lot of activities on cgroup side.  Heavy restructuring including
  locking simplification took place to improve the code base and enable
  implementation of the unified hierarchy, which currently exists behind
  a __DEVEL__ mount option.  The core support is mostly complete but
  individual controllers need further work.  To explain the design and
  rationales of the the unified hierarchy

        Documentation/cgroups/unified-hierarchy.txt

  is added.

  Another notable change is css (cgroup_subsys_state - what each
  controller uses to identify and interact with a cgroup) iteration
  update.  This is part of continuing updates on css object lifetime and
  visibility.  cgroup started with reference count draining on removal
  way back and is now reaching a point where csses behave and are
  iterated like normal refcnted objects albeit with some complexities to
  allow distinguishing the state where they're being deleted.  The css
  iteration update isn't taken advantage of yet but is planned to be
  used to simplify memcg significantly"

* 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits)
  cgroup: disallow disabled controllers on the default hierarchy
  cgroup: don't destroy the default root
  cgroup: disallow debug controller on the default hierarchy
  cgroup: clean up MAINTAINERS entries
  cgroup: implement css_tryget()
  device_cgroup: use css_has_online_children() instead of has_children()
  cgroup: convert cgroup_has_live_children() into css_has_online_children()
  cgroup: use CSS_ONLINE instead of CGRP_DEAD
  cgroup: iterate cgroup_subsys_states directly
  cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
  cgroup: move cgroup->serial_nr into cgroup_subsys_state
  cgroup: link all cgroup_subsys_states in their sibling lists
  cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
  cgroup: remove cgroup->parent
  device_cgroup: remove direct access to cgroup->children
  memcg: update memcg_has_children() to use css_next_child()
  memcg: remove tasks/children test from mem_cgroup_force_empty()
  cgroup: remove css_parent()
  cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
  cgroup: use cgroup->self.refcnt for cgroup refcnting
  ...
2014-06-09 15:03:33 -07:00
Mel Gorman 664eeddeef mm: page_alloc: use jump labels to avoid checking number_of_cpusets
If cpusets are not in use then we still check a global variable on every
page allocation.  Use jump labels to avoid the overhead.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:08 -07:00
Tejun Heo 5c9d535b89 cgroup: remove css_parent()
cgroup in general is moving towards using cgroup_subsys_state as the
fundamental structural component and css_parent() was introduced to
convert from using cgroup->parent to css->parent.  It was quite some
time ago and we're moving forward with making css more prominent.

This patch drops the trivial wrapper css_parent() and let the users
dereference css->parent.  While at it, explicitly mark fields of css
which are public and immutable.

v2: New usage from device_cgroup.c converted.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:48 -04:00
Tejun Heo 451af504df cgroup: replace cftype->write_string() with cftype->write()
Convert all cftype->write_string() users to the new cftype->write()
which maps directly to kernfs write operation and has full access to
kernfs and cgroup contexts.  The conversions are mostly mechanical.

* @css and @cft are accessed using of_css() and of_cft() accessors
  respectively instead of being specified as arguments.

* Should return @nbytes on success instead of 0.

* @buf is not trimmed automatically.  Trim if necessary.  Note that
  blkcg and netprio don't need this as the parsers already handle
  whitespaces.

cftype->write_string() has no user left after the conversions and
removed.

While at it, remove unnecessary local variable @p in
cgroup_subtree_control_write() and stale comment about
CGROUP_LOCAL_BUFFER_SIZE in cgroup_freezer.c.

This patch doesn't introduce any visible behavior changes.

v2: netprio was missing from conversion.  Converted.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: "David S. Miller" <davem@davemloft.net>
2014-05-13 12:16:21 -04:00
Tejun Heo ec903c0c85 cgroup: rename css_tryget*() to css_tryget_online*()
Unlike the more usual refcnting, what css_tryget() provides is the
distinction between online and offline csses instead of protection
against upping a refcnt which already reached zero.  cgroup is
planning to provide actual tryget which fails if the refcnt already
reached zero.  Let's rename the existing trygets so that they clearly
indicate that they're onliness.

I thought about keeping the existing names as-are and introducing new
names for the planned actual tryget; however, given that each
controller participates in the synchronization of the online state, it
seems worthwhile to make it explicit that these functions are about
on/offline state.

Rename css_tryget() to css_tryget_online() and css_tryget_from_dir()
to css_tryget_online_from_dir().  This is pure rename.

v2: cgroup_freezer grew new usages of css_tryget().  Update
    accordingly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
2014-05-13 12:11:01 -04:00
Fabian Frederick 12d3089c19 kernel/cpuset.c: convert printk to pr_foo()
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-06 07:31:14 -04:00
Fabian Frederick fc34ac1dc5 kernel/cpuset.c: kernel-doc fixes
This patch also converts seq_printf to seq_puts

Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-06 07:31:14 -04:00
Linus Torvalds 76ca7d1cca Merge branch 'akpm' (incoming from Andrew)
Merge first patch-bomb from Andrew Morton:
 - Various misc bits
 - kmemleak fixes
 - small befs, codafs, cifs, efs, freexxfs, hfsplus, minixfs, reiserfs things
 - fanotify
 - I appear to have become SuperH maintainer
 - ocfs2 updates
 - direct-io tweaks
 - a bit of the MM queue
 - printk updates
 - MAINTAINERS maintenance
 - some backlight things
 - lib/ updates
 - checkpatch updates
 - the rtc queue
 - nilfs2 updates
 - Small Documentation/ updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (237 commits)
  Documentation/SubmittingPatches: remove references to patch-scripts
  Documentation/SubmittingPatches: update some dead URLs
  Documentation/filesystems/ntfs.txt: remove changelog reference
  Documentation/kmemleak.txt: updates
  fs/reiserfs/super.c: add __init to init_inodecache
  fs/reiserfs: move prototype declaration to header file
  fs/hfsplus/attributes.c: add __init to hfsplus_create_attr_tree_cache()
  fs/hfsplus/extents.c: fix concurrent acess of alloc_blocks
  fs/hfsplus/extents.c: remove unused variable in hfsplus_get_block
  nilfs2: update project's web site in nilfs2.txt
  nilfs2: update MAINTAINERS file entries fix
  nilfs2: verify metadata sizes read from disk
  nilfs2: add FITRIM ioctl support for nilfs2
  nilfs2: add nilfs_sufile_trim_fs to trim clean segs
  nilfs2: implementation of NILFS_IOCTL_SET_SUINFO ioctl
  nilfs2: add nilfs_sufile_set_suinfo to update segment usage
  nilfs2: add struct nilfs_suinfo_update and flags
  nilfs2: update MAINTAINERS file entries
  fs/coda/inode.c: add __init to init_inodecache()
  BEFS: logging cleanup
  ...
2014-04-03 16:22:16 -07:00
Mel Gorman d26914d117 mm: optimize put_mems_allowed() usage
Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.

Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.

This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:20:58 -07:00
Linus Torvalds 32d01dc7be Merge branch 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "A lot updates for cgroup:

   - The biggest one is cgroup's conversion to kernfs.  cgroup took
     after the long abandoned vfs-entangled sysfs implementation and
     made it even more convoluted over time.  cgroup's internal objects
     were fused with vfs objects which also brought in vfs locking and
     object lifetime rules.  Naturally, there are places where vfs rules
     don't fit and nasty hacks, such as credential switching or lock
     dance interleaving inode mutex and cgroup_mutex with object serial
     number comparison thrown in to decide whether the operation is
     actually necessary, needed to be employed.

     After conversion to kernfs, internal object lifetime and locking
     rules are mostly isolated from vfs interactions allowing shedding
     of several nasty hacks and overall simplification.  This will also
     allow implmentation of operations which may affect multiple cgroups
     which weren't possible before as it would have required nesting
     i_mutexes.

   - Various simplifications including dropping of module support,
     easier cgroup name/path handling, simplified cgroup file type
     handling and task_cg_lists optimization.

   - Prepatory changes for the planned unified hierarchy, which is still
     a patchset away from being actually operational.  The dummy
     hierarchy is updated to serve as the default unified hierarchy.
     Controllers which aren't claimed by other hierarchies are
     associated with it, which BTW was what the dummy hierarchy was for
     anyway.

   - Various fixes from Li and others.  This pull request includes some
     patches to add missing slab.h to various subsystems.  This was
     triggered xattr.h include removal from cgroup.h.  cgroup.h
     indirectly got included a lot of files which brought in xattr.h
     which brought in slab.h.

