remarkable-linux/block/elevator.c
Tejun Heo 21c3c5d280 block: don't request module during elevator init
Block layer allows selecting an elevator which is built as a module to
be selected as system default via kernel param "elevator=".  This is
achieved by automatically invoking request_module() whenever a new
block device is initialized and the elevator is not available.

This led to an interesting deadlock problem involving async and module
init.  Block device probing running off an async job invokes
request_module().  While the module is being loaded, it performs
async_synchronize_full() which ends up waiting for the async job which
is already waiting for request_module() to finish, leading to
deadlock.

Invoking request_module() from deep in block device init path is
already nasty in itself.  It seems best to avoid these situations from
the beginning by moving on-demand module loading out of block init
path.

The previous patch made sure that the default elevator module is
loaded early during boot if available.  This patch removes on-demand
loading of the default elevator from elevator init path.  As the
module would have been loaded during boot, userland-visible behavior
difference should be minimal.

For more details, please refer to the following thread.

  http://thread.gmane.org/gmane.linux.kernel/1420814

v2: The bool parameter was named @request_module which conflicted with
    request_module().  This built okay w/ CONFIG_MODULES because
    request_module() was defined as a macro.  W/o CONFIG_MODULES, it
    causes build breakage.  Rename the parameter to @try_loading.
    Reported by Fengguang.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alex Riesen <raa.lkml@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
2013-01-22 16:48:03 -08:00

1054 lines
24 KiB
C

/*
* Block device elevator/IO-scheduler.
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
*
* 30042000 Jens Axboe <axboe@kernel.dk> :
*
* Split the elevator a bit so that it is possible to choose a different
* one or even write a new "plug in". There are three pieces:
* - elevator_fn, inserts a new request in the queue list
* - elevator_merge_fn, decides whether a new buffer can be merged with
* an existing request
* - elevator_dequeue_fn, called when a request is taken off the active list
*
* 20082000 Dave Jones <davej@suse.de> :
* Removed tests for max-bomb-segments, which was breaking elvtune
* when run without -bN
*
* Jens:
* - Rework again to work with bio instead of buffer_heads
* - loose bi_dev comparisons, partition handling is right now
* - completely modularize elevator setup and teardown
*
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/bio.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/blktrace_api.h>
#include <linux/hash.h>
#include <linux/uaccess.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-cgroup.h"
static DEFINE_SPINLOCK(elv_list_lock);
static LIST_HEAD(elv_list);
/*
* Merge hash stuff.
*/
static const int elv_hash_shift = 6;
#define ELV_HASH_BLOCK(sec) ((sec) >> 3)
#define ELV_HASH_FN(sec) \
(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
#define ELV_HASH_ENTRIES (1 << elv_hash_shift)
#define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
/*
* Query io scheduler to see if the current process issuing bio may be
* merged with rq.
*/
static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
{
struct request_queue *q = rq->q;
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_allow_merge_fn)
return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
return 1;
}
/*
* can we safely merge with this request?
*/
bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
{
if (!blk_rq_merge_ok(rq, bio))
return 0;
if (!elv_iosched_allow_merge(rq, bio))
return 0;
return 1;
}
EXPORT_SYMBOL(elv_rq_merge_ok);
static struct elevator_type *elevator_find(const char *name)
{
struct elevator_type *e;
list_for_each_entry(e, &elv_list, list) {
if (!strcmp(e->elevator_name, name))
return e;
}
return NULL;
}
static void elevator_put(struct elevator_type *e)
{
module_put(e->elevator_owner);
}
static struct elevator_type *elevator_get(const char *name, bool try_loading)
{
struct elevator_type *e;
spin_lock(&elv_list_lock);
e = elevator_find(name);
if (!e && try_loading) {
spin_unlock(&elv_list_lock);
request_module("%s-iosched", name);
spin_lock(&elv_list_lock);
e = elevator_find(name);
}
if (e && !try_module_get(e->elevator_owner))
e = NULL;
spin_unlock(&elv_list_lock);
return e;
}
static char chosen_elevator[ELV_NAME_MAX];
static int __init elevator_setup(char *str)
{
/*
* Be backwards-compatible with previous kernels, so users
* won't get the wrong elevator.
