remarkable-linux/drivers/mmc/core/mmc.c
Aaron Lu 108ecc4cf9 mmc: core: reset signal voltage on power up
Add a call to mmc_set_signal_voltage() to set signal voltage to 3.3v in
mmc_power_up so that we do not need to touch signal voltage setting in
mmc/sd/sdio init functions and rescan function.

For mmc/sd cards, when doing a suspend/resume cycle, consider the unsafe
resume case, the card will lose its power and when powered on again, we
will set signal voltage to 3.3v in mmc_power_up before its resume function
gets called, which will re-init the card.

And for sdio cards, when doing a suspend/resume cycle, consider the unsafe
resume case, the card will either lose its power or not depending on if it
wants to wakeup the host. If power is not maintained, it is the same case as
mmc/sd cards. If power is maintained, mmc_power_up will not be called and
the card's signal voltage will remain at the last setting.

Signed-off-by: Aaron Lu <aaron.lu@amd.com>
Tested-by: Venkatraman S <svenkatr@ti.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
2012-07-22 15:25:53 -04:00

1518 lines
38 KiB
C

/*
* linux/drivers/mmc/core/mmc.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include "core.h"
#include "bus.h"
#include "mmc_ops.h"
#include "sd_ops.h"
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int tacc_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int tacc_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
static int mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
/*
* The selection of the format here is based upon published
* specs from sandisk and from what people have reported.
*/
switch (card->csd.mmca_vsn) {
case 0: /* MMC v1.0 - v1.2 */
case 1: /* MMC v1.4 */
card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
case 2: /* MMC v2.0 - v2.2 */
case 3: /* MMC v3.1 - v3.3 */
case 4: /* MMC v4 */
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
default:
pr_err("%s: card has unknown MMCA version %d\n",
mmc_hostname(card->host), card->csd.mmca_vsn);
return -EINVAL;
}
return 0;
}
static void mmc_set_erase_size(struct mmc_card *card)
{
if (card->ext_csd.erase_group_def & 1)
card->erase_size = card->ext_csd.hc_erase_size;
else
card->erase_size = card->csd.erase_size;
mmc_init_erase(card);
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, a, b;
u32 *resp = card->raw_csd;
/*
* We only understand CSD structure v1.1 and v1.2.
* v1.2 has extra information in bits 15, 11 and 10.
* We also support eMMC v4.4 & v4.41.
*/
csd->structure = UNSTUFF_BITS(resp, 126, 2);
if (csd->structure == 0) {
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd->structure);
return -EINVAL;
}
csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (csd->write_blkbits >= 9) {
a = UNSTUFF_BITS(resp, 42, 5);
b = UNSTUFF_BITS(resp, 37, 5);
csd->erase_size = (a + 1) * (b + 1);
csd->erase_size <<= csd->write_blkbits - 9;
}
return 0;
}
/*
* Read extended CSD.
*/
static int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
{
int err;
u8 *ext_csd;
BUG_ON(!card);
BUG_ON(!new_ext_csd);
*new_ext_csd = NULL;
if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
return 0;
/*
* As the ext_csd is so large and mostly unused, we don't store the
* raw block in mmc_card.
*/
ext_csd = kmalloc(512, GFP_KERNEL);
if (!ext_csd) {
pr_err("%s: could not allocate a buffer to "
"receive the ext_csd.\n", mmc_hostname(card->host));
return -ENOMEM;
}
err = mmc_send_ext_csd(card, ext_csd);
if (err) {
kfree(ext_csd);
*new_ext_csd = NULL;
/* If the host or the card can't do the switch,
* fail more gracefully. */
if ((err != -EINVAL)
&& (err != -ENOSYS)
&& (err != -EFAULT))
return err;
/*
* High capacity cards should have this "magic" size
* stored in their CSD.