  There are several merge commits - one to pull in kernfs updates
  necessary for converting cgroup (already in upstream through
  driver-core), others for interfering changes in the fixes branch"

* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
  cgroup: remove useless argument from cgroup_exit()
  cgroup: fix spurious lockdep warning in cgroup_exit()
  cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
  cgroup: break kernfs active_ref protection in cgroup directory operations
  cgroup: fix cgroup_taskset walking order
  cgroup: implement CFTYPE_ONLY_ON_DFL
  cgroup: make cgrp_dfl_root mountable
  cgroup: drop const from @buffer of cftype->write_string()
  cgroup: rename cgroup_dummy_root and related names
  cgroup: move ->subsys_mask from cgroupfs_root to cgroup
  cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
  cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
  cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
  cgroup: reorganize cgroup bootstrapping
  cgroup: relocate setting of CGRP_DEAD
  cpuset: use rcu_read_lock() to protect task_cs()
  cgroup_freezer: document freezer_fork() subtleties
  cgroup: update cgroup_transfer_tasks() to either succeed or fail
  cgroup: drop task_lock() protection around task->cgroups
  cgroup: update how a newly forked task gets associated with css_set
  ...
2014-04-03 13:05:42 -07:00
Tejun Heo 4d3bb511b5 cgroup: drop const from @buffer of cftype->write_string()
cftype->write_string() just passes on the writeable buffer from kernfs
and there's no reason to add const restriction on the buffer.  The
only thing const achieves is unnecessarily complicating parsing of the
buffer.  Drop const from @buffer.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>                                           
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-03-19 10:23:54 -04:00
Li Zefan b8dadcb58d cpuset: use rcu_read_lock() to protect task_cs()
We no longer use task_lock() to protect tsk->cgroups.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-03-03 17:28:36 -05:00
Li Zefan 99afb0fd5f cpuset: fix a race condition in __cpuset_node_allowed_softwall()
It's not safe to access task's cpuset after releasing task_lock().
Holding callback_mutex won't help.

Cc: <stable@vger.kernel.org>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-27 09:39:54 -05:00
Li Zefan 4729583006 cpuset: fix a locking issue in cpuset_migrate_mm()
I can trigger a lockdep warning:

  # mount -t cgroup -o cpuset xxx /cgroup
  # mkdir /cgroup/cpuset
  # mkdir /cgroup/tmp
  # echo 0 > /cgroup/tmp/cpuset.cpus
  # echo 0 > /cgroup/tmp/cpuset.mems
  # echo 1 > /cgroup/tmp/cpuset.memory_migrate
  # echo $$ > /cgroup/tmp/tasks
  # echo 1 > /cgruop/tmp/cpuset.mems

  ===============================
  [ INFO: suspicious RCU usage. ]
  3.14.0-rc1-0.1-default+ #32 Not tainted
  -------------------------------
  include/linux/cgroup.h:682 suspicious rcu_dereference_check() usage!
  ...
    [<ffffffff81582174>] dump_stack+0x72/0x86
    [<ffffffff810b8f01>] lockdep_rcu_suspicious+0x101/0x140
    [<ffffffff81105ba1>] cpuset_migrate_mm+0xb1/0xe0
  ...

We used to hold cgroup_mutex when calling cpuset_migrate_mm(), but now
we hold cpuset_mutex, which causes task_css() to complain.

This is not a false-positive but a real issue.

Holding cpuset_mutex won't prevent a task from migrating to another
cpuset, and it won't prevent the original task->cgroup from destroying
during this change.

Fixes: 5d21cc2db0 (cpuset: replace cgroup_mutex locking with cpuset internal locking)
Cc: <stable@vger.kernel.org> # 3.9+
Signed-off-by: Li Zefan <lizefan@huawei.com>
Sigend-off-by: Tejun Heo <tj@kernel.org>
2014-02-27 09:35:59 -05:00
Tejun Heo 57fce0a68e cpuset: don't use cgroup_taskset_cur_css()
cgroup_taskset_cur_css() will be removed during the planned
resturcturing of migration path.  The only use of
cgroup_taskset_cur_css() is finding out the old cgroup_subsys_state of
the leader in cpuset_attach().  This usage can easily be removed by
remembering the old value from cpuset_can_attach().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:41 -05:00
Tejun Heo 924f0d9a20 cgroup: drop @skip_css from cgroup_taskset_for_each()
If !NULL, @skip_css makes cgroup_taskset_for_each() skip the matching
css.  The intention of the interface is to make it easy to skip css's
(cgroup_subsys_states) which already match the migration target;
however, this is entirely unnecessary as migration taskset doesn't
include tasks which are already in the target cgroup.  Drop @skip_css
from cgroup_taskset_for_each().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
2014-02-13 06:58:41 -05:00
Tejun Heo d66393e54e cpuset: use css_task_iter_start/next/end() instead of css_scan_tasks()
Now that css_task_iter_start/next_end() supports blocking while
iterating, there's no reason to use css_scan_tasks() which is more
cumbersome to use and scheduled to be removed.

Convert all css_scan_tasks() usages in cpuset to
css_task_iter_start/next/end().  This simplifies the code by removing
heap allocation and callbacks.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:40 -05:00
Tejun Heo 07bc356ed2 cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count()
cgroup_task_count() read-locks css_set_lock and walks all tasks to
count them and then returns the result.  The only thing all the users
want is determining whether the cgroup is empty or not.  This patch
implements cgroup_has_tasks() which tests whether cgroup->cset_links
is empty, replaces all cgroup_task_count() usages and unexports it.

Note that the test isn't synchronized.  This is the same as before.
The test has always been racy.

This will help planned css_set locking update.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-13 06:58:39 -05:00
Tejun Heo e61734c55c cgroup: remove cgroup->name
cgroup->name handling became quite complicated over time involving
dedicated struct cgroup_name for RCU protection.  Now that cgroup is
on kernfs, we can drop all of it and simply use kernfs_name/path() and
friends.  Replace cgroup->name and all related code with kernfs
name/path constructs.

* Reimplement cgroup_name() and cgroup_path() as thin wrappers on top
  of kernfs counterparts, which involves semantic changes.
  pr_cont_cgroup_name() and pr_cont_cgroup_path() added.

* cgroup->name handling dropped from cgroup_rename().

* All users of cgroup_name/path() updated to the new semantics.  Users
  which were formatting the string just to printk them are converted
  to use pr_cont_cgroup_name/path() instead, which simplifies things
  quite a bit.  As cgroup_name() no longer requires RCU read lock
  around it, RCU lockings which were protecting only cgroup_name() are
  removed.

v2: Comment above oom_info_lock updated as suggested by Michal.

v3: dummy_top doesn't have a kn associated and
    pr_cont_cgroup_name/path() ended up calling the matching kernfs
    functions with NULL kn leading to oops.  Test for NULL kn and
    print "/" if so.  This issue was reported by Fengguang Wu.

v4: Rebased on top of 0ab02ca8f8 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-12 09:29:50 -05:00
Tejun Heo 073219e995 cgroup: clean up cgroup_subsys names and initialization
cgroup_subsys is a bit messier than it needs to be.

* The name of a subsys can be different from its internal identifier
  defined in cgroup_subsys.h.  Most subsystems use the matching name
  but three - cpu, memory and perf_event - use different ones.

* cgroup_subsys_id enums are postfixed with _subsys_id and each
  cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
  included throughout various subsystems, it doesn't and shouldn't
  have claim on such generic names which don't have any qualifier
  indicating that they belong to cgroup.

* cgroup_subsys->subsys_id should always equal the matching
  cgroup_subsys_id enum; however, we require each controller to
  initialize it and then BUG if they don't match, which is a bit
  silly.

This patch cleans up cgroup_subsys names and initialization by doing
the followings.

* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
  cgroup_subsys with _cgrp_subsys.

* With the above, renaming subsys identifiers to match the userland
  visible names doesn't cause any naming conflicts.  All non-matching
  identifiers are renamed to match the official names.

  cpu_cgroup -> cpu
  mem_cgroup -> memory
  perf -> perf_event

* controllers no longer need to initialize ->subsys_id and ->name.
  They're generated in cgroup core and set automatically during boot.

* Redundant cgroup_subsys declarations removed.

* While updating BUG_ON()s in cgroup_init_early(), convert them to
  WARN()s.  BUGging that early during boot is stupid - the kernel
  can't print anything, even through serial console and the trap
  handler doesn't even link stack frame properly for back-tracing.

This patch doesn't introduce any behavior changes.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00
Tejun Heo 2da8ca822d cgroup: replace cftype->read_seq_string() with cftype->seq_show()
In preparation of conversion to kernfs, cgroup file handling is
updated so that it can be easily mapped to kernfs.  This patch
replaces cftype->read_seq_string() with cftype->seq_show() which is
not limited to single_open() operation and will map directcly to
kernfs seq_file interface.

The conversions are mechanical.  As ->seq_show() doesn't have @css and
@cft, the functions which make use of them are converted to use
seq_css() and seq_cft() respectively.  In several occassions, e.f. if
it has seq_string in its name, the function name is updated to fit the
new method better.

This patch does not introduce any behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
2013-12-05 12:28:04 -05:00
Tejun Heo 51ffe41178 cpuset: convert away from cftype->read()
In preparation of conversion to kernfs, cgroup file handling is being
consolidated so that it can be easily mapped to the seq_file based
interface of kernfs.

All users of cftype->read() can be easily served, usually better, by
seq_file and other methods.  Rename cpuset_common_file_read() to
cpuset_common_read_seq_string() and convert it to use
read_seq_string() interface instead.  This not only simplifies the
code but also makes it more versatile.  Before, the file couldn't
output if the result is longer than PAGE_SIZE.  After the conversion,
seq_file automatically grows the buffer until the output can fit.

