remarkable-linux/sound/ppc/tumbler.c
Andreas Schwab 2fd53a7e9b [ALSA] [PPC,SOUND] Fix audio gpio state detection
When booting with line out or headphone plugged, you won't hear anything.
The problem is that after reset all channels are muted, but the actual
value of the gpio port doesn't exactly match the active_val settings as
expected by check_audio_gpio.  For example, the line_mute port is set to
7, but check_audio_gpio would expect 0xd or 0xf, thus its return value
indicates that it is not active, even though it is.  AFAICS only looking
at the low bit is enough to determine whether the port is active.

Signed-off-by: Andreas Schwab <schwab@suse.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-09-23 10:45:33 +02:00

1453 lines
38 KiB
C

/*
* PMac Tumbler/Snapper lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Rene Rebe <rene.rebe@gmx.net>:
* * update from shadow registers on wakeup and headphone plug
* * automatically toggle DRC on headphone plug
*
*/
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <sound/core.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include "pmac.h"
#include "tumbler_volume.h"
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif
/* i2c address for tumbler */
#define TAS_I2C_ADDR 0x34
/* registers */
#define TAS_REG_MCS 0x01 /* main control */
#define TAS_REG_DRC 0x02
#define TAS_REG_VOL 0x04
#define TAS_REG_TREBLE 0x05
#define TAS_REG_BASS 0x06
#define TAS_REG_INPUT1 0x07
#define TAS_REG_INPUT2 0x08
/* tas3001c */
#define TAS_REG_PCM TAS_REG_INPUT1
/* tas3004 */
#define TAS_REG_LMIX TAS_REG_INPUT1
#define TAS_REG_RMIX TAS_REG_INPUT2
#define TAS_REG_MCS2 0x43 /* main control 2 */
#define TAS_REG_ACS 0x40 /* analog control */
/* mono volumes for tas3001c/tas3004 */
enum {
VOL_IDX_PCM_MONO, /* tas3001c only */
VOL_IDX_BASS, VOL_IDX_TREBLE,
VOL_IDX_LAST_MONO
};
/* stereo volumes for tas3004 */
enum {
VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC,
VOL_IDX_LAST_MIX
};
struct pmac_gpio {
unsigned int addr;
u8 active_val;
u8 inactive_val;
u8 active_state;
};
struct pmac_tumbler {
struct pmac_keywest i2c;
struct pmac_gpio audio_reset;
struct pmac_gpio amp_mute;
struct pmac_gpio line_mute;
struct pmac_gpio line_detect;
struct pmac_gpio hp_mute;
struct pmac_gpio hp_detect;
int headphone_irq;
int lineout_irq;
unsigned int save_master_vol[2];
unsigned int master_vol[2];
unsigned int save_master_switch[2];
unsigned int master_switch[2];
unsigned int mono_vol[VOL_IDX_LAST_MONO];
unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */
int drc_range;
int drc_enable;
int capture_source;
int anded_reset;
int auto_mute_notify;
int reset_on_sleep;
u8 acs;
};
/*
*/
static int send_init_client(struct pmac_keywest *i2c, unsigned int *regs)
{
while (*regs > 0) {
int err, count = 10;
do {
err = i2c_smbus_write_byte_data(i2c->client,
regs[0], regs[1]);
if (err >= 0)
break;
DBG("(W) i2c error %d\n", err);
mdelay(10);
} while (count--);
if (err < 0)
return -ENXIO;
regs += 2;
}
return 0;
}
static int tumbler_init_client(struct pmac_keywest *i2c)
{
static unsigned int regs[] = {
/* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */
TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0,
0, /* terminator */
};
DBG("(I) tumbler init client\n");
return send_init_client(i2c, regs);
}
static int snapper_init_client(struct pmac_keywest *i2c)
{
static unsigned int regs[] = {
/* normal operation, SCLK=64fps, i2s output, 16bit width */
TAS_REG_MCS, (1<<6)|(2<<4)|0,
/* normal operation, all-pass mode */
TAS_REG_MCS2, (1<<1),
/* normal output, no deemphasis, A input, power-up, line-in */
TAS_REG_ACS, 0,
0, /* terminator */
};
DBG("(I) snapper init client\n");
return send_init_client(i2c, regs);
}
/*
* gpio access
*/
#define do_gpio_write(gp, val) \
pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val)
#define do_gpio_read(gp) \
pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0)