*/
strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
return 1;
}
__setup("elevator=", elevator_setup);
/* called during boot to load the elevator chosen by the elevator param */
void __init load_default_elevator_module(void)
{
struct elevator_type *e;
if (!chosen_elevator[0])
return;
spin_lock(&elv_list_lock);
e = elevator_find(chosen_elevator);
spin_unlock(&elv_list_lock);
if (!e)
request_module("%s-iosched", chosen_elevator);
}
static struct kobj_type elv_ktype;
static struct elevator_queue *elevator_alloc(struct request_queue *q,
struct elevator_type *e)
{
struct elevator_queue *eq;
int i;
eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
if (unlikely(!eq))
goto err;
eq->type = e;
kobject_init(&eq->kobj, &elv_ktype);
mutex_init(&eq->sysfs_lock);
eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
GFP_KERNEL, q->node);
if (!eq->hash)
goto err;
for (i = 0; i < ELV_HASH_ENTRIES; i++)
INIT_HLIST_HEAD(&eq->hash[i]);
return eq;
err:
kfree(eq);
elevator_put(e);
return NULL;
}
static void elevator_release(struct kobject *kobj)
{
struct elevator_queue *e;
e = container_of(kobj, struct elevator_queue, kobj);
elevator_put(e->type);
kfree(e->hash);
kfree(e);
}
int elevator_init(struct request_queue *q, char *name)
{
struct elevator_type *e = NULL;
int err;
if (unlikely(q->elevator))
return 0;
INIT_LIST_HEAD(&q->queue_head);
q->last_merge = NULL;
q->end_sector = 0;
q->boundary_rq = NULL;
if (name) {
e = elevator_get(name, true);
if (!e)
return -EINVAL;
}
/*
* Use the default elevator specified by config boot param or
* config option. Don't try to load modules as we could be running
* off async and request_module() isn't allowed from async.
*/
if (!e && *chosen_elevator) {
e = elevator_get(chosen_elevator, false);
if (!e)
printk(KERN_ERR "I/O scheduler %s not found\n",
chosen_elevator);
}
if (!e) {
e = elevator_get(CONFIG_DEFAULT_IOSCHED, false);
if (!e) {
printk(KERN_ERR
"Default I/O scheduler not found. " \
"Using noop.\n");
e = elevator_get("noop", false);
}
}
q->elevator = elevator_alloc(q, e);
if (!q->elevator)
return -ENOMEM;
err = e->ops.elevator_init_fn(q);
if (err) {
kobject_put(&q->elevator->kobj);
return err;
}
return 0;
}
EXPORT_SYMBOL(elevator_init);
void elevator_exit(struct elevator_queue *e)
{
mutex_lock(&e->sysfs_lock);
if (e->type->ops.elevator_exit_fn)
e->type->ops.elevator_exit_fn(e);
mutex_unlock(&e->sysfs_lock);
kobject_put(&e->kobj);
}
EXPORT_SYMBOL(elevator_exit);
static inline void __elv_rqhash_del(struct request *rq)
{
hlist_del_init(&rq->hash);
}
static void elv_rqhash_del(struct request_queue *q, struct request *rq)
{
if (ELV_ON_HASH(rq))
__elv_rqhash_del(rq);
}
static void elv_rqhash_add(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
BUG_ON(ELV_ON_HASH(rq));
hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
}
static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
{
__elv_rqhash_del(rq);
elv_rqhash_add(q, rq);
}
static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
{
struct elevator_queue *e = q->elevator;
struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
struct hlist_node *entry, *next;
struct request *rq;
hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
BUG_ON(!ELV_ON_HASH(rq));
if (unlikely(!rq_mergeable(rq))) {
__elv_rqhash_del(rq);
continue;
}
if (rq_hash_key(rq) == offset)
return rq;
}
return NULL;
}
/*
* RB-tree support functions for inserting/lookup/removal of requests
* in a sorted RB tree.