This patch doesn't make any visible behavior changes except for being
able to handle output larger than PAGE_SIZE.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-12-05 12:28:02 -05:00
Peter Zijlstra 0fc0287c9e cpuset: Fix memory allocator deadlock
Juri hit the below lockdep report:

[    4.303391] ======================================================
[    4.303392] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ]
[    4.303394] 3.12.0-dl-peterz+ #144 Not tainted
[    4.303395] ------------------------------------------------------
[    4.303397] kworker/u4:3/689 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
[    4.303399]  (&p->mems_allowed_seq){+.+...}, at: [<ffffffff8114e63c>] new_slab+0x6c/0x290
[    4.303417]
[    4.303417] and this task is already holding:
[    4.303418]  (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff812d2dfb>] blk_execute_rq_nowait+0x5b/0x100
[    4.303431] which would create a new lock dependency:
[    4.303432]  (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...}
[    4.303436]

[    4.303898] the dependencies between the lock to be acquired and SOFTIRQ-irq-unsafe lock:
[    4.303918] -> (&p->mems_allowed_seq){+.+...} ops: 2762 {
[    4.303922]    HARDIRQ-ON-W at:
[    4.303923]                     [<ffffffff8108ab9a>] __lock_acquire+0x65a/0x1ff0
[    4.303926]                     [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303929]                     [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303931]                     [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303933]    SOFTIRQ-ON-W at:
[    4.303933]                     [<ffffffff8108abcc>] __lock_acquire+0x68c/0x1ff0
[    4.303935]                     [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303940]                     [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303955]                     [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303959]    INITIAL USE at:
[    4.303960]                    [<ffffffff8108a884>] __lock_acquire+0x344/0x1ff0
[    4.303963]                    [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303966]                    [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303969]                    [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303972]  }

Which reports that we take mems_allowed_seq with interrupts enabled. A
little digging found that this can only be from
cpuset_change_task_nodemask().

This is an actual deadlock because an interrupt doing an allocation will
hit get_mems_allowed()->...->__read_seqcount_begin(), which will spin
forever waiting for the write side to complete.

Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Reported-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
2013-11-27 13:52:47 -05:00
Linus Torvalds 32dad03d16 Merge branch 'for-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "A lot of activities on the cgroup front.  Most changes aren't visible
  to userland at all at this point and are laying foundation for the
  planned unified hierarchy.

   - The biggest change is decoupling the lifetime management of css
     (cgroup_subsys_state) from that of cgroup's.  Because controllers
     (cpu, memory, block and so on) will need to be dynamically enabled
     and disabled, css which is the association point between a cgroup
     and a controller may come and go dynamically across the lifetime of
     a cgroup.  Till now, css's were created when the associated cgroup
     was created and stayed till the cgroup got destroyed.

     Assumptions around this tight coupling permeated through cgroup
     core and controllers.  These assumptions are gradually removed,
     which consists bulk of patches, and css destruction path is
     completely decoupled from cgroup destruction path.  Note that
     decoupling of creation path is relatively easy on top of these
     changes and the patchset is pending for the next window.

   - cgroup has its own event mechanism cgroup.event_control, which is
     only used by memcg.  It is overly complex trying to achieve high
     flexibility whose benefits seem dubious at best.  Going forward,
     new events will simply generate file modified event and the
     existing mechanism is being made specific to memcg.  This pull
     request contains prepatory patches for such change.

   - Various fixes and cleanups"

Fixed up conflict in kernel/cgroup.c as per Tejun.

* 'for-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (69 commits)
  cgroup: fix cgroup_css() invocation in css_from_id()
  cgroup: make cgroup_write_event_control() use css_from_dir() instead of __d_cgrp()
  cgroup: make cgroup_event hold onto cgroup_subsys_state instead of cgroup
  cgroup: implement CFTYPE_NO_PREFIX
  cgroup: make cgroup_css() take cgroup_subsys * instead and allow NULL subsys
  cgroup: rename cgroup_css_from_dir() to css_from_dir() and update its syntax
  cgroup: fix cgroup_write_event_control()
  cgroup: fix subsystem file accesses on the root cgroup
  cgroup: change cgroup_from_id() to css_from_id()
  cgroup: use css_get() in cgroup_create() to check CSS_ROOT
  cpuset: remove an unncessary forward declaration
  cgroup: RCU protect each cgroup_subsys_state release
  cgroup: move subsys file removal to kill_css()
  cgroup: factor out kill_css()
  cgroup: decouple cgroup_subsys_state destruction from cgroup destruction
  cgroup: replace cgroup->css_kill_cnt with ->nr_css
  cgroup: bounce cgroup_subsys_state ref kill confirmation to a work item
  cgroup: move cgroup->subsys[] assignment to online_css()
  cgroup: reorganize css init / exit paths
  cgroup: add __rcu modifier to cgroup->subsys[]
  ...
2013-09-03 18:25:03 -07:00
Li Zefan 1c09b195d3 cpuset: fix a regression in validating config change
It's not allowed to clear masks of a cpuset if there're tasks in it,
but it's broken:

  # mkdir /cgroup/sub
  # echo 0 > /cgroup/sub/cpuset.cpus
  # echo 0 > /cgroup/sub/cpuset.mems
  # echo $$ > /cgroup/sub/tasks
  # echo > /cgroup/sub/cpuset.cpus
  (should fail)

This bug was introduced by commit 88fa523bff
("cpuset: allow to move tasks to empty cpusets").

tj: Dropped temp bool variables and nestes the conditionals directly.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-08-21 08:40:27 -04:00
Li Zefan ff58ac0d58 cpuset: remove an unncessary forward declaration
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-08-13 20:23:06 -04:00
Li Zefan a903f0865a cpuset: fix the return value of cpuset_write_u64()
Writing to this file always returns -ENODEV:

  # echo 1 > cpuset.memory_pressure_enabled
  -bash: echo: write error: No such device

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: <stable@vger.kernel.org> # 3.9+
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-08-13 10:54:40 -04:00
Tejun Heo bd8815a6d8 cgroup: make css_for_each_descendant() and friends include the origin css in the iteration
Previously, all css descendant iterators didn't include the origin
(root of subtree) css in the iteration.  The reasons were maintaining
consistency with css_for_each_child() and that at the time of
introduction more use cases needed skipping the origin anyway;
however, given that css_is_descendant() considers self to be a
descendant, omitting the origin css has become more confusing and
looking at the accumulated use cases rather clearly indicates that
including origin would result in simpler code overall.

While this is a change which can easily lead to subtle bugs, cgroup
API including the iterators has recently gone through major
restructuring and no out-of-tree changes will be applicable without
adjustments making this a relatively acceptable opportunity for this
type of change.

The conversions are mostly straight-forward.  If the iteration block
had explicit origin handling before or after, it's moved inside the
iteration.  If not, if (pos == origin) continue; is added.  Some
conversions add extra reference get/put around origin handling by
consolidating origin handling and the rest.  While the extra ref
operations aren't strictly necessary, this shouldn't cause any
noticeable difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
2013-08-08 20:11:27 -04:00
Tejun Heo d99c8727e7 cgroup: make cgroup_taskset deal with cgroup_subsys_state instead of cgroup
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle.  This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.

cgroup_taskset which is used by the subsystem attach methods is the
last cgroup subsystem API which isn't using css as the handle.  Update
cgroup_taskset_cur_cgroup() to cgroup_taskset_cur_css() and
cgroup_taskset_for_each() to take @skip_css instead of @skip_cgrp.

The conversions are pretty mechanical.  One exception is
cpuset::cgroup_cs(), which lost its last user and got removed.

This patch shouldn't introduce any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
2013-08-08 20:11:27 -04:00
Tejun Heo 72ec702993 cgroup: make task iterators deal with cgroup_subsys_state instead of cgroup
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle.  This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.

This patch converts task iterators to deal with css instead of cgroup.
Note that under unified hierarchy, different sets of tasks will be
considered belonging to a given cgroup depending on the subsystem in
question and making the iterators deal with css instead cgroup
provides them with enough information about the iteration.

While at it, fix several function comment formats in cpuset.c.

This patch doesn't introduce any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
2013-08-08 20:11:26 -04:00
Tejun Heo e535837b1d cgroup: remove struct cgroup_scanner
cgroup_scan_tasks() takes a pointer to struct cgroup_scanner as its
sole argument and the only function of that struct is packing the
arguments of the function call which are consisted of five fields.
It's not too unusual to pack parameters into a struct when the number
of arguments gets excessive or the whole set needs to be passed around
a lot, but neither holds here making it just weird.

Drop struct cgroup_scanner and pass the params directly to
cgroup_scan_tasks().  Note that struct cpuset_change_nodemask_arg was
added to cpuset.c to pass both ->cs and ->newmems pointer to
cpuset_change_nodemask() using single data pointer.