#define tumbler_gpio_free(gp) /* NOP */
static void write_audio_gpio(struct pmac_gpio *gp, int active)
{
if (! gp->addr)
return;
active = active ? gp->active_val : gp->inactive_val;
do_gpio_write(gp, active);
DBG("(I) gpio %x write %d\n", gp->addr, active);
}
static int check_audio_gpio(struct pmac_gpio *gp)
{
int ret;
if (! gp->addr)
return 0;
ret = do_gpio_read(gp);
return (ret & 0x1) == (gp->active_val & 0x1);
}
static int read_audio_gpio(struct pmac_gpio *gp)
{
int ret;
if (! gp->addr)
return 0;
ret = do_gpio_read(gp);
ret = (ret & 0x02) !=0;
return ret == gp->active_state;
}
/*
* update master volume
*/
static int tumbler_set_master_volume(struct pmac_tumbler *mix)
{
unsigned char block[6];
unsigned int left_vol, right_vol;
if (! mix->i2c.client)
return -ENODEV;
if (! mix->master_switch[0])
left_vol = 0;
else {
left_vol = mix->master_vol[0];
if (left_vol >= ARRAY_SIZE(master_volume_table))
left_vol = ARRAY_SIZE(master_volume_table) - 1;
left_vol = master_volume_table[left_vol];
}
if (! mix->master_switch[1])
right_vol = 0;
else {
right_vol = mix->master_vol[1];
if (right_vol >= ARRAY_SIZE(master_volume_table))
right_vol = ARRAY_SIZE(master_volume_table) - 1;
right_vol = master_volume_table[right_vol];
}
block[0] = (left_vol >> 16) & 0xff;
block[1] = (left_vol >> 8) & 0xff;
block[2] = (left_vol >> 0) & 0xff;
block[3] = (right_vol >> 16) & 0xff;
block[4] = (right_vol >> 8) & 0xff;
block[5] = (right_vol >> 0) & 0xff;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6,
block) < 0) {
snd_printk("failed to set volume \n");
return -EINVAL;
}
return 0;
}
/* output volume */
static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1;
return 0;
}
static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
snd_assert(mix, return -ENODEV);
ucontrol->value.integer.value[0] = mix->master_vol[0];
ucontrol->value.integer.value[1] = mix->master_vol[1];
return 0;
}
static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
int change;
snd_assert(mix, return -ENODEV);
change = mix->master_vol[0] != ucontrol->value.integer.value[0] ||
mix->master_vol[1] != ucontrol->value.integer.value[1];
if (change) {
mix->master_vol[0] = ucontrol->value.integer.value[0];
mix->master_vol[1] = ucontrol->value.integer.value[1];
tumbler_set_master_volume(mix);
}
return change;
}
/* output switch */
static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
snd_assert(mix, return -ENODEV);
ucontrol->value.integer.value[0] = mix->master_switch[0];
ucontrol->value.integer.value[1] = mix->master_switch[1];
return 0;
}
static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
int change;
snd_assert(mix, return -ENODEV);
change = mix->master_switch[0] != ucontrol->value.integer.value[0] ||
mix->master_switch[1] != ucontrol->value.integer.value[1];
if (change) {
mix->master_switch[0] = !!ucontrol->value.integer.value[0];
mix->master_switch[1] = !!ucontrol->value.integer.value[1];
tumbler_set_master_volume(mix);
}
return change;
}
/*
* TAS3001c dynamic range compression
*/
#define TAS3001_DRC_MAX 0x5f
static int tumbler_set_drc(struct pmac_tumbler *mix)
{
unsigned char val[2];
if (! mix->i2c.client)
return -ENODEV;
if (mix->drc_enable) {
val[0] = 0xc1; /* enable, 3:1 compression */
if (mix->drc_range > TAS3001_DRC_MAX)
val[1] = 0xf0;
else if (mix->drc_range < 0)
val[1] = 0x91;
else
val[1] = mix->drc_range + 0x91;
} else {
val[0] = 0;
val[1] = 0;
}
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
2, val) < 0) {
snd_printk("failed to set DRC\n");
return -EINVAL;
}
return 0;
}
/*
* TAS3004
*/
#define TAS3004_DRC_MAX 0xef
static int snapper_set_drc(struct pmac_tumbler *mix)
{
unsigned char val[6];
if (! mix->i2c.client)
return -ENODEV;
if (mix->drc_enable)
val[0] = 0x50; /* 3:1 above threshold */
else
val[0] = 0x51; /* disabled */
val[1] = 0x02; /* 1:1 below threshold */
if (mix->drc_range > 0xef)
val[2] = 0xef;