*/
void elv_rb_add(struct rb_root *root, struct request *rq)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct request *__rq;
while (*p) {
parent = *p;
__rq = rb_entry(parent, struct request, rb_node);
if (blk_rq_pos(rq) < blk_rq_pos(__rq))
p = &(*p)->rb_left;
else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
p = &(*p)->rb_right;
}
rb_link_node(&rq->rb_node, parent, p);
rb_insert_color(&rq->rb_node, root);
}
EXPORT_SYMBOL(elv_rb_add);
void elv_rb_del(struct rb_root *root, struct request *rq)
{
BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
rb_erase(&rq->rb_node, root);
RB_CLEAR_NODE(&rq->rb_node);
}
EXPORT_SYMBOL(elv_rb_del);
struct request *elv_rb_find(struct rb_root *root, sector_t sector)
{
struct rb_node *n = root->rb_node;
struct request *rq;
while (n) {
rq = rb_entry(n, struct request, rb_node);
if (sector < blk_rq_pos(rq))
n = n->rb_left;
else if (sector > blk_rq_pos(rq))
n = n->rb_right;
else
return rq;
}
return NULL;
}
EXPORT_SYMBOL(elv_rb_find);
/*
* Insert rq into dispatch queue of q. Queue lock must be held on
* entry. rq is sort instead into the dispatch queue. To be used by
* specific elevators.
*/
void elv_dispatch_sort(struct request_queue *q, struct request *rq)
{
sector_t boundary;
struct list_head *entry;
int stop_flags;
if (q->last_merge == rq)
q->last_merge = NULL;
elv_rqhash_del(q, rq);
q->nr_sorted--;
boundary = q->end_sector;
stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
list_for_each_prev(entry, &q->queue_head) {
struct request *pos = list_entry_rq(entry);
if ((rq->cmd_flags & REQ_DISCARD) !=
(pos->cmd_flags & REQ_DISCARD))
break;
if (rq_data_dir(rq) != rq_data_dir(pos))
break;
if (pos->cmd_flags & stop_flags)
break;
if (blk_rq_pos(rq) >= boundary) {
if (blk_rq_pos(pos) < boundary)
continue;
} else {
if (blk_rq_pos(pos) >= boundary)
break;
}
if (blk_rq_pos(rq) >= blk_rq_pos(pos))
break;
}
list_add(&rq->queuelist, entry);
}
EXPORT_SYMBOL(elv_dispatch_sort);
/*
* Insert rq into dispatch queue of q. Queue lock must be held on
* entry. rq is added to the back of the dispatch queue. To be used by
* specific elevators.
*/
void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
{
if (q->last_merge == rq)
q->last_merge = NULL;
elv_rqhash_del(q, rq);
q->nr_sorted--;
q->end_sector = rq_end_sector(rq);
q->boundary_rq = rq;
list_add_tail(&rq->queuelist, &q->queue_head);
}
EXPORT_SYMBOL(elv_dispatch_add_tail);
int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
{
struct elevator_queue *e = q->elevator;
struct request *__rq;
int ret;
/*
* Levels of merges:
* nomerges: No merges at all attempted
* noxmerges: Only simple one-hit cache try
* merges: All merge tries attempted
*/
if (blk_queue_nomerges(q))
return ELEVATOR_NO_MERGE;
/*
* First try one-hit cache.
*/
if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
ret = blk_try_merge(q->last_merge, bio);
if (ret != ELEVATOR_NO_MERGE) {
*req = q->last_merge;
return ret;
}
}
if (blk_queue_noxmerges(q))
return ELEVATOR_NO_MERGE;
/*
* See if our hash lookup can find a potential backmerge.
*/
__rq = elv_rqhash_find(q, bio->bi_sector);
if (__rq && elv_rq_merge_ok(__rq, bio)) {
*req = __rq;
return ELEVATOR_BACK_MERGE;
}
if (e->type->ops.elevator_merge_fn)
return e->type->ops.elevator_merge_fn(q, req, bio);
return ELEVATOR_NO_MERGE;
}
/*
* Attempt to do an insertion back merge. Only check for the case where
* we can append 'rq' to an existing request, so we can throw 'rq' away
* afterwards.
*
* Returns true if we merged, false otherwise
*/
static bool elv_attempt_insert_merge(struct request_queue *q,
struct request *rq)
{
struct request *__rq;
bool ret;
if (blk_queue_nomerges(q))
return false;
/*
* First try one-hit cache.
*/
if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
return true;
if (blk_queue_noxmerges(q))
return false;
ret = false;
/*
* See if our hash lookup can find a potential backmerge.