This doesn't make any functional differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:26 -04:00
Tejun Heo 492eb21b98 cgroup: make hierarchy iterators deal with cgroup_subsys_state instead of cgroup
cgroup is currently in the process of transitioning to using css
(cgroup_subsys_state) as the primary handle instead of cgroup in
subsystem API.  For hierarchy iterators, this is beneficial because

* In most cases, css is the only thing subsystems care about anyway.

* On the planned unified hierarchy, iterations for different
  subsystems will need to skip over different subtrees of the
  hierarchy depending on which subsystems are enabled on each cgroup.
  Passing around css makes it unnecessary to explicitly specify the
  subsystem in question as css is intersection between cgroup and
  subsystem

* For the planned unified hierarchy, css's would need to be created
  and destroyed dynamically independent from cgroup hierarchy.  Having
  cgroup core manage css iteration makes enforcing deref rules a lot
  easier.

Most subsystem conversions are straight-forward.  Noteworthy changes
are

* blkio: cgroup_to_blkcg() is no longer used.  Removed.

* freezer: cgroup_freezer() is no longer used.  Removed.

* devices: cgroup_to_devcgroup() is no longer used.  Removed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
2013-08-08 20:11:25 -04:00
Tejun Heo 182446d087 cgroup: pass around cgroup_subsys_state instead of cgroup in file methods
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.

This patch converts all cftype file operations to take @css instead of
@cgroup.  cftypes for the cgroup core files don't have their subsytem
pointer set.  These will automatically use the dummy_css added by the
previous patch and can be converted the same way.

Most subsystem conversions are straight forwards but there are some
interesting ones.

* freezer: update_if_frozen() is also converted to take @css instead
  of @cgroup for consistency.  This will make the code look simpler
  too once iterators are converted to use css.

* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
  vmpressure while mem_cgroup_from_cont() can be made static.
  Updated accordingly.

* cpu: cgroup_tg() doesn't have any user left.  Removed.

* cpuacct: cgroup_ca() doesn't have any user left.  Removed.

* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
  Removed.

* net_cls: cgrp_cls_state() doesn't have any user left.  Removed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
2013-08-08 20:11:24 -04:00
Tejun Heo eb95419b02 cgroup: pass around cgroup_subsys_state instead of cgroup in subsystem methods
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup *
in subsystem implementations for the following reasons.

* With unified hierarchy, subsystems will be dynamically bound and
  unbound from cgroups and thus css's (cgroup_subsys_state) may be
  created and destroyed dynamically over the lifetime of a cgroup,
  which is different from the current state where all css's are
  allocated and destroyed together with the associated cgroup.  This
  in turn means that cgroup_css() should be synchronized and may
  return NULL, making it more cumbersome to use.

* Differing levels of per-subsystem granularity in the unified
  hierarchy means that the task and descendant iterators should behave
  differently depending on the specific subsystem the iteration is
  being performed for.

* In majority of the cases, subsystems only care about its part in the
  cgroup hierarchy - ie. the hierarchy of css's.  Subsystem methods
  often obtain the matching css pointer from the cgroup and don't
  bother with the cgroup pointer itself.  Passing around css fits
  much better.

This patch converts all cgroup_subsys methods to take @css instead of
@cgroup.  The conversions are mostly straight-forward.  A few
noteworthy changes are

* ->css_alloc() now takes css of the parent cgroup rather than the
  pointer to the new cgroup as the css for the new cgroup doesn't
  exist yet.  Knowing the parent css is enough for all the existing
  subsystems.

* In kernel/cgroup.c::offline_css(), unnecessary open coded css
  dereference is replaced with local variable access.

This patch shouldn't cause any behavior differences.

v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced
    with local variable @css as suggested by Li Zefan.

    Rebased on top of new for-3.12 which includes for-3.11-fixes so
    that ->css_free() invocation added by da0a12caff ("cgroup: fix a
    leak when percpu_ref_init() fails") is converted too.  Suggested
    by Li Zefan.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
2013-08-08 20:11:23 -04:00
Tejun Heo 6387698699 cgroup: add css_parent()
Currently, controllers have to explicitly follow the cgroup hierarchy
to find the parent of a given css.  cgroup is moving towards using
cgroup_subsys_state as the main controller interface construct, so
let's provide a way to climb the hierarchy using just csses.

This patch implements css_parent() which, given a css, returns its
parent.  The function is guarnateed to valid non-NULL parent css as
long as the target css is not at the top of the hierarchy.

freezer, cpuset, cpu, cpuacct, hugetlb, memory, net_cls and devices
are converted to use css_parent() instead of accessing cgroup->parent
directly.

* __parent_ca() is dropped from cpuacct and its usage is replaced with
  parent_ca().  The only difference between the two was NULL test on
  cgroup->parent which is now embedded in css_parent() making the
  distinction moot.  Note that eventually a css->parent field will be
  added to css and the NULL check in css_parent() will go away.

This patch shouldn't cause any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:23 -04:00
Tejun Heo a7c6d554aa cgroup: add/update accessors which obtain subsys specific data from css
css (cgroup_subsys_state) is usually embedded in a subsys specific
data structure.  Subsystems either use container_of() directly to cast
from css to such data structure or has an accessor function wrapping
such cast.  As cgroup as whole is moving towards using css as the main
interface handle, add and update such accessors to ease dealing with
css's.

All accessors explicitly handle NULL input and return NULL in those
cases.  While this looks like an extra branch in the code, as all
controllers specific data structures have css as the first field, the
casting doesn't involve any offsetting and the compiler can trivially
optimize out the branch.

* blkio, freezer, cpuset, cpu, cpuacct and net_cls didn't have such
  accessor.  Added.

* memory, hugetlb and devices already had one but didn't explicitly
  handle NULL input.  Updated.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:23 -04:00
Tejun Heo c9710d8018 cpuset: drop "const" qualifiers from struct cpuset instances
cpuset uses "const" qualifiers on struct cpuset in some functions;
however, it doesn't work well when a value derived from returned const
pointer has to be passed to an accessor.  It's C after all.

Drop the "const" qualifiers except for the trivially leaf ones.  This
patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:22 -04:00
Tejun Heo 8af01f56a0 cgroup: s/cgroup_subsys_state/cgroup_css/ s/task_subsys_state/task_css/
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.

We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward.  Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.

Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css().  This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:22 -04:00
Li Zefan 6f4b7e632d cgroup: more naming cleanups
Constantly use @cset for css_set variables and use @cgrp as cgroup
variables.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-07-31 06:20:18 -04:00
Zhao Hongjiang 0b9e6965ad cpuset: relocate a misplaced comment
Comment for cpuset_css_offline() was on top of cpuset_css_free().
Move it.

Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-07-29 14:13:56 -04:00
Zhao Hongjiang 9ad9d25a1e cpuset: get rid of the useless forward declaration of cpuset
get rid of the useless forward declaration of the struct cpuset cause the 
below define it.

Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-07-29 14:08:08 -04:00
Linus Torvalds 0b0585c3e1 Merge branch 'for-3.11-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cpuset changes from Tejun Heo:
 "cpuset has always been rather odd about its configurations - a cgroup
  right after creation didn't allow any task executions before
  configuration, changing configuration in the parent modifies the
  descendants irreversibly and so on.  These behaviors are inherently
  nasty and almost hostile against sharing the hierarchy with other
  controllers making it very difficult to use in unified hierarchy.

  Li is currently in the process of updating the behaviors for
  __DEVEL__sane_behavior which is the bulk of changes in this pull
  request.  It isn't complete yet and the behaviors will change further
  but all changes are gated behind sane_behavior.  In the process, the
  rather hairy work-item punting which was used to work around the
  limitations of cgroup descendant iterator was simplified."

* 'for-3.11-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cpuset: rename @cont to @cgrp
  cpuset: fix to migrate mm correctly in a corner case
  cpuset: allow to move tasks to empty cpusets
  cpuset: allow to keep tasks in empty cpusets
  cpuset: introduce effective_{cpumask|nodemask}_cpuset()
  cpuset: record old_mems_allowed in struct cpuset
  cpuset: remove async hotplug propagation work
  cpuset: let hotplug propagation work wait for task attaching
  cpuset: re-structure update_cpumask() a bit
  cpuset: remove cpuset_test_cpumask()
  cpuset: remove unnecessary variable in cpuset_attach()
  cpuset: cleanup guarantee_online_{cpus|mems}()
  cpuset: remove redundant check in cpuset_cpus_allowed_fallback()
2013-07-02 20:04:25 -07:00
Viresh Kumar 0a0fca9d83 sched: Rename sched.c as sched/core.c in comments and Documentation
Most of the stuff from kernel/sched.c was moved to kernel/sched/core.c long time
back and the comments/Documentation never got updated.

I figured it out when I was going through sched-domains.txt and so thought of
fixing it globally.

I haven't crossed check if the stuff that is referenced in sched/core.c by all
these files is still present and hasn't changed as that wasn't the motive behind
this patch.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/cdff76a265326ab8d71922a1db5be599f20aad45.1370329560.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:58:42 +02:00
Li Zefan c9e5fe66f5 cpuset: rename @cont to @cgrp
Cont is short for container. control group was named process container
at first, but then people found container already has a meaning in
linux kernel.