else if (mix->drc_range < 0)
val[2] = 0x00;
else
val[2] = mix->drc_range;
val[3] = 0xb0;
val[4] = 0x60;
val[5] = 0xa0;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
6, val) < 0) {
snd_printk("failed to set DRC\n");
return -EINVAL;
}
return 0;
}
static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX;
return 0;
}
static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->drc_range;
return 0;
}
static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
change = mix->drc_range != ucontrol->value.integer.value[0];
if (change) {
mix->drc_range = ucontrol->value.integer.value[0];
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
}
return change;
}
static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->drc_enable;
return 0;
}
static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
change = mix->drc_enable != ucontrol->value.integer.value[0];
if (change) {
mix->drc_enable = !!ucontrol->value.integer.value[0];
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
}
return change;
}
/*
* mono volumes
*/
struct tumbler_mono_vol {
int index;
int reg;
int bytes;
unsigned int max;
unsigned int *table;
};
static int tumbler_set_mono_volume(struct pmac_tumbler *mix,
struct tumbler_mono_vol *info)
{
unsigned char block[4];
unsigned int vol;
int i;
if (! mix->i2c.client)
return -ENODEV;
vol = mix->mono_vol[info->index];
if (vol >= info->max)
vol = info->max - 1;
vol = info->table[vol];
for (i = 0; i < info->bytes; i++)
block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg,
info->bytes, block) < 0) {
snd_printk("failed to set mono volume %d\n", info->index);
return -EINVAL;
}
return 0;
}
static int tumbler_info_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = info->max - 1;
return 0;
}
static int tumbler_get_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->mono_vol[info->index];
return 0;
}
static int tumbler_put_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
change = mix->mono_vol[info->index] != ucontrol->value.integer.value[0];
if (change) {
mix->mono_vol[info->index] = ucontrol->value.integer.value[0];
tumbler_set_mono_volume(mix, info);
}
return change;
}
/* TAS3001c mono volumes */
static struct tumbler_mono_vol tumbler_pcm_vol_info = {
.index = VOL_IDX_PCM_MONO,
.reg = TAS_REG_PCM,
.bytes = 3,
.max = ARRAY_SIZE(mixer_volume_table),
.table = mixer_volume_table,
};
static struct tumbler_mono_vol tumbler_bass_vol_info = {
.index = VOL_IDX_BASS,
.reg = TAS_REG_BASS,
.bytes = 1,
.max = ARRAY_SIZE(bass_volume_table),
.table = bass_volume_table,
};
static struct tumbler_mono_vol tumbler_treble_vol_info = {
.index = VOL_IDX_TREBLE,
.reg = TAS_REG_TREBLE,
.bytes = 1,
.max = ARRAY_SIZE(treble_volume_table),
.table = treble_volume_table,
};
/* TAS3004 mono volumes */
static struct tumbler_mono_vol snapper_bass_vol_info = {
.index = VOL_IDX_BASS,
.reg = TAS_REG_BASS,
.bytes = 1,
.max = ARRAY_SIZE(snapper_bass_volume_table),
.table = snapper_bass_volume_table,
};
static struct tumbler_mono_vol snapper_treble_vol_info = {
.index = VOL_IDX_TREBLE,
.reg = TAS_REG_TREBLE,
.bytes = 1,
.max = ARRAY_SIZE(snapper_treble_volume_table),
.table = snapper_treble_volume_table,
};
#define DEFINE_MONO(xname,type) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = tumbler_info_mono, \
.get = tumbler_get_mono, \
.put = tumbler_put_mono, \
.private_value = (unsigned long)(&tumbler_##type##_vol_info), \
}
#define DEFINE_SNAPPER_MONO(xname,type) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = tumbler_info_mono, \
.get = tumbler_get_mono, \
.put = tumbler_put_mono, \
.private_value = (unsigned long)(&snapper_##type##_vol_info), \
}
/*
* snapper mixer volumes
*/
static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg)
{
int i, j, vol;
unsigned char block[9];
vol = mix->mix_vol[idx][ch];
if (vol >= ARRAY_SIZE(mixer_volume_table)) {
vol = ARRAY_SIZE(mixer_volume_table) - 1;