*/
while (1) {
__rq = elv_rqhash_find(q, blk_rq_pos(rq));
if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
break;
/* The merged request could be merged with others, try again */
ret = true;
rq = __rq;
}
return ret;
}
void elv_merged_request(struct request_queue *q, struct request *rq, int type)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_merged_fn)
e->type->ops.elevator_merged_fn(q, rq, type);
if (type == ELEVATOR_BACK_MERGE)
elv_rqhash_reposition(q, rq);
q->last_merge = rq;
}
void elv_merge_requests(struct request_queue *q, struct request *rq,
struct request *next)
{
struct elevator_queue *e = q->elevator;
const int next_sorted = next->cmd_flags & REQ_SORTED;
if (next_sorted && e->type->ops.elevator_merge_req_fn)
e->type->ops.elevator_merge_req_fn(q, rq, next);
elv_rqhash_reposition(q, rq);
if (next_sorted) {
elv_rqhash_del(q, next);
q->nr_sorted--;
}
q->last_merge = rq;
}
void elv_bio_merged(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_bio_merged_fn)
e->type->ops.elevator_bio_merged_fn(q, rq, bio);
}
void elv_requeue_request(struct request_queue *q, struct request *rq)
{
/*
* it already went through dequeue, we need to decrement the
* in_flight count again
*/
if (blk_account_rq(rq)) {
q->in_flight[rq_is_sync(rq)]--;
if (rq->cmd_flags & REQ_SORTED)
elv_deactivate_rq(q, rq);
}
rq->cmd_flags &= ~REQ_STARTED;
__elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
}
void elv_drain_elevator(struct request_queue *q)
{
static int printed;
lockdep_assert_held(q->queue_lock);
while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
;
if (q->nr_sorted && printed++ < 10) {
printk(KERN_ERR "%s: forced dispatching is broken "
"(nr_sorted=%u), please report this\n",
q->elevator->type->elevator_name, q->nr_sorted);
}
}
void __elv_add_request(struct request_queue *q, struct request *rq, int where)
{
trace_block_rq_insert(q, rq);
rq->q = q;
if (rq->cmd_flags & REQ_SOFTBARRIER) {
/* barriers are scheduling boundary, update end_sector */
if (rq->cmd_type == REQ_TYPE_FS) {
q->end_sector = rq_end_sector(rq);
q->boundary_rq = rq;
}
} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
(where == ELEVATOR_INSERT_SORT ||
where == ELEVATOR_INSERT_SORT_MERGE))
where = ELEVATOR_INSERT_BACK;
switch (where) {
case ELEVATOR_INSERT_REQUEUE:
case ELEVATOR_INSERT_FRONT:
rq->cmd_flags |= REQ_SOFTBARRIER;
list_add(&rq->queuelist, &q->queue_head);
break;
case ELEVATOR_INSERT_BACK:
rq->cmd_flags |= REQ_SOFTBARRIER;
elv_drain_elevator(q);
list_add_tail(&rq->queuelist, &q->queue_head);
/*
* We kick the queue here for the following reasons.
* - The elevator might have returned NULL previously
* to delay requests and returned them now. As the
* queue wasn't empty before this request, ll_rw_blk
* won't run the queue on return, resulting in hang.
* - Usually, back inserted requests won't be merged
* with anything. There's no point in delaying queue
* processing.
*/
__blk_run_queue(q);
break;
case ELEVATOR_INSERT_SORT_MERGE:
/*
* If we succeed in merging this request with one in the
* queue already, we are done - rq has now been freed,
* so no need to do anything further.
*/
if (elv_attempt_insert_merge(q, rq))
break;
case ELEVATOR_INSERT_SORT:
BUG_ON(rq->cmd_type != REQ_TYPE_FS);
rq->cmd_flags |= REQ_SORTED;
q->nr_sorted++;
if (rq_mergeable(rq)) {
elv_rqhash_add(q, rq);
if (!q->last_merge)
q->last_merge = rq;
}
/*
* Some ioscheds (cfq) run q->request_fn directly, so
* rq cannot be accessed after calling
* elevator_add_req_fn.