Clean up the leftover variable name @cont.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 20:48:19 -07:00
Li Zefan f047cecf2c cpuset: fix to migrate mm correctly in a corner case
Before moving tasks out of empty cpusets, update_tasks_nodemask()
is called, which calls do_migrate_pages(xx, from, to). Then those
tasks are moved to an ancestor, and do_migrate_pages() is called
again.

The first time: from = node_to_be_offlined, to = empty.
The second time: from = empty, to = ancestor's nodemask.

so looks like no pages will be migrated.

Fix this by:

- Don't call update_tasks_nodemask() on empty cpusets.
- Pass cs->old_mems_allowed to do_migrate_pages().

v4: added comment in cpuset_hotplug_update_tasks() and rephased comment
    in cpuset_attach().

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 10:51:22 -07:00
Li Zefan 88fa523bff cpuset: allow to move tasks to empty cpusets
Currently some cpuset behaviors are not friendly when cpuset is co-mounted
with other cgroup controllers.

Now with this patchset if cpuset is mounted with sane_behavior option,
it behaves differently:

- Tasks will be kept in empty cpusets when hotplug happens and take
  masks of ancestors with non-empty cpus/mems, instead of being moved to
  an ancestor.

- A task can be moved into an empty cpuset, and again it takes masks of
  ancestors, so the user can drop a task into a newly created cgroup without
  having to do anything for it.

As tasks can reside in empy cpusets, here're some rules:

- They can be moved to another cpuset, regardless it's empty or not.

- Though it takes masks from ancestors, it takes other configs from the
  empty cpuset.

- If the ancestors' masks are changed, those tasks will also be updated
  to take new masks.

v2: add documentation in include/linux/cgroup.h

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 10:48:33 -07:00
Li Zefan 5c5cc62321 cpuset: allow to keep tasks in empty cpusets
To achieve this:

- We call update_tasks_cpumask/nodemask() for empty cpusets when
hotplug happens, instead of moving tasks out of them.

- When a cpuset's masks are changed by writing cpuset.cpus/mems,
we also update tasks in child cpusets which are empty.

v3:
- do propagation work in one place for both hotplug and unplug

v2:
- drop rcu_read_lock before calling update_task_nodemask() and
  update_task_cpumask(), instead of using workqueue.
- add documentation in include/linux/cgroup.h

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 10:48:32 -07:00
Li Zefan 070b57fcac cpuset: introduce effective_{cpumask|nodemask}_cpuset()
effective_cpumask_cpuset() returns an ancestor cpuset which has
non-empty cpumask.

If a cpuset is empty and the tasks in it need to update their
cpus_allowed, they take on the ancestor cpuset's cpumask.

This currently won't change any behavior, but it will later allow us
to keep tasks in empty cpusets.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 10:48:32 -07:00
Li Zefan 33ad801dfb cpuset: record old_mems_allowed in struct cpuset
When we update a cpuset's mems_allowed and thus update tasks'
mems_allowed, it's required to pass the old mems_allowed and new
mems_allowed to cpuset_migrate_mm().

Currently we save old mems_allowed in a temp local variable before
changing cpuset->mems_allowed. This patch changes it by saving
old mems_allowed in cpuset->old_mems_allowed.

This currently won't change any behavior, but it will later allow
us to keep tasks in empty cpusets.

v3: restored "cpuset_attach_nodemask_to = cs->mems_allowed"

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-13 10:48:32 -07:00
Li Zefan 388afd8549 cpuset: remove async hotplug propagation work
As we can drop rcu read lock while iterating cgroup hierarchy,
we don't have to do propagation asynchronously via workqueue.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-09 08:47:13 -07:00
Li Zefan e44193d39e cpuset: let hotplug propagation work wait for task attaching
Instead of triggering propagation work in cpuset_attach(), we make
hotplug propagation work wait until there's no task attaching in
progress.

IMO this is more robust. We won't see empty masks in cpuset_attach().

Also it's a preparation for removing propagation work. Without asynchronous
propagation we can't call move_tasks_in_empty_cpuset() in cpuset_attach(),
because otherwise we'll deadlock on cgroup_mutex.

tj: typo fixes.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-09 08:47:13 -07:00
Li Zefan a73456f37b cpuset: re-structure update_cpumask() a bit
Check if cpus_allowed is to be changed before calling validate_change().

This won't change any behavior, but later it will allow us to do this:

 # mkdir /cpuset/child
 # echo $$ > /cpuset/child/tasks	/* empty cpuset */
 # echo > /cpuset/child/cpuset.cpus	/* do nothing, won't fail */

Without this patch, the last operation will fail.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-05 13:55:14 -07:00
Li Zefan 249cc86db7 cpuset: remove cpuset_test_cpumask()
The test is done in set_cpus_allowed_ptr(), so it's redundant.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-05 13:55:14 -07:00
Li Zefan 67bd2c5985 cpuset: remove unnecessary variable in cpuset_attach()
We can just use oldcs->mems_allowed.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-05 13:55:13 -07:00
Li Zefan 40df2deb50 cpuset: cleanup guarantee_online_{cpus|mems}()
- We never pass a NULL @cs to these functions.
- The top cpuset always has some online cpus/mems.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-05 13:55:13 -07:00
Li Zefan 06d6b3cbdf cpuset: remove redundant check in cpuset_cpus_allowed_fallback()
task_cs() will never return NULL.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-06-05 13:55:13 -07:00
Linus Torvalds 20b4fb4852 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS updates from Al Viro,

Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).

7kloc removed.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
  don't bother with deferred freeing of fdtables
  proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
  proc: Make the PROC_I() and PDE() macros internal to procfs
  proc: Supply a function to remove a proc entry by PDE
  take cgroup_open() and cpuset_open() to fs/proc/base.c
  ppc: Clean up scanlog
  ppc: Clean up rtas_flash driver somewhat
  hostap: proc: Use remove_proc_subtree()
  drm: proc: Use remove_proc_subtree()
  drm: proc: Use minor->index to label things, not PDE->name
  drm: Constify drm_proc_list[]
  zoran: Don't print proc_dir_entry data in debug
  reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
  proc: Supply an accessor for getting the data from a PDE's parent
  airo: Use remove_proc_subtree()
  rtl8192u: Don't need to save device proc dir PDE
  rtl8187se: Use a dir under /proc/net/r8180/
  proc: Add proc_mkdir_data()
  proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
  proc: Move PDE_NET() to fs/proc/proc_net.c
  ...
2013-05-01 17:51:54 -07:00
Al Viro 8d8b97ba49 take cgroup_open() and cpuset_open() to fs/proc/base.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-05-01 17:29:46 -04:00
Linus Torvalds 191a712090 Merge branch 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:

 - Fixes and a lot of cleanups.  Locking cleanup is finally complete.
   cgroup_mutex is no longer exposed to individual controlelrs which
   used to cause nasty deadlock issues.  Li fixed and cleaned up quite a
   bit including long standing ones like racy cgroup_path().

 - device cgroup now supports proper hierarchy thanks to Aristeu.

 - perf_event cgroup now supports proper hierarchy.

 - A new mount option "__DEVEL__sane_behavior" is added.  As indicated
   by the name, this option is to be used for development only at this
   point and generates a warning message when used.  Unfortunately,
   cgroup interface currently has too many brekages and inconsistencies
   to implement a consistent and unified hierarchy on top.  The new flag
   is used to collect the behavior changes which are necessary to
   implement consistent unified hierarchy.  It's likely that this flag
   won't be used verbatim when it becomes ready but will be enabled
   implicitly along with unified hierarchy.

   The option currently disables some of broken behaviors in cgroup core
   and also .use_hierarchy switch in memcg (will be routed through -mm),
   which can be used to make very unusual hierarchy where nesting is
   partially honored.  It will also be used to implement hierarchy
   support for blk-throttle which would be impossible otherwise without
   introducing a full separate set of control knobs.

   This is essentially versioning of interface which isn't very nice but
   at this point I can't see any other options which would allow keeping
   the interface the same while moving towards hierarchy behavior which
   is at least somewhat sane.  The planned unified hierarchy is likely
   to require some level of adaptation from userland anyway, so I think
   it'd be best to take the chance and update the interface such that
   it's supportable in the long term.

   Maintaining the existing interface does complicate cgroup core but
   shouldn't put too much strain on individual controllers and I think
   it'd be manageable for the foreseeable future.  Maybe we'll be able
   to drop it in a decade.

Fix up conflicts (including a semantic one adding a new #include to ppc
that was uncovered by header the file changes) as per Tejun.

* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (45 commits)
  cpuset: fix compile warning when CONFIG_SMP=n
  cpuset: fix cpu hotplug vs rebuild_sched_domains() race
  cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
  cgroup: restore the call to eventfd->poll()
  cgroup: fix use-after-free when umounting cgroupfs
  cgroup: fix broken file xattrs
  devcg: remove parent_cgroup.
  memcg: force use_hierarchy if sane_behavior
  cgroup: remove cgrp->top_cgroup
  cgroup: introduce sane_behavior mount option
  move cgroupfs_root to include/linux/cgroup.h
  cgroup: convert cgroupfs_root flag bits to masks and add CGRP_ prefix
  cgroup: make cgroup_path() not print double slashes
  Revert "cgroup: remove bind() method from cgroup_subsys."
  perf: make perf_event cgroup hierarchical
  cgroup: implement cgroup_is_descendant()
  cgroup: make sure parent won't be destroyed before its children
  cgroup: remove bind() method from cgroup_subsys.
  devcg: remove broken_hierarchy tag
  cgroup: remove cgroup_lock_is_held()
  ...
2013-04-29 19:14:20 -07:00
Linus Torvalds 46d9be3e5e Merge branch 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
 "A lot of activities on workqueue side this time.  The changes achieve
  the followings.

   - WQ_UNBOUND workqueues - the workqueues which are per-cpu - are
     updated to be able to interface with multiple backend worker pools.
     This involved a lot of churning but the end result seems actually
     neater as unbound workqueues are now a lot closer to per-cpu ones.

   - The ability to interface with multiple backend worker pools are
     used to implement unbound workqueues with custom attributes.
     Currently the supported attributes are the nice level and CPU
     affinity.  It may be expanded to include cgroup association in
     future.  The attributes can be specified either by calling
     apply_workqueue_attrs() or through /sys/bus/workqueue/WQ_NAME/* if
     the workqueue in question is exported through sysfs.

     The backend worker pools are keyed by the actual attributes and
     shared by any workqueues which share the same attributes.  When
     attributes of a workqueue are changed, the workqueue binds to the
     worker pool with the specified attributes while leaving the work
     items which are already executing in its previous worker pools
     alone.

     This allows converting custom worker pool implementations which
     want worker attribute tuning to use workqueues.  The writeback pool
     is already converted in block tree and there are a couple others
     are likely to follow including btrfs io workers.

   - WQ_UNBOUND's ability to bind to multiple worker pools is also used
     to make it NUMA-aware.  Because there's no association between work
     item issuer and the specific worker assigned to execute it, before
     this change, using unbound workqueue led to unnecessary cross-node
     bouncing and it couldn't be helped by autonuma as it requires tasks
     to have implicit node affinity and workers are assigned randomly.

     After these changes, an unbound workqueue now binds to multiple
     NUMA-affine worker pools so that queued work items are executed in
     the same node.  This is turned on by default but can be disabled
     system-wide or for individual workqueues.

     Crypto was requesting NUMA affinity as encrypting data across
     different nodes can contribute noticeable overhead and doing it
     per-cpu was too limiting for certain cases and IO throughput could
     be bottlenecked by one CPU being fully occupied while others have
     idle cycles.

  While the new features required a lot of changes including
  restructuring locking, it didn't complicate the execution paths much.
  The unbound workqueue handling is now closer to per-cpu ones and the
  new features are implemented by simply associating a workqueue with
  different sets of backend worker pools without changing queue,
  execution or flush paths.

  As such, even though the amount of change is very high, I feel
  relatively safe in that it isn't likely to cause subtle issues with
  basic correctness of work item execution and handling.  If something
  is wrong, it's likely to show up as being associated with worker pools
  with the wrong attributes or OOPS while workqueue attributes are being
  changed or during CPU hotplug.

  While this creates more backend worker pools, it doesn't add too many
  more workers unless, of course, there are many workqueues with unique
  combinations of attributes.  Assuming everything else is the same,
  NUMA awareness costs an extra worker pool per NUMA node with online
  CPUs.

  There are also a couple things which are being routed outside the
  workqueue tree.

   - block tree pulled in workqueue for-3.10 so that writeback worker
     pool can be converted to unbound workqueue with sysfs control
     exposed.  This simplifies the code, makes writeback workers
     NUMA-aware and allows tuning nice level and CPU affinity via sysfs.

   - The conversion to workqueue means that there's no 1:1 association
     between a specific worker, which makes writeback folks unhappy as
     they want to be able to tell which filesystem caused a problem from
     backtrace on systems with many filesystems mounted.  This is
     resolved by allowing work items to set debug info string which is
     printed when the task is dumped.  As this change involves unifying
     implementations of dump_stack() and friends in arch codes, it's
     being routed through Andrew's -mm tree."

* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (84 commits)
  workqueue: use kmem_cache_free() instead of kfree()
  workqueue: avoid false negative WARN_ON() in destroy_workqueue()
  workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to disable NUMA affinity
  workqueue: implement NUMA affinity for unbound workqueues
  workqueue: introduce put_pwq_unlocked()
  workqueue: introduce numa_pwq_tbl_install()
  workqueue: use NUMA-aware allocation for pool_workqueues
  workqueue: break init_and_link_pwq() into two functions and introduce alloc_unbound_pwq()
  workqueue: map an unbound workqueues to multiple per-node pool_workqueues
  workqueue: move hot fields of workqueue_struct to the end
  workqueue: make workqueue->name[] fixed len
  workqueue: add workqueue->unbound_attrs
  workqueue: determine NUMA node of workers accourding to the allowed cpumask
  workqueue: drop 'H' from kworker names of unbound worker pools
  workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]
  workqueue: move pwq_pool_locking outside of get/put_unbound_pool()
  workqueue: fix memory leak in apply_workqueue_attrs()
  workqueue: fix unbound workqueue attrs hashing / comparison
  workqueue: fix race condition in unbound workqueue free path
  workqueue: remove pwq_lock which is no longer used
  ...
2013-04-29 19:07:40 -07:00
Andrew Morton d8f10cb3d3 kernel/cpuset.c: use register_hotmemory_notifier()
Use the new interface, remove one ifdef.  No code size changes.

We could/should have been using __meminit/__meminitdata here but there's
now no point in doing that because all this code is elided at compile time.

Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:36 -07:00
Li Zefan 2a0010af17 cpuset: fix compile warning when CONFIG_SMP=n
Reported by Fengguang's kbuild test robot:

kernel/cpuset.c:787: warning: 'generate_sched_domains' defined but not used

Introduced by commit e0e80a02e5
("cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()),
which removed generate_sched_domains() from cpuset_hotplug_workfn().

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-04-27 19:55:04 -07:00
Li Zefan 5b16c2a493 cpuset: fix cpu hotplug vs rebuild_sched_domains() race
rebuild_sched_domains() might pass doms with offlined cpu to
partition_sched_domains(), which results in an oops:

general protection fault: 0000 [#1] SMP
...
RIP: 0010:[<ffffffff81077a1e>]  [<ffffffff81077a1e>] get_group+0x6e/0x90
...
Call Trace:
 [<ffffffff8107f07c>] build_sched_domains+0x70c/0xcb0
 [<ffffffff8107f2a7>] ? build_sched_domains+0x937/0xcb0
 [<ffffffff81173f64>] ? kfree+0xe4/0x1b0
 [<ffffffff8107f6e0>] ? partition_sched_domains+0xc0/0x470
 [<ffffffff8107f905>] partition_sched_domains+0x2e5/0x470
 [<ffffffff8107f6e0>] ? partition_sched_domains+0xc0/0x470
 [<ffffffff810c9007>] ? generate_sched_domains+0xc7/0x530
 [<ffffffff810c94a8>] rebuild_sched_domains_locked+0x38/0x70
 [<ffffffff810cb4a4>] cpuset_write_resmask+0x1a4/0x500
 [<ffffffff810c8700>] ? cpuset_mount+0xe0/0xe0
 [<ffffffff810c7f50>] ? cpuset_read_u64+0x100/0x100
 [<ffffffff810be890>] ? cgroup_iter_next+0x90/0x90
 [<ffffffff810cb300>] ? cpuset_css_offline+0x70/0x70
 [<ffffffff810c1a73>] cgroup_file_write+0x133/0x2e0
 [<ffffffff8118995b>] vfs_write+0xcb/0x130
 [<ffffffff8118a174>] sys_write+0x64/0xa0

Reported-by: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-04-27 06:52:43 -07:00
Li Zhong e0e80a02e5 cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
In cpuset_hotplug_workfn(), partition_sched_domains() is called without
hotplug lock held, which is actually needed (stated in the function
header of partition_sched_domains()).

This patch tries to use rebuild_sched_domains() to solve the above
issue, and makes the code looks a little simpler.

Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-04-27 06:52:43 -07:00
Tejun Heo 8cc9934520 cgroup, cpuset: replace move_member_tasks_to_cpuset() with cgroup_transfer_tasks()
When a cpuset becomes empty (no CPU or memory), its tasks are
transferred with the nearest ancestor with execution resources.  This
is implemented using cgroup_scan_tasks() with a callback which grabs
cgroup_mutex and invokes cgroup_attach_task() on each task.