mix->mix_vol[idx][ch] = vol;
}
for (i = 0; i < 3; i++) {
vol = mix->mix_vol[i][ch];
vol = mixer_volume_table[vol];
for (j = 0; j < 3; j++)
block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff;
}
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg,
9, block) < 0) {
snd_printk("failed to set mono volume %d\n", reg);
return -EINVAL;
}
return 0;
}
static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx)
{
if (! mix->i2c.client)
return -ENODEV;
if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 ||
snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0)
return -EINVAL;
return 0;
}
static int snapper_info_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1;
return 0;
}
static int snapper_get_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = (int)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->mix_vol[idx][0];
ucontrol->value.integer.value[1] = mix->mix_vol[idx][1];
return 0;
}
static int snapper_put_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = (int)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
change = mix->mix_vol[idx][0] != ucontrol->value.integer.value[0] ||
mix->mix_vol[idx][1] != ucontrol->value.integer.value[1];
if (change) {
mix->mix_vol[idx][0] = ucontrol->value.integer.value[0];
mix->mix_vol[idx][1] = ucontrol->value.integer.value[1];
snapper_set_mix_vol(mix, idx);
}
return change;
}
/*
* mute switches. FIXME: Turn that into software mute when both outputs are muted
* to avoid codec reset on ibook M7
*/
enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE };
static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
struct pmac_gpio *gp;
if (! (mix = chip->mixer_data))
return -ENODEV;
switch(kcontrol->private_value) {
case TUMBLER_MUTE_HP:
gp = &mix->hp_mute; break;
case TUMBLER_MUTE_AMP:
gp = &mix->amp_mute; break;
case TUMBLER_MUTE_LINE:
gp = &mix->line_mute; break;
default:
gp = NULL;
}
if (gp == NULL)
return -EINVAL;
ucontrol->value.integer.value[0] = !check_audio_gpio(gp);
return 0;
}
static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
struct pmac_gpio *gp;
int val;
#ifdef PMAC_SUPPORT_AUTOMUTE
if (chip->update_automute && chip->auto_mute)
return 0; /* don't touch in the auto-mute mode */
#endif
if (! (mix = chip->mixer_data))
return -ENODEV;
switch(kcontrol->private_value) {
case TUMBLER_MUTE_HP:
gp = &mix->hp_mute; break;
case TUMBLER_MUTE_AMP:
gp = &mix->amp_mute; break;
case TUMBLER_MUTE_LINE:
gp = &mix->line_mute; break;
default:
gp = NULL;
}
if (gp == NULL)
return -EINVAL;
val = ! check_audio_gpio(gp);
if (val != ucontrol->value.integer.value[0]) {
write_audio_gpio(gp, ! ucontrol->value.integer.value[0]);
return 1;
}
return 0;
}
static int snapper_set_capture_source(struct pmac_tumbler *mix)
{
if (! mix->i2c.client)
return -ENODEV;
if (mix->capture_source)
mix->acs = mix->acs |= 2;
else
mix->acs &= ~2;
return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}
static int snapper_info_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[2] = {
"Line", "Mic"
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item > 1)
uinfo->value.enumerated.item = 1;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snapper_get_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
snd_assert(mix, return -ENODEV);
ucontrol->value.integer.value[0] = mix->capture_source;
return 0;
}
static int snapper_put_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
int change;
snd_assert(mix, return -ENODEV);
change = ucontrol->value.integer.value[0] != mix->capture_source;
if (change) {
mix->capture_source = !!ucontrol->value.integer.value[0];
snapper_set_capture_source(mix);
}
return change;
}
#define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = snapper_info_mix, \
.get = snapper_get_mix, \
.put = snapper_put_mix, \
.index = idx,\
.private_value = ofs, \
}
/*
*/
static struct snd_kcontrol_new tumbler_mixers[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.info = tumbler_info_master_volume,
