remarkable-linux/mm/swap_state.c
Huang Ying 54f180d3c1 mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc.  Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc.  So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.

In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term.  And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.

From Dave Hansen:
 "for example, we have a two-page data structure. vmalloc() takes two
  effectively random order-0 pages, probably from two different 2M pages
  and pins them. That "kills" two 2M pages. kmalloc(), allocating two
  *contiguous* pages, will not cross a 2M boundary. That means it will
  only "kill" the possibility of a single 2M page. More 2M pages == less
  fragmentation.

The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.

The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it.  That makes it a little harder to change.

Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00

554 lines
14 KiB
C

/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <linux/vmalloc.h>
#include <linux/swap_slots.h>
#include <asm/pgtable.h>
/*
* swapper_space is a fiction, retained to simplify the path through
* vmscan's shrink_page_list.
*/
static const struct address_space_operations swap_aops = {
.writepage = swap_writepage,
.set_page_dirty = swap_set_page_dirty,
#ifdef CONFIG_MIGRATION
.migratepage = migrate_page,
#endif
};
struct address_space *swapper_spaces[MAX_SWAPFILES];
static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
static struct {
unsigned long add_total;
unsigned long del_total;
unsigned long find_success;
unsigned long find_total;
} swap_cache_info;
unsigned long total_swapcache_pages(void)
{
unsigned int i, j, nr;
unsigned long ret = 0;
struct address_space *spaces;
rcu_read_lock();
for (i = 0; i < MAX_SWAPFILES; i++) {
/*
* The corresponding entries in nr_swapper_spaces and
* swapper_spaces will be reused only after at least
* one grace period. So it is impossible for them
* belongs to different usage.
*/
nr = nr_swapper_spaces[i];
spaces = rcu_dereference(swapper_spaces[i]);
if (!nr || !spaces)
continue;
for (j = 0; j < nr; j++)
ret += spaces[j].nrpages;
}
rcu_read_unlock();
return ret;
}
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
void show_swap_cache_info(void)
{
printk("%lu pages in swap cache\n", total_swapcache_pages());
printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.add_total, swap_cache_info.del_total,
swap_cache_info.find_success, swap_cache_info.find_total);
printk("Free swap = %ldkB\n",
get_nr_swap_pages() << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
* __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
{
int error;
struct address_space *address_space;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageSwapCache(page), page);
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
get_page(page);
SetPageSwapCache(page);
set_page_private(page, entry.val);
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
error = radix_tree_insert(&address_space->page_tree,
swp_offset(entry), page);
if (likely(!error)) {
address_space->nrpages++;
__inc_node_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(add_total);
}
spin_unlock_irq(&address_space->tree_lock);
if (unlikely(error)) {
/*
* Only the context which have set SWAP_HAS_CACHE flag
* would call add_to_swap_cache().
* So add_to_swap_cache() doesn't returns -EEXIST.
*/
VM_BUG_ON(error == -EEXIST);
set_page_private(page, 0UL);
ClearPageSwapCache(page);
put_page(page);
}
return error;
}
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
int error;
error = radix_tree_maybe_preload(gfp_mask);
if (!error) {
error = __add_to_swap_cache(page, entry);
radix_tree_preload_end();
}
return error;
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
struct address_space *address_space;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
VM_BUG_ON_PAGE(PageWriteback(page), page);
entry.val = page_private(page);
address_space = swap_address_space(entry);
radix_tree_delete(&address_space->page_tree, swp_offset(entry));
set_page_private(page, 0);
ClearPageSwapCache(page);
address_space->nrpages--;
__dec_node_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(del_total);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
*/
int add_to_swap(struct page *page, struct list_head *list)
{
swp_entry_t entry;
int err;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageUptodate(page), page);
entry = get_swap_page();
if (!entry.val)
return 0;
if (mem_cgroup_try_charge_swap(page, entry)) {
swapcache_free(entry);
return 0;
}
if (unlikely(PageTransHuge(page)))
if (unlikely(split_huge_page_to_list(page, list))) {
swapcache_free(entry);
return 0;
}
/*
* Radix-tree node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
* Add it to the swap cache.
*/
err = add_to_swap_cache(page, entry,
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
if (!err) {
return 1;
} else { /* -ENOMEM radix-tree allocation failure */
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
swapcache_free(entry);
return 0;
}
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache and locked.
* It will never put the page into the free list,
* the caller has a reference on the page.
*/
void delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
struct address_space *address_space;
entry.val = page_private(page);
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
__delete_from_swap_cache(page);
spin_unlock_irq(&address_space->tree_lock);
swapcache_free(entry);
put_page(page);
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check for PageSwapCache without the page lock
* here because we are going to recheck again inside
* try_to_free_swap() _with_ the lock.
* - Marcelo
*/
static inline void free_swap_cache(struct page *page)
{
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
try_to_free_swap(page);
unlock_page(page);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