*/
if (card->csd.capacity == (4096 * 512)) {
pr_err("%s: unable to read EXT_CSD "
"on a possible high capacity card. "
"Card will be ignored.\n",
mmc_hostname(card->host));
} else {
pr_warning("%s: unable to read "
"EXT_CSD, performance might "
"suffer.\n",
mmc_hostname(card->host));
err = 0;
}
} else
*new_ext_csd = ext_csd;
return err;
}
static void mmc_select_card_type(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u8 card_type = card->ext_csd.raw_card_type & EXT_CSD_CARD_TYPE_MASK;
unsigned int caps = host->caps, caps2 = host->caps2;
unsigned int hs_max_dtr = 0;
if (card_type & EXT_CSD_CARD_TYPE_26)
hs_max_dtr = MMC_HIGH_26_MAX_DTR;
if (caps & MMC_CAP_MMC_HIGHSPEED &&
card_type & EXT_CSD_CARD_TYPE_52)
hs_max_dtr = MMC_HIGH_52_MAX_DTR;
if ((caps & MMC_CAP_1_8V_DDR &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) ||
(caps & MMC_CAP_1_2V_DDR &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_2V))
hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
if ((caps2 & MMC_CAP2_HS200_1_8V_SDR &&
card_type & EXT_CSD_CARD_TYPE_SDR_1_8V) ||
(caps2 & MMC_CAP2_HS200_1_2V_SDR &&
card_type & EXT_CSD_CARD_TYPE_SDR_1_2V))
hs_max_dtr = MMC_HS200_MAX_DTR;
card->ext_csd.hs_max_dtr = hs_max_dtr;
card->ext_csd.card_type = card_type;
}
/*
* Decode extended CSD.
*/
static int mmc_read_ext_csd(struct mmc_card *card, u8 *ext_csd)
{
int err = 0, idx;
unsigned int part_size;
u8 hc_erase_grp_sz = 0, hc_wp_grp_sz = 0;
BUG_ON(!card);
if (!ext_csd)
return 0;
/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
if (card->csd.structure == 3) {
if (card->ext_csd.raw_ext_csd_structure > 2) {
pr_err("%s: unrecognised EXT_CSD structure "
"version %d\n", mmc_hostname(card->host),
card->ext_csd.raw_ext_csd_structure);
err = -EINVAL;
goto out;
}
}
card->ext_csd.rev = ext_csd[EXT_CSD_REV];
if (card->ext_csd.rev > 6) {
pr_err("%s: unrecognised EXT_CSD revision %d\n",
mmc_hostname(card->host), card->ext_csd.rev);
err = -EINVAL;
goto out;
}
card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
if (card->ext_csd.rev >= 2) {
card->ext_csd.sectors =
ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
/* Cards with density > 2GiB are sector addressed */
if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
mmc_card_set_blockaddr(card);
}
card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
mmc_select_card_type(card);
card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.raw_erase_timeout_mult =
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.raw_hc_erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
if (card->ext_csd.rev >= 3) {
u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
/* EXT_CSD value is in units of 10ms, but we store in ms */
card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
/* Sleep / awake timeout in 100ns units */
if (sa_shift > 0 && sa_shift <= 0x17)
card->ext_csd.sa_timeout =
1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.erase_group_def =
ext_csd[EXT_CSD_ERASE_GROUP_DEF];
card->ext_csd.hc_erase_timeout = 300 *
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.hc_erase_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
/*
* There are two boot regions of equal size, defined in
* multiples of 128K.
*/
if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc_part_add(card, part_size,
EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
"boot%d", idx, true,
MMC_BLK_DATA_AREA_BOOT);
}
}
}
card->ext_csd.raw_hc_erase_gap_size =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.raw_sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.raw_sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.raw_sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.raw_trim_mult =
ext_csd[EXT_CSD_TRIM_MULT];
if (card->ext_csd.rev >= 4) {
/*
* Enhanced area feature support -- check whether the eMMC
* card has the Enhanced area enabled. If so, export enhanced
* area offset and size to user by adding sysfs interface.