.get = tumbler_get_master_volume,
.put = tumbler_put_master_volume
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = snd_pmac_boolean_stereo_info,
.get = tumbler_get_master_switch,
.put = tumbler_put_master_switch
},
DEFINE_MONO("Tone Control - Bass", bass),
DEFINE_MONO("Tone Control - Treble", treble),
DEFINE_MONO("PCM Playback Volume", pcm),
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.info = tumbler_info_drc_value,
.get = tumbler_get_drc_value,
.put = tumbler_put_drc_value
},
};
static struct snd_kcontrol_new snapper_mixers[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.info = tumbler_info_master_volume,
.get = tumbler_get_master_volume,
.put = tumbler_put_master_volume
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = snd_pmac_boolean_stereo_info,
.get = tumbler_get_master_switch,
.put = tumbler_put_master_switch
},
DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM),
DEFINE_SNAPPER_MIX("PCM Playback Volume", 1, VOL_IDX_PCM2),
DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC),
DEFINE_SNAPPER_MONO("Tone Control - Bass", bass),
DEFINE_SNAPPER_MONO("Tone Control - Treble", treble),
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.info = tumbler_info_drc_value,
.get = tumbler_get_drc_value,
.put = tumbler_put_drc_value
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */
.info = snapper_info_capture_source,
.get = snapper_get_capture_source,
.put = snapper_put_capture_source
},
};
static struct snd_kcontrol_new tumbler_hp_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_HP,
};
static struct snd_kcontrol_new tumbler_speaker_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PC Speaker Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_AMP,
};
static struct snd_kcontrol_new tumbler_lineout_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Line Out Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_LINE,
};
static struct snd_kcontrol_new tumbler_drc_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_drc_switch,
.put = tumbler_put_drc_switch
};
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute stuffs
*/
static int tumbler_detect_headphone(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
int detect = 0;
if (mix->hp_detect.addr)
detect |= read_audio_gpio(&mix->hp_detect);
return detect;
}
static int tumbler_detect_lineout(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
int detect = 0;
if (mix->line_detect.addr)
detect |= read_audio_gpio(&mix->line_detect);
return detect;
}
static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify,
struct snd_kcontrol *sw)
{
if (check_audio_gpio(gp) != val) {
write_audio_gpio(gp, val);
if (do_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&sw->id);
}
}
static struct work_struct device_change;
static void device_change_handler(void *self)
{
struct snd_pmac *chip = self;
struct pmac_tumbler *mix;
int headphone, lineout;
if (!chip)
return;
mix = chip->mixer_data;
snd_assert(mix, return);
headphone = tumbler_detect_headphone(chip);
lineout = tumbler_detect_lineout(chip);
DBG("headphone: %d, lineout: %d\n", headphone, lineout);
if (headphone || lineout) {
/* unmute headphone/lineout & mute speaker */
if (headphone)
check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify,
chip->master_sw_ctl);
if (lineout && mix->line_mute.addr != 0)
check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify,
chip->lineout_sw_ctl);
if (mix->anded_reset)
msleep(10);
check_mute(chip, &mix->amp_mute, 1, mix->auto_mute_notify,
chip->speaker_sw_ctl);
} else {
/* unmute speaker, mute others */
check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify,
chip->speaker_sw_ctl);
if (mix->anded_reset)
msleep(10);
check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify,
chip->master_sw_ctl);
if (mix->line_mute.addr != 0)
