/* * Copyright 2015-2017 Google, Inc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * USB Type-C Port Controller Interface. */ #include #include #include #include #include #include #include #include #include #include "pd.h" #include "tcpci.h" #include "tcpm.h" #define PD_RETRY_COUNT 3 struct tcpci { struct device *dev; struct i2c_client *client; struct extcon_dev *edev; struct tcpm_port *port; struct regmap *regmap; bool controls_vbus; bool drive_vbus; bool sink_disable; struct gpio_desc *ss_sel_gpio; struct tcpc_dev tcpc; unsigned int irq_mask; }; static const unsigned int tcpci_extcon_cable[] = { EXTCON_USB_HOST, EXTCON_USB, EXTCON_NONE, }; static inline struct tcpci *tcpc_to_tcpci(struct tcpc_dev *tcpc) { return container_of(tcpc, struct tcpci, tcpc); } static int tcpci_read16(struct tcpci *tcpci, unsigned int reg, unsigned int *val) { return regmap_raw_read(tcpci->regmap, reg, val, sizeof(u16)); } static int tcpci_write16(struct tcpci *tcpci, unsigned int reg, u16 val) { return regmap_raw_write(tcpci->regmap, reg, &val, sizeof(u16)); } static int tcpci_vbus_force_discharge(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; if (enable) regmap_write(tcpci->regmap, TCPC_VBUS_VOLTAGE_ALARM_LO_CFG, 0x1c); else regmap_write(tcpci->regmap, TCPC_VBUS_VOLTAGE_ALARM_LO_CFG, 0); regmap_read(tcpci->regmap, TCPC_POWER_CTRL, ®); if (enable) reg |= TCPC_POWER_CTRL_FORCEDISCH; else reg &= ~TCPC_POWER_CTRL_FORCEDISCH; ret = regmap_write(tcpci->regmap, TCPC_POWER_CTRL, reg); if (ret < 0) return ret; return 0; } static int tcpci_set_cc(struct tcpc_dev *tcpc, enum typec_cc_status cc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; switch (cc) { case TYPEC_CC_RA: reg = (TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC2_SHIFT); break; case TYPEC_CC_RD: reg = (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT); break; case TYPEC_CC_RP_DEF: reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) | (TCPC_ROLE_CTRL_RP_VAL_DEF << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_RP_1_5: reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) | (TCPC_ROLE_CTRL_RP_VAL_1_5 << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_RP_3_0: reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) | (TCPC_ROLE_CTRL_RP_VAL_3_0 << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_OPEN: default: reg = (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT) | (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT); break; } ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg); if (ret < 0) return ret; return 0; } static int tcpci_start_drp_toggling(struct tcpc_dev *tcpc, enum typec_cc_status cc, int attach) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg = 0; /* Only set DRP bit for auto toggle when unattached */ if (attach) { switch (cc) { case TYPEC_CC_RP_DEF: if (attach >> TYPEC_POLARITY_CC2) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT; else if (attach >> TYPEC_POLARITY_CC1) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT; reg |= (TCPC_ROLE_CTRL_RP_VAL_DEF << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_RP_1_5: if (attach >> TYPEC_POLARITY_CC2) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT; else if (attach >> TYPEC_POLARITY_CC1) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT; reg |= (TCPC_ROLE_CTRL_RP_VAL_1_5 << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_RP_3_0: if (attach >> TYPEC_POLARITY_CC2) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT; else if (attach >> TYPEC_POLARITY_CC1) reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT; reg |= (TCPC_ROLE_CTRL_RP_VAL_3_0 << TCPC_ROLE_CTRL_RP_VAL_SHIFT); break; case TYPEC_CC_RD: if (attach >> TYPEC_POLARITY_CC2) reg |= TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT; else if (attach >> TYPEC_POLARITY_CC1) reg |= TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT; break; default: break; } /* keep the un-touched cc line to be open */ if (attach >> TYPEC_POLARITY_CC2) reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT; else if (attach >> TYPEC_POLARITY_CC1) reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT; } else { /* Not attached */ if (cc == TYPEC_CC_RD) reg = TCPC_ROLE_CTRL_DRP | 0xa; /* Rd */ else reg = TCPC_ROLE_CTRL_DRP | 0x5; /* Rp */ } regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg); if (!attach) regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_LOOK4CONNECTION); return 0; } static enum typec_cc_status tcpci_to_typec_cc(unsigned int cc, bool sink) { switch (cc) { case 0x1: return sink ? TYPEC_CC_RP_DEF : TYPEC_CC_RA; case 0x2: return sink ? TYPEC_CC_RP_1_5 : TYPEC_CC_RD; case 0x3: if (sink) return TYPEC_CC_RP_3_0; case 0x0: default: return TYPEC_CC_OPEN; } } static int tcpci_get_cc(struct tcpc_dev *tcpc, enum typec_cc_status *cc1, enum typec_cc_status *cc2) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_CC_STATUS, ®); if (ret < 0) return ret; *cc1 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC1_SHIFT) & TCPC_CC_STATUS_CC1_MASK, reg & TCPC_CC_STATUS_TERM); *cc2 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC2_SHIFT) & TCPC_CC_STATUS_CC2_MASK, reg & TCPC_CC_STATUS_TERM); return 0; } static int tcpci_set_polarity(struct tcpc_dev *tcpc, enum typec_cc_polarity polarity) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; ret = regmap_write(tcpci->regmap, TCPC_TCPC_CTRL, (polarity == TYPEC_POLARITY_CC2) ? TCPC_TCPC_CTRL_ORIENTATION : 0); if (ret < 0) return ret; return 0; } static int tcpci_set_ss_mux(struct tcpc_dev *tcpc, enum typec_cc_polarity polarity) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); if (!tcpci->ss_sel_gpio) return 0; if (polarity == TYPEC_POLARITY_CC1) gpiod_set_value_cansleep(tcpci->ss_sel_gpio, 1); else gpiod_set_value_cansleep(tcpci->ss_sel_gpio, 0); return 0; } static int tcpci_set_vconn(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_VCONN_ENABLE, enable ? TCPC_POWER_CTRL_VCONN_ENABLE : 0); return ret; } static int tcpci_set_roles(struct tcpc_dev *tcpc, bool attached, enum typec_role role, enum typec_data_role data) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; reg = PD_REV20 << TCPC_MSG_HDR_INFO_REV_SHIFT; if (role == TYPEC_SOURCE) reg |= TCPC_MSG_HDR_INFO_PWR_ROLE; if (data == TYPEC_HOST) reg |= TCPC_MSG_HDR_INFO_DATA_ROLE; ret = regmap_write(tcpci->regmap, TCPC_MSG_HDR_INFO, reg); if (ret < 0) return ret; if (data == TYPEC_HOST) extcon_set_state_sync(tcpci->edev, EXTCON_USB_HOST, true); else extcon_set_state_sync(tcpci->edev, EXTCON_USB_HOST, false); return 0; } static int tcpci_set_pd_rx(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg = 0; int ret; if (enable) reg = TCPC_RX_DETECT_SOP | TCPC_RX_DETECT_HARD_RESET; ret = regmap_write(tcpci->regmap, TCPC_RX_DETECT, reg); if (ret < 0) return ret; return 0; } static int tcpci_get_vbus(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); if (ret < 0) return ret; ret = !!