*/
card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
(ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.enhanced_area_en = 1;
/*
* calculate the enhanced data area offset, in bytes
*/
card->ext_csd.enhanced_area_offset =
(ext_csd[139] << 24) + (ext_csd[138] << 16) +
(ext_csd[137] << 8) + ext_csd[136];
if (mmc_card_blockaddr(card))
card->ext_csd.enhanced_area_offset <<= 9;
/*
* calculate the enhanced data area size, in kilobytes
*/
card->ext_csd.enhanced_area_size =
(ext_csd[142] << 16) + (ext_csd[141] << 8) +
ext_csd[140];
card->ext_csd.enhanced_area_size *=
(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
card->ext_csd.enhanced_area_size <<= 9;
} else {
/*
* If the enhanced area is not enabled, disable these
* device attributes.
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
}
/*
* General purpose partition feature support --
* If ext_csd has the size of general purpose partitions,
* set size, part_cfg, partition name in mmc_part.
*/
if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
EXT_CSD_PART_SUPPORT_PART_EN) {
if (card->ext_csd.enhanced_area_en != 1) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.enhanced_area_en = 1;
}
for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
continue;
part_size =
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
<< 16) +
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
<< 8) +
ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
part_size *= (size_t)(hc_erase_grp_sz *
hc_wp_grp_sz);
mmc_part_add(card, part_size << 19,
EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
"gp%d", idx, false,
MMC_BLK_DATA_AREA_GP);
}
}
card->ext_csd.sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.trim_timeout = 300 *
ext_csd[EXT_CSD_TRIM_MULT];
/*
* Note that the call to mmc_part_add above defaults to read
* only. If this default assumption is changed, the call must
* take into account the value of boot_locked below.
*/
card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
card->ext_csd.boot_ro_lockable = true;
}
if (card->ext_csd.rev >= 5) {
/* check whether the eMMC card supports HPI */
if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1) {
card->ext_csd.hpi = 1;
if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
else
card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
/*
* Indicate the maximum timeout to close
* a command interrupted by HPI
*/
card->ext_csd.out_of_int_time =
ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
}
card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
}
card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
/* eMMC v4.5 or later */
if (card->ext_csd.rev >= 6) {
card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
card->ext_csd.generic_cmd6_time = 10 *
ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
card->ext_csd.power_off_longtime = 10 *
ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
card->ext_csd.cache_size =
ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
card->ext_csd.data_sector_size = 4096;
else
card->ext_csd.data_sector_size = 512;
if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
(ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
card->ext_csd.data_tag_unit_size =
((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
(card->ext_csd.data_sector_size);
} else {
card->ext_csd.data_tag_unit_size = 0;
}
} else {
card->ext_csd.data_sector_size = 512;
}
out:
return err;
}
static inline void mmc_free_ext_csd(u8 *ext_csd)
{
kfree(ext_csd);
}
static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
{
u8 *bw_ext_csd;
int err;
if (bus_width == MMC_BUS_WIDTH_1)
return 0;
err = mmc_get_ext_csd(card, &bw_ext_csd);
if (err || bw_ext_csd == NULL) {
err = -EINVAL;
goto out;
}
/* only compare read only fields */
err = !((card->ext_csd.raw_partition_support ==
bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
(card->ext_csd.raw_erased_mem_count ==
bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
(card->ext_csd.rev ==
bw_ext_csd[EXT_CSD_REV]) &&
(card->ext_csd.raw_ext_csd_structure ==
bw_ext_csd[EXT_CSD_STRUCTURE]) &&
(card->ext_csd.raw_card_type ==
bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
(card->ext_csd.raw_s_a_timeout ==
bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
(card->ext_csd.raw_hc_erase_gap_size ==
bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
(card->ext_csd.raw_erase_timeout_mult ==
bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
(card->ext_csd.raw_hc_erase_grp_size ==
bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
(card->ext_csd.raw_sec_trim_mult ==
bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
(card->ext_csd.raw_sec_erase_mult ==
bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
(card->ext_csd.raw_sec_feature_support ==
bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
(card->ext_csd.raw_trim_mult ==
bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
(card->ext_csd.raw_sectors[0] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
(card->ext_csd.raw_sectors[1] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
(card->ext_csd.raw_sectors[2] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
(card->ext_csd.raw_sectors[3] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 3]));
if (err)
err = -EINVAL;
out:
mmc_free_ext_csd(bw_ext_csd);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
card->ext_csd.enhanced_area_offset);
MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
static struct attribute *mmc_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_serial.attr,
&dev_attr_enhanced_area_offset.attr,
&dev_attr_enhanced_area_size.attr,
NULL,
};
static struct attribute_group mmc_std_attr_group = {
.attrs = mmc_std_attrs,
};
static const struct attribute_group *mmc_attr_groups[] = {
&mmc_std_attr_group,
NULL,
};
static struct device_type mmc_type = {
.groups = mmc_attr_groups,
};
/*
* Select the PowerClass for the current bus width
* If power class is defined for 4/8 bit bus in the
* extended CSD register, select it by executing the
* mmc_switch command.
*/
static int mmc_select_powerclass(struct mmc_card *card,
unsigned int bus_width, u8 *ext_csd)
{
int err = 0;
unsigned int pwrclass_val;
unsigned int index = 0;
struct mmc_host *host;
BUG_ON(!card);
host = card->host;
BUG_ON(!host);
if (ext_csd == NULL)
return 0;
/* Power class selection is supported for versions >= 4.0 */
if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
return 0;
/* Power class values are defined only for 4/8 bit bus */
if (bus_width == EXT_CSD_BUS_WIDTH_1)
return 0;
switch (1 << host->ios.vdd) {
case MMC_VDD_165_195:
if (host->ios.clock <= 26000000)
index = EXT_CSD_PWR_CL_26_195;
else if (host->ios.clock <= 52000000)
index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
EXT_CSD_PWR_CL_52_195 :
EXT_CSD_PWR_CL_DDR_52_195;
else if (host->ios.clock <= 200000000)
index = EXT_CSD_PWR_CL_200_195;
break;
case MMC_VDD_27_28:
case MMC_VDD_28_29:
case MMC_VDD_29_30:
case MMC_VDD_30_31:
case MMC_VDD_31_32:
case MMC_VDD_32_33:
case MMC_VDD_33_34:
case MMC_VDD_34_35:
case MMC_VDD_35_36:
if (host->ios.clock <= 26000000)
index = EXT_CSD_PWR_CL_26_360;
else if (host->ios.clock <= 52000000)
index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
EXT_CSD_PWR_CL_52_360 :
EXT_CSD_PWR_CL_DDR_52_360;
else if (host->ios.clock <= 200000000)
index = EXT_CSD_PWR_CL_200_360;
break;
default:
pr_warning("%s: Voltage range not supported "
"for power class.\n", mmc_hostname(host));
return -EINVAL;
}
pwrclass_val = ext_csd[index];
if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
EXT_CSD_PWR_CL_8BIT_SHIFT;
else
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
EXT_CSD_PWR_CL_4BIT_SHIFT;
/* If the power class is different from the default value */
if (pwrclass_val > 0) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_CLASS,
pwrclass_val,
card->ext_csd.generic_cmd6_time);
}
return err;
}
/*
* Selects the desired buswidth and switch to the HS200 mode
* if bus width set without error
*/
static int mmc_select_hs200(struct mmc_card *card)
{
int idx, err = -EINVAL;
struct mmc_host *host;
static unsigned ext_csd_bits[] = {
EXT_CSD_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_8,
};
static unsigned bus_widths[] = {
MMC_BUS_WIDTH_4,
MMC_BUS_WIDTH_8,
};
BUG_ON(!card);
host = card->host;
if (card->ext_csd.card_type & EXT_CSD_CARD_TYPE_SDR_1_2V &&
host->caps2 & MMC_CAP2_HS200_1_2V_SDR)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120, 0);
if (err && card->ext_csd.card_type & EXT_CSD_CARD_TYPE_SDR_1_8V &&
host->caps2 & MMC_CAP2_HS200_1_8V_SDR)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, 0);
/* If fails try again during next card power cycle */
if (err)
goto err;
idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 1 : 0;
/*
* Unlike SD, MMC cards dont have a configuration register to notify
* supported bus width. So bus test command should be run to identify
* the supported bus width or compare the ext csd values of current
* bus width and ext csd values of 1 bit mode read earlier.