check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify,
chip->lineout_sw_ctl);
}
if (mix->auto_mute_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->hp_detect_ctl->id);
#ifdef CONFIG_SND_POWERMAC_AUTO_DRC
mix->drc_enable = ! (headphone || lineout);
if (mix->auto_mute_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->drc_sw_ctl->id);
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
#endif
/* reset the master volume so the correct amplification is applied */
tumbler_set_master_volume(mix);
}
static void tumbler_update_automute(struct snd_pmac *chip, int do_notify)
{
if (chip->auto_mute) {
struct pmac_tumbler *mix;
mix = chip->mixer_data;
snd_assert(mix, return);
mix->auto_mute_notify = do_notify;
schedule_work(&device_change);
}
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/* interrupt - headphone plug changed */
static irqreturn_t headphone_intr(int irq, void *devid, struct pt_regs *regs)
{
struct snd_pmac *chip = devid;
if (chip->update_automute && chip->initialized) {
chip->update_automute(chip, 1);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* look for audio-gpio device */
static struct device_node *find_audio_device(const char *name)
{
struct device_node *np;
if (! (np = find_devices("gpio")))
return NULL;
for (np = np->child; np; np = np->sibling) {
const char *property = get_property(np, "audio-gpio", NULL);
if (property && strcmp(property, name) == 0)
return np;
}
return NULL;
}
/* look for audio-gpio device */
static struct device_node *find_compatible_audio_device(const char *name)
{
struct device_node *np;
if (! (np = find_devices("gpio")))
return NULL;
for (np = np->child; np; np = np->sibling) {
if (device_is_compatible(np, name))
return np;
}
return NULL;
}
/* find an audio device and get its address */
static long tumbler_find_device(const char *device, const char *platform,
struct pmac_gpio *gp, int is_compatible)
{
struct device_node *node;
const u32 *base;
u32 addr;
if (is_compatible)
node = find_compatible_audio_device(device);
else
node = find_audio_device(device);
if (! node) {
DBG("(W) cannot find audio device %s !\n", device);
snd_printdd("cannot find device %s\n", device);
return -ENODEV;
}
base = get_property(node, "AAPL,address", NULL);
if (! base) {
base = get_property(node, "reg", NULL);
if (!base) {
DBG("(E) cannot find address for device %s !\n", device);
snd_printd("cannot find address for device %s\n", device);
return -ENODEV;
}
addr = *base;
if (addr < 0x50)
addr += 0x50;
} else
addr = *base;
gp->addr = addr & 0x0000ffff;
/* Try to find the active state, default to 0 ! */
base = get_property(node, "audio-gpio-active-state", NULL);
if (base) {
gp->active_state = *base;
gp->active_val = (*base) ? 0x5 : 0x4;
gp->inactive_val = (*base) ? 0x4 : 0x5;
} else {
const u32 *prop = NULL;
gp->active_state = 0;
gp->active_val = 0x4;
gp->inactive_val = 0x5;
/* Here are some crude hacks to extract the GPIO polarity and
* open collector informations out of the do-platform script
* as we don't yet have an interpreter for these things
*/
if (platform)
prop = get_property(node, platform, NULL);
if (prop) {
if (prop[3] == 0x9 && prop[4] == 0x9) {
gp->active_val = 0xd;
gp->inactive_val = 0xc;
}
if (prop[3] == 0x1 && prop[4] == 0x1) {
gp->active_val = 0x5;
gp->inactive_val = 0x4;
}
}
}
DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n",
device, gp->addr, gp->active_state);
return irq_of_parse_and_map(node, 0);
}
/* reset audio */
static void tumbler_reset_audio(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (mix->anded_reset) {
DBG("(I) codec anded reset !\n");
write_audio_gpio(&mix->hp_mute, 0);
write_audio_gpio(&mix->amp_mute, 0);
msleep(200);
write_audio_gpio(&mix->hp_mute, 1);
write_audio_gpio(&mix->amp_mute, 1);
msleep(100);
write_audio_gpio(&mix->hp_mute, 0);
write_audio_gpio(&mix->amp_mute, 0);
msleep(100);
} else {
DBG("(I) codec normal reset !\n");