(reg & TCPC_POWER_STATUS_VBUS_PRES); /* * If the vbus is not from itself for source, we * assume the vbus is from the port partner, this * is to work around the case of connect to legacy * Host like PC via a fixed Rp pull up cable, so * we notify the possible EXTCON_USB connection. */ if (!tcpci->drive_vbus) extcon_set_state_sync(tcpci->edev, EXTCON_USB, ret); return ret; } static unsigned int tcpci_get_vbus_vol(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg, ret = 0; ret = regmap_read(tcpci->regmap, TCPC_VBUS_VOLTAGE, ®); /* Convert it to be the vol number(mv) */ ret = ((reg & TCPC_VBUS_VOL_MASK) << ((reg & TCPC_VBUS_VOL_SCALE_FACTOR_MASK) >> TCPC_VBUS_VOL_SCALE_FACTOR_SHIFT)) * TCPC_VBUS_VOL_MV_UNIT; return ret; } static int tcpci_set_vbus(struct tcpc_dev *tcpc, bool source, bool sink) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; /* Only disable source if it was enabled */ if (!source && tcpci->drive_vbus) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_DISABLE_SRC_VBUS); if (ret < 0) return ret; tcpci->drive_vbus = false; } if (!sink) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_DISABLE_SINK_VBUS); if (ret < 0) return ret; } /* Enable force discharge */ if (!source && !sink) tcpci_vbus_force_discharge(tcpc, true); if (source) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_SRC_VBUS_DEFAULT); if (ret < 0) return ret; tcpci->drive_vbus = true; } if (sink && !tcpci->sink_disable) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_SINK_VBUS); if (ret < 0) return ret; } return 0; } static int tcpci_pd_transmit(struct tcpc_dev *tcpc, enum tcpm_transmit_type type, const struct pd_message *msg) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg, cnt, header; int ret; cnt = msg ? pd_header_cnt(msg->header) * 4 : 0; ret = regmap_write(tcpci->regmap, TCPC_TX_BYTE_CNT, cnt + 2); if (ret < 0) return ret; header = msg ? msg->header : 0; ret = tcpci_write16(tcpci, TCPC_TX_HDR, header); if (ret < 0) return ret; if (cnt > 0) { ret = regmap_raw_write(tcpci->regmap, TCPC_TX_DATA, &msg->payload, cnt); if (ret < 0) return ret; } reg = (PD_RETRY_COUNT << TCPC_TRANSMIT_RETRY_SHIFT) | (type << TCPC_TRANSMIT_TYPE_SHIFT); ret = regmap_write(tcpci->regmap, TCPC_TRANSMIT, reg); if (ret < 0) return ret; return 0; } static int tcpci_vbus_detect(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; if (enable) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_ENABLE_VBUS_DETECT); if (ret < 0) return ret; } else { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_DISABLE_VBUS_DETECT); if (ret < 0) return ret; } return 0; } static void tcpci_bist_mode(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); regmap_update_bits(tcpci->regmap, TCPC_TCPC_CTRL, TCPC_TCPC_CTRL_BIST_MODE, enable ? TCPC_TCPC_CTRL_BIST_MODE : 0); } static int tcpci_init(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned long timeout = jiffies + msecs_to_jiffies(2000); /* XXX */ unsigned int reg; int ret; while (time_before_eq(jiffies, timeout)) { ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); if (ret < 0) return ret; if (!