*/
for (; idx >= 0; idx--) {
/*
* Host is capable of 8bit transfer, then switch
* the device to work in 8bit transfer mode. If the
* mmc switch command returns error then switch to
* 4bit transfer mode. On success set the corresponding
* bus width on the host.
*/
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx],
card->ext_csd.generic_cmd6_time);
if (err)
continue;
mmc_set_bus_width(card->host, bus_widths[idx]);
if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
err = mmc_compare_ext_csds(card, bus_widths[idx]);
else
err = mmc_bus_test(card, bus_widths[idx]);
if (!err)
break;
}
/* switch to HS200 mode if bus width set successfully */
if (!err)
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, 2, 0);
err:
return err;
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err, ddr = 0;
u32 cid[4];
unsigned int max_dtr;
u32 rocr;
u8 *ext_csd = NULL;
BUG_ON(!host);
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting init */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
* mmc_go_idle is needed for eMMC that are asleep
*/
mmc_go_idle(host);
/* The extra bit indicates that we support high capacity */
err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
if (err)
goto err;
/*
* For SPI, enable CRC as appropriate.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err)
goto err;
}
/*
* Fetch CID from card.
*/
if (mmc_host_is_spi(host))
err = mmc_send_cid(host, cid);
else
err = mmc_all_send_cid(host, cid);
if (err)
goto err;
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
err = -ENOENT;
goto err;
}
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &mmc_type);
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto err;
}
card->type = MMC_TYPE_MMC;
card->rca = 1;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
}
/*
* For native busses: set card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_set_relative_addr(card);
if (err)
goto free_card;
mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
}
if (!oldcard) {
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err)
goto free_card;
err = mmc_decode_csd(card);
if (err)
goto free_card;
err = mmc_decode_cid(card);
if (err)
goto free_card;
}
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err)
goto free_card;
}
if (!oldcard) {
/*
* Fetch and process extended CSD.
*/
err = mmc_get_ext_csd(card, &ext_csd);
if (err)
goto free_card;
err = mmc_read_ext_csd(card, ext_csd);
if (err)
goto free_card;
/* If doing byte addressing, check if required to do sector
* addressing. Handle the case of <2GB cards needing sector
* addressing. See section 8.1 JEDEC Standard JED84-A441;
* ocr register has bit 30 set for sector addressing.
*/
if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
mmc_card_set_blockaddr(card);
/* Erase size depends on CSD and Extended CSD */
mmc_set_erase_size(card);
}
/*
* If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
* bit. This bit will be lost every time after a reset or power off.
*/
if (card->ext_csd.enhanced_area_en ||
(card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
err = 0;
/*
* Just disable enhanced area off & sz
* will try to enable ERASE_GROUP_DEF
* during next time reinit
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
} else {
card->ext_csd.erase_group_def = 1;
/*
* enable ERASE_GRP_DEF successfully.