Both cgroup_mutex and cgroup_attach_task() are scheduled to be
unexported.  Implement cgroup_transfer_tasks() in cgroup proper which
is essentially the same as move_member_tasks_to_cpuset() except that
it takes cgroups instead of cpusets and @to comes before @from like
normal functions with those arguments, and replace
move_member_tasks_to_cpuset() with it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-04-07 09:29:50 -07:00
Li Zefan 081aa458c3 cgroup: consolidate cgroup_attach_task() and cgroup_attach_proc()
These two functions share most of the code.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-03-20 07:50:25 -07:00
Tejun Heo 14a40ffccd sched: replace PF_THREAD_BOUND with PF_NO_SETAFFINITY
PF_THREAD_BOUND was originally used to mark kernel threads which were
bound to a specific CPU using kthread_bind() and a task with the flag
set allows cpus_allowed modifications only to itself.  Workqueue is
currently abusing it to prevent userland from meddling with
cpus_allowed of workqueue workers.

What we need is a flag to prevent userland from messing with
cpus_allowed of certain kernel tasks.  In kernel, anyone can
(incorrectly) squash the flag, and, for worker-type usages,
restricting cpus_allowed modification to the task itself doesn't
provide meaningful extra proection as other tasks can inject work
items to the task anyway.

This patch replaces PF_THREAD_BOUND with PF_NO_SETAFFINITY.
sched_setaffinity() checks the flag and return -EINVAL if set.
set_cpus_allowed_ptr() is no longer affected by the flag.

This will allow simplifying workqueue worker CPU affinity management.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-03-19 13:45:20 -07:00
Li Zefan cfb5966bef cpuset: fix RCU lockdep splat in cpuset_print_task_mems_allowed()
Sasha reported a lockdep warning when OOM was triggered. The reason
is cgroup_name() should be called with rcu_read_lock() held.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-03-12 14:25:25 -07:00
Li Zefan f440d98f8e cpuset: use cgroup_name() in cpuset_print_task_mems_allowed()
Use cgroup_name() instead of cgrp->dentry->name. This makes the code
a bit simpler.

While at it, remove cpuset_name and make cpuset_nodelist a local variable
to cpuset_print_task_mems_allowed().

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-03-04 09:50:08 -08:00
Linus Torvalds 9ae46e6702 Merge branch 'for-3.9-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cpuset changes from Tejun Heo:

 - Synchornization has seen a lot of changes with focus on decoupling
   cpuset synchronization from cgroup internal locking.

   After this change, there only remain a couple of mostly trivial
   dependencies on cgroup_lock outside cgroup core proper.  cgroup_lock
   is scheduled to be unexported in this devel cycle.

   This will finally remove the fragile locking order around cgroup
   (cgroup locking wants to / should be one of the outermost but yet has
   been acquired from deep inside individual controllers).

 - At this point, Li is most knowlegeable with cpuset and taking over
   the maintainership of cpuset.

* 'for-3.9-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cpuset: drop spurious retval assignment in proc_cpuset_show()
  cpuset: fix RCU lockdep splat
  cpuset: update MAINTAINERS
  cpuset: remove cpuset->parent
  cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()
  cpuset: replace cgroup_mutex locking with cpuset internal locking
  cpuset: schedule hotplug propagation from cpuset_attach() if the cpuset is empty
  cpuset: pin down cpus and mems while a task is being attached
  cpuset: make CPU / memory hotplug propagation asynchronous
  cpuset: drop async_rebuild_sched_domains()
  cpuset: don't nest cgroup_mutex inside get_online_cpus()
  cpuset: reorganize CPU / memory hotplug handling
  cpuset: cleanup cpuset[_can]_attach()
  cpuset: introduce cpuset_for_each_child()
  cpuset: introduce CS_ONLINE
  cpuset: introduce ->css_on/offline()
  cpuset: remove fast exit path from remove_tasks_in_empty_cpuset()
  cpuset: remove unused cpuset_unlock()
2013-02-20 09:18:31 -08:00
Li Zefan 63f43f55c9 cpuset: fix cpuset_print_task_mems_allowed() vs rename() race
rename() will change dentry->d_name. The result of this race can
be worse than seeing partially rewritten name, but we might access
a stale pointer because rename() will re-allocate memory to hold
a longer name.

It's safe in the protection of dentry->d_lock.

v2: check NULL dentry before acquiring dentry lock.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
2013-02-18 09:08:15 -08:00
Li Zefan d127027baf cpuset: drop spurious retval assignment in proc_cpuset_show()
proc_cpuset_show() has a spurious -EINVAL assignment which does
nothing.  Remove it.

This patch doesn't make any functional difference.

tj: Rewrote patch description.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-01-15 08:38:55 -08:00
Li Zefan 27e89ae5d6 cpuset: fix RCU lockdep splat
5d21cc2db0 ("cpuset: replace
cgroup_mutex locking with cpuset internal locking") incorrectly
converted proc_cpuset_show() from cgroup_lock() to cpuset_mutex.
proc_cpuset_show() is accessing cgroup hierarchy proper to determine
cgroup path which can't be protected by cpuset_mutex.  This triggered
the following RCU warning.

 ===============================
 [ INFO: suspicious RCU usage. ]
 3.8.0-rc3-next-20130114-sasha-00016-ga107525-dirty #262 Tainted: G        W
 -------------------------------
 include/linux/cgroup.h:534 suspicious rcu_dereference_check() usage!

 other info that might help us debug this:

 rcu_scheduler_active = 1, debug_locks = 1
 2 locks held by trinity/7514:
  #0:  (&p->lock){+.+.+.}, at: [<ffffffff812b06aa>] seq_read+0x3a/0x3e0
  #1:  (cpuset_mutex){+.+...}, at: [<ffffffff811abae4>] proc_cpuset_show+0x84/0x190

 stack backtrace:
 Pid: 7514, comm: trinity Tainted: G        W
+3.8.0-rc3-next-20130114-sasha-00016-ga107525-dirty #262
 Call Trace:
  [<ffffffff81182cab>] lockdep_rcu_suspicious+0x10b/0x120
  [<ffffffff811abb71>] proc_cpuset_show+0x111/0x190
  [<ffffffff812b0827>] seq_read+0x1b7/0x3e0
  [<ffffffff812b0670>] ? seq_lseek+0x110/0x110
  [<ffffffff8128b4fb>] do_loop_readv_writev+0x4b/0x90
  [<ffffffff8128b776>] do_readv_writev+0xf6/0x1d0
  [<ffffffff8128b8ee>] vfs_readv+0x3e/0x60
  [<ffffffff8128b960>] sys_readv+0x50/0xd0
  [<ffffffff83d33d18>] tracesys+0xe1/0xe6

The operation can be performed under RCU read lock.  Replace
cpuset_mutex locking with RCU read locking.

tj: Rewrote patch description.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2013-01-15 08:38:55 -08:00
Tejun Heo c431069fe4 cpuset: remove cpuset->parent
cgroup already tracks the hierarchy.  Follow cgroup->parent to find
the parent and drop cpuset->parent.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:08 -08:00
Tejun Heo fc560a26ac cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()
Implement cpuset_for_each_descendant_pre() and replace the
cpuset-specific tree walking using cpuset->stack_list with it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:08 -08:00
Tejun Heo 5d21cc2db0 cpuset: replace cgroup_mutex locking with cpuset internal locking
Supposedly for historical reasons, cpuset depends on cgroup core for
locking.  It depends on cgroup_mutex in cgroup callbacks and grabs
cgroup_mutex from other places where it wants to be synchronized.
This is majorly messy and highly prone to introducing circular locking
dependency especially because cgroup_mutex is supposed to be one of
the outermost locks.

As previous patches already plugged possible races which may happen by
decoupling from cgroup_mutex, replacing cgroup_mutex with cpuset
specific cpuset_mutex is mostly straight-forward.  Introduce
cpuset_mutex, replace all occurrences of cgroup_mutex with it, and add
cpuset_mutex locking to places which inherited cgroup_mutex from
cgroup core.

The only complication is from cpuset wanting to initiate task
migration when a cpuset loses all cpus or memory nodes.  Task
migration may go through full cgroup and all subsystem locking and
should be initiated without holding any cpuset specific lock; however,
a previous patch already made hotplug handled asynchronously and
moving the task migration part outside other locks is easy.
cpuset_propagate_hotplug_workfn() now invokes
remove_tasks_in_empty_cpuset() without holding any lock.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:08 -08:00
Tejun Heo 02bb586372 cpuset: schedule hotplug propagation from cpuset_attach() if the cpuset is empty
cpuset is scheduled to be decoupled from cgroup_lock which will make
hotplug handling race with task migration.  cpus or mems will be
allowed to go offline between ->can_attach() and ->attach().  If
hotplug takes down all cpus or mems of a cpuset while attach is in
progress, ->attach() may end up putting tasks into an empty cpuset.

This patchset makes ->attach() schedule hotplug propagation if the
cpuset is empty after attaching is complete.  This will move the tasks
to the nearest ancestor which can execute and the end result would be
as if hotplug handling happened after the tasks finished attaching.

cpuset_write_resmask() now also flushes cpuset_propagate_hotplug_wq to
wait for propagations scheduled directly by cpuset_attach().