write_audio_gpio(&mix->audio_reset, 0);
msleep(200);
write_audio_gpio(&mix->audio_reset, 1);
msleep(100);
write_audio_gpio(&mix->audio_reset, 0);
msleep(100);
}
}
#ifdef CONFIG_PM
/* suspend mixer */
static void tumbler_suspend(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (mix->headphone_irq >= 0)
disable_irq(mix->headphone_irq);
if (mix->lineout_irq >= 0)
disable_irq(mix->lineout_irq);
mix->save_master_switch[0] = mix->master_switch[0];
mix->save_master_switch[1] = mix->master_switch[1];
mix->save_master_vol[0] = mix->master_vol[0];
mix->save_master_vol[1] = mix->master_vol[1];
mix->master_switch[0] = mix->master_switch[1] = 0;
tumbler_set_master_volume(mix);
if (!mix->anded_reset) {
write_audio_gpio(&mix->amp_mute, 1);
write_audio_gpio(&mix->hp_mute, 1);
}
if (chip->model == PMAC_SNAPPER) {
mix->acs |= 1;
i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}
if (mix->anded_reset) {
write_audio_gpio(&mix->amp_mute, 1);
write_audio_gpio(&mix->hp_mute, 1);
} else
write_audio_gpio(&mix->audio_reset, 1);
}
/* resume mixer */
static void tumbler_resume(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
snd_assert(mix, return);
mix->acs &= ~1;
mix->master_switch[0] = mix->save_master_switch[0];
mix->master_switch[1] = mix->save_master_switch[1];
mix->master_vol[0] = mix->save_master_vol[0];
mix->master_vol[1] = mix->save_master_vol[1];
tumbler_reset_audio(chip);
if (mix->i2c.client && mix->i2c.init_client) {
if (mix->i2c.init_client(&mix->i2c) < 0)
printk(KERN_ERR "tumbler_init_client error\n");
} else
printk(KERN_ERR "tumbler: i2c is not initialized\n");
if (chip->model == PMAC_TUMBLER) {
tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info);
tumbler_set_mono_volume(mix, &tumbler_bass_vol_info);
tumbler_set_mono_volume(mix, &tumbler_treble_vol_info);
tumbler_set_drc(mix);
} else {
snapper_set_mix_vol(mix, VOL_IDX_PCM);
snapper_set_mix_vol(mix, VOL_IDX_PCM2);
snapper_set_mix_vol(mix, VOL_IDX_ADC);
tumbler_set_mono_volume(mix, &snapper_bass_vol_info);
tumbler_set_mono_volume(mix, &snapper_treble_vol_info);
snapper_set_drc(mix);
snapper_set_capture_source(mix);
}
tumbler_set_master_volume(mix);
if (chip->update_automute)
chip->update_automute(chip, 0);
if (mix->headphone_irq >= 0) {
unsigned char val;
enable_irq(mix->headphone_irq);
/* activate headphone status interrupts */
val = do_gpio_read(&mix->hp_detect);
do_gpio_write(&mix->hp_detect, val | 0x80);
}
if (mix->lineout_irq >= 0)
enable_irq(mix->lineout_irq);
}
#endif
/* initialize tumbler */
static int __init tumbler_init(struct snd_pmac *chip)
{
int irq;
struct pmac_tumbler *mix = chip->mixer_data;
snd_assert(mix, return -EINVAL);
if (tumbler_find_device("audio-hw-reset",
"platform-do-hw-reset",
&mix->audio_reset, 0) < 0)
tumbler_find_device("hw-reset",
"platform-do-hw-reset",
&mix->audio_reset, 1);
if (tumbler_find_device("amp-mute",
"platform-do-amp-mute",
&mix->amp_mute, 0) < 0)
tumbler_find_device("amp-mute",
"platform-do-amp-mute",
&mix->amp_mute, 1);
if (tumbler_find_device("headphone-mute",
"platform-do-headphone-mute",
&mix->hp_mute, 0) < 0)
tumbler_find_device("headphone-mute",
"platform-do-headphone-mute",
&mix->hp_mute, 1);
if (tumbler_find_device("line-output-mute",
"platform-do-lineout-mute",
&mix->line_mute, 0) < 0)
tumbler_find_device("line-output-mute",
"platform-do-lineout-mute",
&mix->line_mute, 1);
irq = tumbler_find_device("headphone-detect",
NULL, &mix->hp_detect, 0);
if (irq <= NO_IRQ)
irq = tumbler_find_device("headphone-detect",
NULL, &mix->hp_detect, 1);
if (irq <= NO_IRQ)
irq = tumbler_find_device("keywest-gpio15",
NULL, &mix->hp_detect, 1);
mix->headphone_irq = irq;
irq = tumbler_find_device("line-output-detect",
NULL, &mix->line_detect, 0);
if (irq <= NO_IRQ)
irq = tumbler_find_device("line-output-detect",
NULL, &mix->line_detect, 1);
mix->lineout_irq = irq;
tumbler_reset_audio(chip);
return 0;
}