* This will affect the erase size, so
* here need to reset erase size
*/
mmc_set_erase_size(card);
}
}
/*
* Ensure eMMC user default partition is enabled
*/
if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
card->ext_csd.part_config,
card->ext_csd.part_time);
if (err && err != -EBADMSG)
goto free_card;
}
/*
* If the host supports the power_off_notify capability then
* set the notification byte in the ext_csd register of device
*/
if ((host->caps2 & MMC_CAP2_POWEROFF_NOTIFY) &&
(card->ext_csd.rev >= 6)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_OFF_NOTIFICATION,
EXT_CSD_POWER_ON,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
/*
* The err can be -EBADMSG or 0,
* so check for success and update the flag
*/
if (!err)
card->poweroff_notify_state = MMC_POWERED_ON;
}
/*
* Activate high speed (if supported)
*/
if (card->ext_csd.hs_max_dtr != 0) {
err = 0;
if (card->ext_csd.hs_max_dtr > 52000000 &&
host->caps2 & MMC_CAP2_HS200)
err = mmc_select_hs200(card);
else if (host->caps & MMC_CAP_MMC_HIGHSPEED)
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
pr_warning("%s: switch to highspeed failed\n",
mmc_hostname(card->host));
err = 0;
} else {
if (card->ext_csd.hs_max_dtr > 52000000 &&
host->caps2 & MMC_CAP2_HS200) {
mmc_card_set_hs200(card);
mmc_set_timing(card->host,
MMC_TIMING_MMC_HS200);
} else {
mmc_card_set_highspeed(card);
mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
}
}
}
/*
* Compute bus speed.
*/
max_dtr = (unsigned int)-1;
if (mmc_card_highspeed(card) || mmc_card_hs200(card)) {
if (max_dtr > card->ext_csd.hs_max_dtr)
max_dtr = card->ext_csd.hs_max_dtr;
} else if (max_dtr > card->csd.max_dtr) {
max_dtr = card->csd.max_dtr;
}
mmc_set_clock(host, max_dtr);
/*
* Indicate DDR mode (if supported).
*/
if (mmc_card_highspeed(card)) {
if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
&& ((host->caps & (MMC_CAP_1_8V_DDR |
MMC_CAP_UHS_DDR50))
== (MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50)))
ddr = MMC_1_8V_DDR_MODE;
else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
&& ((host->caps & (MMC_CAP_1_2V_DDR |
MMC_CAP_UHS_DDR50))
== (MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50)))
ddr = MMC_1_2V_DDR_MODE;
}
/*
* Indicate HS200 SDR mode (if supported).
*/
if (mmc_card_hs200(card)) {
u32 ext_csd_bits;
u32 bus_width = card->host->ios.bus_width;
/*
* For devices supporting HS200 mode, the bus width has
* to be set before executing the tuning function. If
* set before tuning, then device will respond with CRC
* errors for responses on CMD line. So for HS200 the
* sequence will be
* 1. set bus width 4bit / 8 bit (1 bit not supported)
* 2. switch to HS200 mode
* 3. set the clock to > 52Mhz <=200MHz and
* 4. execute tuning for HS200
*/
if ((host->caps2 & MMC_CAP2_HS200) &&
card->host->ops->execute_tuning) {
mmc_host_clk_hold(card->host);
err = card->host->ops->execute_tuning(card->host,
MMC_SEND_TUNING_BLOCK_HS200);
mmc_host_clk_release(card->host);
}
if (err) {
pr_warning("%s: tuning execution failed\n",
mmc_hostname(card->host));
goto err;
}
ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
err = mmc_select_powerclass(card, ext_csd_bits, ext_csd);
if (err)
pr_warning("%s: power class selection to bus width %d"
" failed\n", mmc_hostname(card->host),
1 << bus_width);
}
/*
* Activate wide bus and DDR (if supported).