(reg & TCPC_POWER_STATUS_UNINIT)) break; usleep_range(10000, 20000); } if (time_after(jiffies, timeout)) return -ETIMEDOUT; /* Clear all events */ ret = tcpci_write16(tcpci, TCPC_ALERT, 0xffff); if (ret < 0) return ret; /* Clear fault condition */ regmap_write(tcpci->regmap, TCPC_FAULT_STATUS, 0x80); if (tcpci->controls_vbus) reg = TCPC_POWER_STATUS_VBUS_PRES; else reg = 0; ret = regmap_write(tcpci->regmap, TCPC_POWER_STATUS_MASK, reg); if (ret < 0) return ret; /* Enable Voltage Alarms Power status reporting */ regmap_read(tcpci->regmap, TCPC_POWER_CTRL, ®); reg &= ~TCPC_POWER_CTRL_DIS_VOL_ALARM; ret = regmap_write(tcpci->regmap, TCPC_POWER_CTRL, reg); reg = TCPC_ALERT_TX_SUCCESS | TCPC_ALERT_TX_FAILED | TCPC_ALERT_TX_DISCARDED | TCPC_ALERT_RX_STATUS | TCPC_ALERT_RX_HARD_RST | TCPC_ALERT_CC_STATUS | TCPC_ALERT_RX_BUF_OVF | TCPC_ALERT_FAULT | TCPC_ALERT_V_ALARM_LO; if (tcpci->controls_vbus) reg |= TCPC_ALERT_POWER_STATUS; tcpci->irq_mask = reg; return tcpci_write16(tcpci, TCPC_ALERT_MASK, reg); } static irqreturn_t tcpci_irq(int irq, void *dev_id) { struct tcpci *tcpci = dev_id; unsigned int status, reg; tcpci_read16(tcpci, TCPC_ALERT, &status); /* * Clear alert status for enabled irq except RX_STATUS, which shouldn't * be cleared until we have successfully retrieved message. */ if ((status & ~TCPC_ALERT_RX_STATUS) & tcpci->irq_mask) tcpci_write16(tcpci, TCPC_ALERT, status & ~TCPC_ALERT_RX_STATUS); if (status & TCPC_ALERT_CC_STATUS) tcpm_cc_change(tcpci->port); if (status & TCPC_ALERT_POWER_STATUS) { /* Read power status to clear the event */ regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); regmap_read(tcpci->regmap, TCPC_POWER_STATUS_MASK, ®); /* * If power status mask has been reset, then the TCPC * has reset. */ if (reg == 0xff) tcpm_tcpc_reset(tcpci->port); else tcpm_vbus_change(tcpci->port); } if (status & TCPC_ALERT_V_ALARM_LO) tcpm_vbus_low_alarm(tcpci->port); if (status & TCPC_ALERT_RX_STATUS) { struct pd_message msg; unsigned int cnt; regmap_read(tcpci->regmap, TCPC_RX_BYTE_CNT, &cnt); tcpci_read16(tcpci, TCPC_RX_HDR, ®); msg.header = reg; /* * TCPC_RX_BYTE_CNT is the number of bytes in the * RX_BUFFER_DATA_OBJECTS plus three (for the RX_BUF_FRAME_TYPE * and RX_BUF_HEADER). */ cnt -= 3; if (WARN_ON(cnt > sizeof(msg.payload))) cnt = sizeof(msg.payload); if (cnt > 0) regmap_raw_read(tcpci->regmap, TCPC_RX_DATA, &msg.payload, cnt); /* Read complete, clear RX status alert bit */ tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_STATUS); tcpm_pd_receive(tcpci->port, &msg); } if (status & TCPC_ALERT_RX_BUF_OVF) tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_BUF_OVF | TCPC_ALERT_RX_STATUS); /* Clear the fault status anyway */ if (status & TCPC_ALERT_FAULT) { regmap_read(tcpci->regmap, TCPC_FAULT_STATUS, ®); regmap_write(tcpci->regmap, TCPC_FAULT_STATUS, reg | TCPC_FAULT_STATUS_CLEAR); } if (status & TCPC_ALERT_RX_HARD_RST) tcpm_pd_hard_reset(tcpci->port); if (status & TCPC_ALERT_TX_SUCCESS) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_SUCCESS); else if (status & TCPC_ALERT_TX_DISCARDED) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_DISCARDED); else if (status & TCPC_ALERT_TX_FAILED) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_FAILED); return IRQ_HANDLED; } static const struct regmap_config tcpci_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x7F, /* 0x80 .. 0xFF are vendor defined */ }; static const struct tcpc_config tcpci_tcpc_config = { .type = TYPEC_PORT_DFP, .default_role = TYPEC_SINK, }; /* Populate struct tcpc_config from ACPI/device-tree */ static int tcpci_parse_config(struct tcpci *tcpci) { struct tcpc_config *tcfg; int ret = -EINVAL; tcpci->controls_vbus = true; /* XXX */ /* Alloc tcpc_config struct */ tcpci->tcpc.config = devm_kzalloc(tcpci->dev, sizeof(*tcfg), GFP_KERNEL); if (!tcpci->tcpc.config) return -ENOMEM; tcfg = tcpci->tcpc.config; /* Get the port-type */ tcfg->type = typec_get_port_type(tcpci->dev); if (tcfg->type == TYPEC_PORT_TYPE_UNKNOWN) { dev_err(tcpci->dev, "typec port type is NOT correct!