if (!is_huge_zero_page(page))
put_page(page);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct page **pages, int nr)
{
struct page **pagep = pages;
int i;
lru_add_drain();
for (i = 0; i < nr; i++)
free_swap_cache(pagep[i]);
release_pages(pagep, nr, false);
}
/*
* Lookup a swap entry in the swap cache. A found page will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the page
* lock before returning.
*/
struct page * lookup_swap_cache(swp_entry_t entry)
{
struct page *page;
page = find_get_page(swap_address_space(entry), swp_offset(entry));
if (page) {
INC_CACHE_INFO(find_success);
if (TestClearPageReadahead(page))
atomic_inc(&swapin_readahead_hits);
}
INC_CACHE_INFO(find_total);
return page;
}
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
bool *new_page_allocated)
{
struct page *found_page, *new_page = NULL;
struct address_space *swapper_space = swap_address_space(entry);
int err;
*new_page_allocated = false;
do {
/*
* First check the swap cache. Since this is normally
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
found_page = find_get_page(swapper_space, swp_offset(entry));
if (found_page)
break;
/*
* Just skip read ahead for unused swap slot.
* During swap_off when swap_slot_cache is disabled,
* we have to handle the race between putting
* swap entry in swap cache and marking swap slot
* as SWAP_HAS_CACHE. That's done in later part of code or
* else swap_off will be aborted if we return NULL.
*/
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
break;
/*
* Get a new page to read into from swap.
*/
if (!new_page) {
new_page = alloc_page_vma(gfp_mask, vma, addr);
if (!new_page)
break; /* Out of memory */
}
/*
* call radix_tree_preload() while we can wait.
*/
err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
if (err)
break;
/*
* Swap entry may have been freed since our caller observed it.
*/
err = swapcache_prepare(entry);
if (err == -EEXIST) {
radix_tree_preload_end();
/*
* We might race against get_swap_page() and stumble
* across a SWAP_HAS_CACHE swap_map entry whose page
* has not been brought into the swapcache yet.
*/
cond_resched();
continue;
}
if (err) { /* swp entry is obsolete ? */
radix_tree_preload_end();
break;
}
/* May fail (-ENOMEM) if radix-tree node allocation failed. */
__SetPageLocked(new_page);
__SetPageSwapBacked(new_page);
err = __add_to_swap_cache(new_page, entry);
if (likely(!err)) {
radix_tree_preload_end();
/*
* Initiate read into locked page and return.
*/
lru_cache_add_anon(new_page);
*new_page_allocated = true;
return new_page;
}
radix_tree_preload_end();
__ClearPageLocked(new_page);
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
swapcache_free(entry);
} while (err != -ENOMEM);
if (new_page)
put_page(new_page);
return found_page;
}
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*/
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
bool page_was_allocated;
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
vma, addr, &page_was_allocated);
if (page_was_allocated)
swap_readpage(retpage);
return retpage;
}
static unsigned long swapin_nr_pages(unsigned long offset)
{
static unsigned long prev_offset;
unsigned int pages, max_pages, last_ra;
static atomic_t last_readahead_pages;
max_pages = 1 << READ_ONCE(page_cluster);
if (max_pages <= 1)
return 1;
/*
* This heuristic has been found to work well on both sequential and
* random loads, swapping to hard disk or to SSD: please don't ask
* what the "+ 2" means, it just happens to work well, that's all.
*/
pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
if (pages == 2) {
/*
* We can have no readahead hits to judge by: but must not get
* stuck here forever, so check for an adjacent offset instead
* (and don't even bother to check whether swap type is same).
*/
if (offset != prev_offset + 1 && offset != prev_offset - 1)
pages = 1;
prev_offset = offset;
} else {
unsigned int roundup = 4;
while (roundup < pages)
roundup <<= 1;
pages = roundup;
}
if (pages > max_pages)
pages = max_pages;
/* Don't shrink readahead too fast */
last_ra = atomic_read(&last_readahead_pages) / 2;
if (pages < last_ra)
pages = last_ra;
atomic_set(&last_readahead_pages, pages);
return pages;
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vma: user vma this address belongs to
* @addr: target address for mempolicy
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* This has been extended to use the NUMA policies from the mm triggering
* the readahead.
*
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
unsigned long entry_offset = swp_offset(entry);
unsigned long offset = entry_offset;
unsigned long start_offset, end_offset;
unsigned long mask;
struct blk_plug plug;
mask = swapin_nr_pages(offset) - 1;
if (!mask)
goto skip;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
blk_start_plug(&plug);
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
gfp_mask, vma, addr);
if (!page)
continue;
if (offset != entry_offset)
SetPageReadahead(page);
put_page(page);
}
blk_finish_plug(&plug);
lru_add_drain(); /* Push any new pages onto the LRU now */
skip:
return read_swap_cache_async(entry, gfp_mask, vma, addr);
}
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
{
struct address_space *spaces, *space;
unsigned int i, nr;
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
if (!spaces)
return -ENOMEM;
for (i = 0; i < nr; i++) {
space = spaces + i;
INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
atomic_set(&space->i_mmap_writable, 0);
space->a_ops = &swap_aops;
/* swap cache doesn't use writeback related tags */
mapping_set_no_writeback_tags(space);
spin_lock_init(&space->tree_lock);
}
nr_swapper_spaces[type] = nr;
rcu_assign_pointer(swapper_spaces[type], spaces);
return 0;
}
void exit_swap_address_space(unsigned int type)
{
struct address_space *spaces;
spaces = swapper_spaces[type];
nr_swapper_spaces[type] = 0;
rcu_assign_pointer(swapper_spaces[type], NULL);
synchronize_rcu();
kvfree(spaces);
}