*/
if (!mmc_card_hs200(card) &&
(card->csd.mmca_vsn >= CSD_SPEC_VER_4) &&
(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) {
static unsigned ext_csd_bits[][2] = {
{ EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8 },
{ EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4 },
{ EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1 },
};
static unsigned bus_widths[] = {
MMC_BUS_WIDTH_8,
MMC_BUS_WIDTH_4,
MMC_BUS_WIDTH_1
};
unsigned idx, bus_width = 0;
if (host->caps & MMC_CAP_8_BIT_DATA)
idx = 0;
else
idx = 1;
for (; idx < ARRAY_SIZE(bus_widths); idx++) {
bus_width = bus_widths[idx];
if (bus_width == MMC_BUS_WIDTH_1)
ddr = 0; /* no DDR for 1-bit width */
err = mmc_select_powerclass(card, ext_csd_bits[idx][0],
ext_csd);
if (err)
pr_warning("%s: power class selection to "
"bus width %d failed\n",
mmc_hostname(card->host),
1 << bus_width);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][0],
card->ext_csd.generic_cmd6_time);
if (!err) {
mmc_set_bus_width(card->host, bus_width);
/*
* If controller can't handle bus width test,
* compare ext_csd previously read in 1 bit mode
* against ext_csd at new bus width
*/
if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
err = mmc_compare_ext_csds(card,
bus_width);
else
err = mmc_bus_test(card, bus_width);
if (!err)
break;
}
}
if (!err && ddr) {
err = mmc_select_powerclass(card, ext_csd_bits[idx][1],
ext_csd);
if (err)
pr_warning("%s: power class selection to "
"bus width %d ddr %d failed\n",
mmc_hostname(card->host),
1 << bus_width, ddr);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][1],
card->ext_csd.generic_cmd6_time);
}
if (err) {
pr_warning("%s: switch to bus width %d ddr %d "
"failed\n", mmc_hostname(card->host),
1 << bus_width, ddr);
goto free_card;
} else if (ddr) {
/*
* eMMC cards can support 3.3V to 1.2V i/o (vccq)
* signaling.
*
* EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
*
* 1.8V vccq at 3.3V core voltage (vcc) is not required
* in the JEDEC spec for DDR.
*
* Do not force change in vccq since we are obviously
* working and no change to vccq is needed.
*
* WARNING: eMMC rules are NOT the same as SD DDR
*/
if (ddr == MMC_1_2V_DDR_MODE) {
err = mmc_set_signal_voltage(host,
MMC_SIGNAL_VOLTAGE_120, 0);
if (err)
goto err;
}
mmc_card_set_ddr_mode(card);
mmc_set_timing(card->host, MMC_TIMING_UHS_DDR50);
mmc_set_bus_width(card->host, bus_width);
}
}
/*
* Enable HPI feature (if supported)
*/
if (card->ext_csd.hpi) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HPI_MGMT, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
pr_warning("%s: Enabling HPI failed\n",
mmc_hostname(card->host));
err = 0;
} else
card->ext_csd.hpi_en = 1;
}
/*
* If cache size is higher than 0, this indicates
* the existence of cache and it can be turned on.
*/
if ((host->caps2 & MMC_CAP2_CACHE_CTRL) &&
card->ext_csd.cache_size > 0) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CACHE_CTRL, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
/*
* Only if no error, cache is turned on successfully.
*/
if (err) {
pr_warning("%s: Cache is supported, "
"but failed to turn on (%d)\n",
mmc_hostname(card->host), err);
card->ext_csd.cache_ctrl = 0;
err = 0;
} else {
card->ext_csd.cache_ctrl = 1;
}
}
if (!oldcard)
host->card = card;
mmc_free_ext_csd(ext_csd);
return 0;
free_card:
if (!oldcard)
mmc_remove_card(card);
err:
mmc_free_ext_csd(ext_csd);
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_remove(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(!host->card);
mmc_remove_card(host->card);
host->card = NULL;
}
/*
* Card detection - card is alive.
*/
static int mmc_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_detect(struct mmc_host *host)
{
int err;
BUG_ON(!host);
BUG_ON(!host->card);
mmc_claim_host(host);
/*
* Just check if our card has been removed.