\n"); return -EINVAL; } if (tcfg->type == TYPEC_PORT_UFP) goto sink; /* Check source pdo array size */ ret = device_property_read_u32_array(tcpci->dev, "src-pdos", NULL, 0); if (ret <= 0) { dev_err(tcpci->dev, "typec source pdo is missing!\n"); return -EINVAL; } tcfg->nr_src_pdo = ret; /* Alloc src_pdo based on the array size */ tcfg->src_pdo = devm_kzalloc(tcpci->dev, sizeof(*tcfg->src_pdo) * tcfg->nr_src_pdo, GFP_KERNEL); if (!tcfg->src_pdo) return -ENOMEM; /* Read out source pdo array */ ret = device_property_read_u32_array(tcpci->dev, "src-pdos", tcfg->src_pdo, tcfg->nr_src_pdo); if (ret) { dev_err(tcpci->dev, "Failed to read src pdo!\n"); return -EINVAL; } if (tcfg->type == TYPEC_PORT_DFP) return 0; /* Get the default-role */ tcfg->default_role = typec_get_power_role(tcpci->dev); if (tcfg->default_role == TYPEC_ROLE_UNKNOWN) { dev_err(tcpci->dev, "typec power role is NOT correct!\n"); return -EINVAL; } /* * In case DRP only for data role, power role is source only * we can use this property to disable power sink. */ if (device_property_read_bool(tcpci->dev, "sink-disable")) { tcpci->sink_disable = true; /* Provide a sink PDO to setup a PD session */ tcfg->nr_snk_pdo = 1; tcfg->snk_pdo = devm_kzalloc(tcpci->dev, sizeof(*tcfg->snk_pdo), GFP_KERNEL); if (!tcfg->snk_pdo) return -ENOMEM; /* * Sink PDO setting: * - Voltage in 50mV units: 5V * - Operational Current in 10mA units: 100mA */ *tcfg->snk_pdo = PDO_FIXED(5000, 100, PDO_FIXED_DUAL_ROLE | PDO_FIXED_EXTPOWER | PDO_FIXED_USB_COMM | PDO_FIXED_DATA_SWAP); tcfg->max_snk_mv = 5000; tcfg->max_snk_ma = 2000; tcfg->max_snk_mw = 10000; tcfg->operating_snk_mw = 500; return 0; } sink: /* Check the num of snk pdo */ ret = device_property_read_u32_array(tcpci->dev, "snk-pdos", NULL, 0); if (ret <= 0) { dev_err(tcpci->dev, "typec sink pdo is missing!\n"); return -EINVAL; } tcfg->nr_snk_pdo = ret; /* alloc snk_pdo based on the array size */ tcfg->snk_pdo = devm_kzalloc(tcpci->dev, sizeof(*tcfg->snk_pdo) * tcfg->nr_snk_pdo, GFP_KERNEL); if (!tcfg->snk_pdo) return -ENOMEM; /* Read out sink pdo array */ ret = device_property_read_u32_array(tcpci->dev, "snk-pdos", tcfg->snk_pdo, tcfg->nr_snk_pdo); if (ret) { dev_err(tcpci->dev, "Failed to read snk pdo!\n"); return -EINVAL; } /* Get the max-snk-mv max-snk-ma op-snk-mw */ if (device_property_read_u32(tcpci->dev, "max-snk-mv", &tcfg->max_snk_mv) || device_property_read_u32(tcpci->dev, "max-snk-ma", &tcfg->max_snk_ma) || device_property_read_u32(tcpci->dev, "max-snk-mw", &tcfg->max_snk_mw) || device_property_read_u32(tcpci->dev, "op-snk-mw", &tcfg->operating_snk_mw)) { ret = -EINVAL; goto snk_setting_wrong; } return 0; snk_setting_wrong: if (tcfg->type == TYPEC_PORT_DRP || tcfg->type == TYPEC_PORT_UFP) dev_err(tcpci->dev, "Failed to read snk setting!