*/
q->elevator->type->ops.elevator_add_req_fn(q, rq);
break;
case ELEVATOR_INSERT_FLUSH:
rq->cmd_flags |= REQ_SOFTBARRIER;
blk_insert_flush(rq);
break;
default:
printk(KERN_ERR "%s: bad insertion point %d\n",
__func__, where);
BUG();
}
}
EXPORT_SYMBOL(__elv_add_request);
void elv_add_request(struct request_queue *q, struct request *rq, int where)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__elv_add_request(q, rq, where);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(elv_add_request);
struct request *elv_latter_request(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_latter_req_fn)
return e->type->ops.elevator_latter_req_fn(q, rq);
return NULL;
}
struct request *elv_former_request(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_former_req_fn)
return e->type->ops.elevator_former_req_fn(q, rq);
return NULL;
}
int elv_set_request(struct request_queue *q, struct request *rq,
struct bio *bio, gfp_t gfp_mask)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_set_req_fn)
return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
return 0;
}
void elv_put_request(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_put_req_fn)
e->type->ops.elevator_put_req_fn(rq);
}
int elv_may_queue(struct request_queue *q, int rw)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_may_queue_fn)
return e->type->ops.elevator_may_queue_fn(q, rw);
return ELV_MQUEUE_MAY;
}
void elv_abort_queue(struct request_queue *q)
{
struct request *rq;
blk_abort_flushes(q);
while (!list_empty(&q->queue_head)) {
rq = list_entry_rq(q->queue_head.next);
rq->cmd_flags |= REQ_QUIET;
trace_block_rq_abort(q, rq);
/*
* Mark this request as started so we don't trigger
* any debug logic in the end I/O path.
*/
blk_start_request(rq);
__blk_end_request_all(rq, -EIO);
}
}
EXPORT_SYMBOL(elv_abort_queue);
void elv_completed_request(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
/*
* request is released from the driver, io must be done
*/
if (blk_account_rq(rq)) {
q->in_flight[rq_is_sync(rq)]--;
if ((rq->cmd_flags & REQ_SORTED) &&
e->type->ops.elevator_completed_req_fn)
e->type->ops.elevator_completed_req_fn(q, rq);
}
}
#define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
static ssize_t
elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct elv_fs_entry *entry = to_elv(attr);
struct elevator_queue *e;
ssize_t error;
if (!entry->show)
return -EIO;
e = container_of(kobj, struct elevator_queue, kobj);
mutex_lock(&e->sysfs_lock);
error = e->type ? entry->show(e, page) : -ENOENT;
mutex_unlock(&e->sysfs_lock);
return error;
}
static ssize_t
elv_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct elv_fs_entry *entry = to_elv(attr);
struct elevator_queue *e;
ssize_t error;
if (!entry->store)
return -EIO;
e = container_of(kobj, struct elevator_queue, kobj);
mutex_lock(&e->sysfs_lock);
error = e->type ? entry->store(e, page, length) : -ENOENT;
mutex_unlock(&e->sysfs_lock);
return error;
}
static const struct sysfs_ops elv_sysfs_ops = {
.show = elv_attr_show,
.store = elv_attr_store,
};
static struct kobj_type elv_ktype = {
.sysfs_ops = &elv_sysfs_ops,
.release = elevator_release,
};
int elv_register_queue(struct request_queue *q)
{
struct elevator_queue *e = q->elevator;
int error;
error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
if (!error) {
struct elv_fs_entry *attr = e->type->elevator_attrs;
if (attr) {
while (attr->attr.name) {
if (sysfs_create_file(&e->kobj, &attr->attr))
break;
attr++;
}
}
kobject_uevent(&e->kobj, KOBJ_ADD);
e->registered = 1;
}
return error;
}
EXPORT_SYMBOL(elv_register_queue);
void elv_unregister_queue(struct request_queue *q)
{
if (q) {
struct elevator_queue *e = q->elevator;
kobject_uevent(&e->kobj, KOBJ_REMOVE);
kobject_del(&e->kobj);
e->registered = 0;
}
}
EXPORT_SYMBOL(elv_unregister_queue);
int elv_register(struct elevator_type *e)
{
char *def = "";
/* create icq_cache if requested */
if (e->icq_size) {
if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
WARN_ON(e->icq_align < __alignof__(struct io_cq)))
return -EINVAL;
snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
"%s_io_cq", e->elevator_name);
e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
e->icq_align, 0, NULL);
if (!e->icq_cache)
return -ENOMEM;
}
/* register, don't allow duplicate names */
spin_lock(&elv_list_lock);
if (elevator_find(e->elevator_name)) {
spin_unlock(&elv_list_lock);
if (e->icq_cache)
kmem_cache_destroy(e->icq_cache);
return -EBUSY;
}
list_add_tail(&e->list, &elv_list);
spin_unlock(&elv_list_lock);
/* print pretty message */
if (!strcmp(e->elevator_name, chosen_elevator) ||
(!*chosen_elevator &&
!strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
def = " (default)";
printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
def);
return 0;
}
EXPORT_SYMBOL_GPL(elv_register);
void elv_unregister(struct elevator_type *e)
{
/* unregister */
spin_lock(&elv_list_lock);
list_del_init(&e->list);
spin_unlock(&elv_list_lock);
/*
* Destroy icq_cache if it exists. icq's are RCU managed. Make
* sure all RCU operations are complete before proceeding.