static void tumbler_cleanup(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (! mix)
return;
if (mix->headphone_irq >= 0)
free_irq(mix->headphone_irq, chip);
if (mix->lineout_irq >= 0)
free_irq(mix->lineout_irq, chip);
tumbler_gpio_free(&mix->audio_reset);
tumbler_gpio_free(&mix->amp_mute);
tumbler_gpio_free(&mix->hp_mute);
tumbler_gpio_free(&mix->hp_detect);
snd_pmac_keywest_cleanup(&mix->i2c);
kfree(mix);
chip->mixer_data = NULL;
}
/* exported */
int __init snd_pmac_tumbler_init(struct snd_pmac *chip)
{
int i, err;
struct pmac_tumbler *mix;
u32 *paddr;
struct device_node *tas_node, *np;
char *chipname;
#ifdef CONFIG_KMOD
if (current->fs->root)
request_module("i2c-powermac");
#endif /* CONFIG_KMOD */
mix = kzalloc(sizeof(*mix), GFP_KERNEL);
if (! mix)
return -ENOMEM;
mix->headphone_irq = -1;
chip->mixer_data = mix;
chip->mixer_free = tumbler_cleanup;
mix->anded_reset = 0;
mix->reset_on_sleep = 1;
for (np = chip->node->child; np; np = np->sibling) {
if (!strcmp(np->name, "sound")) {
if (get_property(np, "has-anded-reset", NULL))
mix->anded_reset = 1;
if (get_property(np, "layout-id", NULL))
mix->reset_on_sleep = 0;
break;
}
}
if ((err = tumbler_init(chip)) < 0)
return err;
/* set up TAS */
tas_node = find_devices("deq");
if (tas_node == NULL)
tas_node = find_devices("codec");
if (tas_node == NULL)
return -ENODEV;
paddr = (u32 *)get_property(tas_node, "i2c-address", NULL);
if (paddr == NULL)
paddr = (u32 *)get_property(tas_node, "reg", NULL);
if (paddr)
mix->i2c.addr = (*paddr) >> 1;
else
mix->i2c.addr = TAS_I2C_ADDR;
DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr);
if (chip->model == PMAC_TUMBLER) {
mix->i2c.init_client = tumbler_init_client;
mix->i2c.name = "TAS3001c";
chipname = "Tumbler";
} else {
mix->i2c.init_client = snapper_init_client;
mix->i2c.name = "TAS3004";
chipname = "Snapper";
}
if ((err = snd_pmac_keywest_init(&mix->i2c)) < 0)
return err;
/*
* build mixers
*/
sprintf(chip->card->mixername, "PowerMac %s", chipname);
if (chip->model == PMAC_TUMBLER) {
for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip))) < 0)
return err;
}
} else {
for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip))) < 0)
return err;
}
}
chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->master_sw_ctl)) < 0)
return err;
chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->speaker_sw_ctl)) < 0)
return err;
if (mix->line_mute.addr != 0) {
chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->lineout_sw_ctl)) < 0)
return err;
}
chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->drc_sw_ctl)) < 0)
return err;
/* set initial DRC range to 60% */
if (chip->model == PMAC_TUMBLER)
mix->drc_range = (TAS3001_DRC_MAX * 6) / 10;
else
mix->drc_range = (TAS3004_DRC_MAX * 6) / 10;
mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
#ifdef CONFIG_PM
chip->suspend = tumbler_suspend;
chip->resume = tumbler_resume;
#endif
INIT_WORK(&device_change, device_change_handler, (void *)chip);
#ifdef PMAC_SUPPORT_AUTOMUTE
if ((mix->headphone_irq >=0 || mix->lineout_irq >= 0)
&& (err = snd_pmac_add_automute(chip)) < 0)
return err;
chip->detect_headphone = tumbler_detect_headphone;
chip->update_automute = tumbler_update_automute;
tumbler_update_automute(chip, 0); /* update the status only */
/* activate headphone status interrupts */
if (mix->headphone_irq >= 0) {
unsigned char val;
if ((err = request_irq(mix->headphone_irq, headphone_intr, 0,
"Sound Headphone Detection", chip)) < 0)
return 0;
/* activate headphone status interrupts */
val = do_gpio_read(&mix->hp_detect);
do_gpio_write(&mix->hp_detect, val | 0x80);
}
if (mix->lineout_irq >= 0) {
unsigned char val;
if ((err = request_irq(mix->lineout_irq, headphone_intr, 0,
"Sound Lineout Detection", chip)) < 0)
return 0;
/* activate headphone status interrupts */
val = do_gpio_read(&mix->line_detect);
do_gpio_write(&mix->line_detect, val | 0x80);
}
#endif
return 0;
}