\n"); return ret; } static int tcpci_ss_mux_control_init(struct tcpci *tcpci) { struct device *dev = tcpci->dev; struct gpio_desc *gpiod_reset; gpiod_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(gpiod_reset)) { dev_err(dev, "Failed to request reset gpio."); return PTR_ERR(gpiod_reset); } if (gpiod_reset) usleep_range(700, 1000); tcpci->ss_sel_gpio = devm_gpiod_get_optional(dev, "ss-sel", GPIOD_OUT_HIGH); if (IS_ERR(tcpci->ss_sel_gpio)) { dev_err(dev, "Failed to request super speed mux sel gpio."); return PTR_ERR(tcpci->ss_sel_gpio); } return 0; } static int tcpci_probe(struct i2c_client *client, const struct i2c_device_id *i2c_id) { struct tcpci *tcpci; int err; tcpci = devm_kzalloc(&client->dev, sizeof(*tcpci), GFP_KERNEL); if (!tcpci) return -ENOMEM; tcpci->client = client; tcpci->dev = &client->dev; i2c_set_clientdata(client, tcpci); tcpci->regmap = devm_regmap_init_i2c(client, &tcpci_regmap_config); if (IS_ERR(tcpci->regmap)) return PTR_ERR(tcpci->regmap); tcpci->tcpc.init = tcpci_init; tcpci->tcpc.get_vbus = tcpci_get_vbus; tcpci->tcpc.set_vbus = tcpci_set_vbus; tcpci->tcpc.set_cc = tcpci_set_cc; tcpci->tcpc.get_cc = tcpci_get_cc; tcpci->tcpc.set_polarity = tcpci_set_polarity; tcpci->tcpc.set_vconn = tcpci_set_vconn; tcpci->tcpc.start_drp_toggling = tcpci_start_drp_toggling; tcpci->tcpc.vbus_detect = tcpci_vbus_detect; tcpci->tcpc.vbus_discharge = tcpci_vbus_force_discharge; tcpci->tcpc.get_vbus_vol = tcpci_get_vbus_vol; tcpci->tcpc.bist_mode = tcpci_bist_mode; tcpci->tcpc.ss_mux_sel = tcpci_set_ss_mux; tcpci->tcpc.set_pd_rx = tcpci_set_pd_rx; tcpci->tcpc.set_roles = tcpci_set_roles; tcpci->tcpc.pd_transmit = tcpci_pd_transmit; /* Allocate extcon device */ tcpci->edev = devm_extcon_dev_allocate(&client->dev, tcpci_extcon_cable); if (IS_ERR(tcpci->edev)) { dev_err(&client->dev, "failed to allocate extcon dev.\n"); return -ENOMEM; } err = devm_extcon_dev_register(&client->dev, tcpci->edev); if (err) { dev_err(&client->dev, "failed to register extcon dev.\n"); return err; } err = tcpci_parse_config(tcpci); if (err < 0) return err; tcpci->port = tcpm_register_port(tcpci->dev, &tcpci->tcpc); if (IS_ERR(tcpci->port)) return PTR_ERR(tcpci->port); err = tcpci_ss_mux_control_init(tcpci); if (err) goto err1; err = devm_request_threaded_irq(tcpci->dev, client->irq, NULL, tcpci_irq, IRQF_ONESHOT | IRQF_TRIGGER_LOW, dev_name(tcpci->dev), tcpci); if (err < 0) goto err1; device_set_wakeup_capable(tcpci->dev, true); return 0; err1: tcpm_unregister_port(tcpci->port); return err; } static int tcpci_remove(struct i2c_client *client) { struct tcpci *tcpci = i2c_get_clientdata(client); tcpm_unregister_port(tcpci->port); return 0; } static int tcpci_suspend(struct device *dev) { struct tcpci *tcpci = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(tcpci->client->irq); return 0; } static int tcpci_resume(struct device *dev) { struct tcpci *tcpci = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(tcpci->client->irq); return 0; } static const struct dev_pm_ops tcpci_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(tcpci_suspend, tcpci_resume) }; static const struct i2c_device_id tcpci_id[] = { { "tcpci", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tcpci_id); #ifdef CONFIG_OF static const struct of_device_id tcpci_of_match[] = { { .compatible = "usb,tcpci", }, {}, }; MODULE_DEVICE_TABLE(of, tcpci_of_match); #endif static struct i2c_driver tcpci_i2c_driver = { .driver = { .name = "tcpci", .pm = &tcpci_pm_ops, .of_match_table = of_match_ptr(tcpci_of_match), }, .probe = tcpci_probe, .remove = tcpci_remove, .id_table = tcpci_id, }; module_i2c_driver(tcpci_i2c_driver); MODULE_DESCRIPTION("USB Type-C Port Controller Interface driver"); MODULE_LICENSE("GPL");