*/
if (e->icq_cache) {
rcu_barrier();
kmem_cache_destroy(e->icq_cache);
e->icq_cache = NULL;
}
}
EXPORT_SYMBOL_GPL(elv_unregister);
/*
* switch to new_e io scheduler. be careful not to introduce deadlocks -
* we don't free the old io scheduler, before we have allocated what we
* need for the new one. this way we have a chance of going back to the old
* one, if the new one fails init for some reason.
*/
static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
{
struct elevator_queue *old = q->elevator;
bool registered = old->registered;
int err;
/*
* Turn on BYPASS and drain all requests w/ elevator private data.
* Block layer doesn't call into a quiesced elevator - all requests
* are directly put on the dispatch list without elevator data
* using INSERT_BACK. All requests have SOFTBARRIER set and no
* merge happens either.
*/
blk_queue_bypass_start(q);
/* unregister and clear all auxiliary data of the old elevator */
if (registered)
elv_unregister_queue(q);
spin_lock_irq(q->queue_lock);
ioc_clear_queue(q);
spin_unlock_irq(q->queue_lock);
/* allocate, init and register new elevator */
err = -ENOMEM;
q->elevator = elevator_alloc(q, new_e);
if (!q->elevator)
goto fail_init;
err = new_e->ops.elevator_init_fn(q);
if (err) {
kobject_put(&q->elevator->kobj);
goto fail_init;
}
if (registered) {
err = elv_register_queue(q);
if (err)
goto fail_register;
}
/* done, kill the old one and finish */
elevator_exit(old);
blk_queue_bypass_end(q);
blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
return 0;
fail_register:
elevator_exit(q->elevator);
fail_init:
/* switch failed, restore and re-register old elevator */
q->elevator = old;
elv_register_queue(q);
blk_queue_bypass_end(q);
return err;
}
/*
* Switch this queue to the given IO scheduler.
*/
int elevator_change(struct request_queue *q, const char *name)
{
char elevator_name[ELV_NAME_MAX];
struct elevator_type *e;
if (!q->elevator)
return -ENXIO;
strlcpy(elevator_name, name, sizeof(elevator_name));
e = elevator_get(strstrip(elevator_name), true);
if (!e) {
printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
return -EINVAL;
}
if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
elevator_put(e);
return 0;
}
return elevator_switch(q, e);
}
EXPORT_SYMBOL(elevator_change);
ssize_t elv_iosched_store(struct request_queue *q, const char *name,
size_t count)
{
int ret;
if (!q->elevator)
return count;
ret = elevator_change(q, name);
if (!ret)
return count;
printk(KERN_ERR "elevator: switch to %s failed\n", name);
return ret;
}
ssize_t elv_iosched_show(struct request_queue *q, char *name)
{
struct elevator_queue *e = q->elevator;
struct elevator_type *elv;
struct elevator_type *__e;
int len = 0;
if (!q->elevator || !blk_queue_stackable(q))
return sprintf(name, "none\n");
elv = e->type;
spin_lock(&elv_list_lock);
list_for_each_entry(__e, &elv_list, list) {
if (!strcmp(elv->elevator_name, __e->elevator_name))
len += sprintf(name+len, "[%s] ", elv->elevator_name);
else
len += sprintf(name+len, "%s ", __e->elevator_name);
}
spin_unlock(&elv_list_lock);
len += sprintf(len+name, "\n");
return len;
}
struct request *elv_rb_former_request(struct request_queue *q,
struct request *rq)
{
struct rb_node *rbprev = rb_prev(&rq->rb_node);
if (rbprev)
return rb_entry_rq(rbprev);
return NULL;
}
EXPORT_SYMBOL(elv_rb_former_request);
struct request *elv_rb_latter_request(struct request_queue *q,
struct request *rq)
{
struct rb_node *rbnext = rb_next(&rq->rb_node);
if (rbnext)
return rb_entry_rq(rbnext);
return NULL;
}
EXPORT_SYMBOL(elv_rb_latter_request);