*/
err = _mmc_detect_card_removed(host);
mmc_release_host(host);
if (err) {
mmc_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
/*
* Suspend callback from host.
*/
static int mmc_suspend(struct mmc_host *host)
{
int err = 0;
BUG_ON(!host);
BUG_ON(!host->card);
mmc_claim_host(host);
if (mmc_card_can_sleep(host)) {
err = mmc_card_sleep(host);
if (!err)
mmc_card_set_sleep(host->card);
} else if (!mmc_host_is_spi(host))
err = mmc_deselect_cards(host);
host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
mmc_release_host(host);
return err;
}
/*
* Resume callback from host.
*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int mmc_resume(struct mmc_host *host)
{
int err;
BUG_ON(!host);
BUG_ON(!host->card);
mmc_claim_host(host);
if (mmc_card_is_sleep(host->card)) {
err = mmc_card_awake(host);
mmc_card_clr_sleep(host->card);
} else
err = mmc_init_card(host, host->ocr, host->card);
mmc_release_host(host);
return err;
}
static int mmc_power_restore(struct mmc_host *host)
{
int ret;
host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
mmc_card_clr_sleep(host->card);
mmc_claim_host(host);
ret = mmc_init_card(host, host->ocr, host->card);
mmc_release_host(host);
return ret;
}
static int mmc_sleep(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int err = -ENOSYS;
if (card && card->ext_csd.rev >= 3) {
err = mmc_card_sleepawake(host, 1);
if (err < 0)
pr_debug("%s: Error %d while putting card into sleep",
mmc_hostname(host), err);
}
return err;
}
static int mmc_awake(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int err = -ENOSYS;
if (card && card->ext_csd.rev >= 3) {
err = mmc_card_sleepawake(host, 0);
if (err < 0)
pr_debug("%s: Error %d while awaking sleeping card",
mmc_hostname(host), err);
}
return err;
}
static const struct mmc_bus_ops mmc_ops = {
.awake = mmc_awake,
.sleep = mmc_sleep,
.remove = mmc_remove,
.detect = mmc_detect,
.suspend = NULL,
.resume = NULL,
.power_restore = mmc_power_restore,
.alive = mmc_alive,
};
static const struct mmc_bus_ops mmc_ops_unsafe = {
.awake = mmc_awake,
.sleep = mmc_sleep,
.remove = mmc_remove,
.detect = mmc_detect,
.suspend = mmc_suspend,
.resume = mmc_resume,
.power_restore = mmc_power_restore,
.alive = mmc_alive,
};
static void mmc_attach_bus_ops(struct mmc_host *host)
{
const struct mmc_bus_ops *bus_ops;
if (!mmc_card_is_removable(host))
bus_ops = &mmc_ops_unsafe;
else
bus_ops = &mmc_ops;
mmc_attach_bus(host, bus_ops);
}
/*
* Starting point for MMC card init.
*/
int mmc_attach_mmc(struct mmc_host *host)
{
int err;
u32 ocr;
BUG_ON(!host);
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting attach */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
err = mmc_send_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_attach_bus_ops(host);
if (host->ocr_avail_mmc)
host->ocr_avail = host->ocr_avail_mmc;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_read_ocr(host, 1, &ocr);
if (err)
goto err;
}
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
pr_warning("%s: card claims to support voltages "
"below the defined range. These will be ignored.\n",
mmc_hostname(host));
ocr &= ~0x7F;
}
host->ocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage of the card?
*/
if (!host->ocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
err = mmc_init_card(host, host->ocr, NULL);
if (err)
goto err;
mmc_release_host(host);
err = mmc_add_card(host->card);
mmc_claim_host(host);
if (err)
goto remove_card;
return 0;
remove_card:
mmc_release_host(host);
mmc_remove_card(host->card);
mmc_claim_host(host);
host->card = NULL;
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising MMC card\n",
mmc_hostname(host), err);
return err;
}