This currently doesn't make any functional difference as everything is
protected by cgroup_mutex but enables decoupling the locking.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:08 -08:00
Tejun Heo 452477fa68 cpuset: pin down cpus and mems while a task is being attached
cpuset is scheduled to be decoupled from cgroup_lock which will make
configuration updates race with task migration.  Any config update
will be allowed to happen between ->can_attach() and ->attach().  If
such config update removes either all cpus or mems, by the time
->attach() is called, the condition verified by ->can_attach(), that
the cpuset is capable of hosting the tasks, is no longer true.

This patch adds cpuset->attach_in_progress which is incremented from
->can_attach() and decremented when the attach operation finishes
either successfully or not.  validate_change() treats cpusets w/
non-zero ->attach_in_progress like cpusets w/ tasks and refuses to
remove all cpus or mems from it.

This currently doesn't make any functional difference as everything is
protected by cgroup_mutex but enables decoupling the locking.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 8d03394877 cpuset: make CPU / memory hotplug propagation asynchronous
cpuset_hotplug_workfn() has been invoking cpuset_propagate_hotplug()
directly to propagate hotplug updates to !root cpusets; however, this
has the following problems.

* cpuset locking is scheduled to be decoupled from cgroup_mutex,
  cgroup_mutex will be unexported, and cgroup_attach_task() will do
  cgroup locking internally, so propagation can't synchronously move
  tasks to a parent cgroup while walking the hierarchy.

* We can't use cgroup generic tree iterator because propagation to
  each cpuset may sleep.  With propagation done asynchronously, we can
  lose the rather ugly cpuset specific iteration.

Convert cpuset_propagate_hotplug() to
cpuset_propagate_hotplug_workfn() and execute it from newly added
cpuset->hotplug_work.  The work items are run on an ordered workqueue,
so the propagation order is preserved.  cpuset_hotplug_workfn()
schedules all propagations while holding cgroup_mutex and waits for
completion without cgroup_mutex.  Each in-flight propagation holds a
reference to the cpuset->css.

This patch doesn't cause any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 699140ba83 cpuset: drop async_rebuild_sched_domains()
In general, we want to make cgroup_mutex one of the outermost locks
and be able to use get_online_cpus() and friends from cgroup methods.
With cpuset hotplug made async, get_online_cpus() can now be nested
inside cgroup_mutex.

Currently, cpuset avoids nesting get_online_cpus() inside cgroup_mutex
by bouncing sched_domain rebuilding to a work item.  As such nesting
is allowed now, remove the workqueue bouncing code and always rebuild
sched_domains synchronously.  This also nests sched_domains_mutex
inside cgroup_mutex, which is intended and should be okay.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 3a5a6d0c2b cpuset: don't nest cgroup_mutex inside get_online_cpus()
CPU / memory hotplug path currently grabs cgroup_mutex from hotplug
event notifications.  We want to separate cpuset locking from cgroup
core and make cgroup_mutex outer to hotplug synchronization so that,
among other things, mechanisms which depend on get_online_cpus() can
be used from cgroup callbacks.  In general, we want to keep
cgroup_mutex the outermost lock to minimize locking interactions among
different controllers.

Convert cpuset_handle_hotplug() to cpuset_hotplug_workfn() and
schedule it from the hotplug notifications.  As the function can
already handle multiple mixed events without any input, converting it
to a work function is mostly trivial; however, one complication is
that cpuset_update_active_cpus() needs to update sched domains
synchronously to reflect an offlined cpu to avoid confusing the
scheduler.  This is worked around by falling back to the the default
single sched domain synchronously before scheduling the actual hotplug
work.  This makes sched domain rebuilt twice per CPU hotplug event but
the operation isn't that heavy and a lot of the second operation would
be noop for systems w/ single sched domain, which is the common case.

This decouples cpuset hotplug handling from the notification callbacks
and there can be an arbitrary delay between the actual event and
updates to cpusets.  Scheduler and mm can handle it fine but moving
tasks out of an empty cpuset may race against writes to the cpuset
restoring execution resources which can lead to confusing behavior.
Flush hotplug work item from cpuset_write_resmask() to avoid such
confusions.

v2: Synchronous sched domain rebuilding using the fallback sched
    domain added.  This fixes various issues caused by confused
    scheduler putting tasks on a dead CPU, including the one reported
    by Li Zefan.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo deb7aa308e cpuset: reorganize CPU / memory hotplug handling
Reorganize hotplug path to prepare for async hotplug handling.

* Both CPU and memory hotplug handlings are collected into a single
  function - cpuset_handle_hotplug().  It doesn't take any argument
  but compares the current setttings of top_cpuset against what's
  actually available to determine what happened.  This function
  directly updates top_cpuset.  If there are CPUs or memory nodes
  which are taken down, cpuset_propagate_hotplug() in invoked on all
  !root cpusets.

* cpuset_propagate_hotplug() is responsible for updating the specified
  cpuset so that it doesn't include any resource which isn't available
  to top_cpuset.  If no CPU or memory is left after update, all tasks
  are moved to the nearest ancestor with both resources.

* update_tasks_cpumask() and update_tasks_nodemask() are now always
  called after cpus or mems masks are updated even if the cpuset
  doesn't have any task.  This is for brevity and not expected to have
  any measureable effect.

* cpu_active_mask and N_HIGH_MEMORY are read exactly once per
  cpuset_handle_hotplug() invocation, all cpusets share the same view
  of what resources are available, and cpuset_handle_hotplug() can
  handle multiple resources going up and down.  These properties will
  allow async operation.

The reorganization, while drastic, is equivalent and shouldn't cause
any behavior difference.  This will enable making hotplug handling
async and remove get_online_cpus() -> cgroup_mutex nesting.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 4e4c9a140f cpuset: cleanup cpuset[_can]_attach()
cpuset_can_attach() prepare global variables cpus_attach and
cpuset_attach_nodemask_{to|from} which are used by cpuset_attach().
There is no reason to prepare in cpuset_can_attach().  The same
information can be accessed from cpuset_attach().

Move the prepartion logic from cpuset_can_attach() to cpuset_attach()
and make the global variables static ones inside cpuset_attach().

With this change, there's no reason to keep
cpuset_attach_nodemask_{from|to} global.  Move them inside
cpuset_attach().  Unfortunately, we need to keep cpus_attach global as
it can't be allocated from cpuset_attach().

v2: cpus_attach not converted to cpumask_t as per Li Zefan and Rusty
    Russell.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
2013-01-07 08:51:07 -08:00
Tejun Heo ae8086ce15 cpuset: introduce cpuset_for_each_child()
Instead of iterating cgroup->children directly, introduce and use
cpuset_for_each_child() which wraps cgroup_for_each_child() and
performs online check.  As it uses the generic iterator, it requires
RCU read locking too.

As cpuset is currently protected by cgroup_mutex, non-online cpusets
aren't visible to all the iterations and this patch currently doesn't
make any functional difference.  This will be used to de-couple cpuset
locking from cgroup core.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo efeb77b2f1 cpuset: introduce CS_ONLINE
Add CS_ONLINE which is set from css_online() and cleared from
css_offline().  This will enable using generic cgroup iterator while
allowing decoupling cpuset from cgroup internal locking.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo c8f699bb56 cpuset: introduce ->css_on/offline()
Add cpuset_css_on/offline() and rearrange css init/exit such that,

* Allocation and clearing to the default values happen in css_alloc().
  Allocation now uses kzalloc().

* Config inheritance and registration happen in css_online().

* css_offline() undoes what css_online() did.

* css_free() frees.

This doesn't introduce any visible behavior changes.  This will help
cleaning up locking.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 0772324ae6 cpuset: remove fast exit path from remove_tasks_in_empty_cpuset()
The function isn't that hot, the overhead of missing the fast exit is
low, the test itself depends heavily on cgroup internals, and it's
gonna be a hindrance when trying to decouple cpuset locking from
cgroup core.  Remove the fast exit path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Tejun Heo 01c889cf4f cpuset: remove unused cpuset_unlock()
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-01-07 08:51:07 -08:00
Lai Jiangshan 38d7bee9d2 cpuset: use N_MEMORY instead N_HIGH_MEMORY
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.

The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:32 -08:00
Tejun Heo 033fa1c5f5 cgroup, cpuset: remove cgroup_subsys->post_clone()
Currently CGRP_CPUSET_CLONE_CHILDREN triggers ->post_clone().  Now
that clone_children is cpuset specific, there's no reason to have this
rather odd option activation mechanism in cgroup core.  cpuset can
check the flag from its ->css_allocate() and take the necessary
action.

Move cpuset_post_clone() logic to the end of cpuset_css_alloc() and
remove cgroup_subsys->post_clone().

Loosely based on Glauber's "generalize post_clone into post_create"
patch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Glauber Costa <glommer@parallels.com>
Original-patch: <1351686554-22592-2-git-send-email-glommer@parallels.com>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
2012-11-19 08:13:39 -08:00
Tejun Heo 92fb97487a cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offline/free()
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are.  Also, update documentation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2012-11-19 08:13:38 -08:00