remarkable-linux/crypto/asymmetric_keys/pkcs7_trust.c
David Howells 4573b64a31 X.509: Support X.509 lookup by Issuer+Serial form AuthorityKeyIdentifier
If an X.509 certificate has an AuthorityKeyIdentifier extension that provides
an issuer and serialNumber, then make it so that these are used in preference
to the keyIdentifier field also held therein for searching for the signing
certificate.

If both the issuer+serialNumber and the keyIdentifier are supplied, then the
certificate is looked up by the former but the latter is checked as well.  If
the latter doesn't match the subjectKeyIdentifier of the parent certificate,
EKEYREJECTED is returned.

This makes it possible to chain X.509 certificates based on the issuer and
serialNumber fields rather than on subjectKeyIdentifier.  This is necessary as
we are having to deal with keys that are represented by X.509 certificates
that lack a subjectKeyIdentifier.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Vivek Goyal <vgoyal@redhat.com>
2015-08-07 16:26:13 +01:00

205 lines
5 KiB
C

/* Validate the trust chain of a PKCS#7 message.
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#define pr_fmt(fmt) "PKCS7: "fmt
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/asn1.h>
#include <linux/key.h>
#include <keys/asymmetric-type.h>
#include "public_key.h"
#include "pkcs7_parser.h"
/**
* Check the trust on one PKCS#7 SignedInfo block.
*/
static int pkcs7_validate_trust_one(struct pkcs7_message *pkcs7,
struct pkcs7_signed_info *sinfo,
struct key *trust_keyring)
{
struct public_key_signature *sig = &sinfo->sig;
struct x509_certificate *x509, *last = NULL, *p;
struct key *key;
bool trusted;
int ret;
kenter(",%u,", sinfo->index);
if (sinfo->unsupported_crypto) {
kleave(" = -ENOPKG [cached]");
return -ENOPKG;
}
for (x509 = sinfo->signer; x509; x509 = x509->signer) {
if (x509->seen) {
if (x509->verified) {
trusted = x509->trusted;
goto verified;
}
kleave(" = -ENOKEY [cached]");
return -ENOKEY;
}
x509->seen = true;
/* Look to see if this certificate is present in the trusted
* keys.
*/
key = x509_request_asymmetric_key(trust_keyring,
x509->id, x509->skid,
false);
if (!IS_ERR(key)) {
/* One of the X.509 certificates in the PKCS#7 message
* is apparently the same as one we already trust.
* Verify that the trusted variant can also validate
* the signature on the descendant.
*/
pr_devel("sinfo %u: Cert %u as key %x\n",
sinfo->index, x509->index, key_serial(key));
goto matched;
}
if (key == ERR_PTR(-ENOMEM))
return -ENOMEM;
/* Self-signed certificates form roots of their own, and if we
* don't know them, then we can't accept them.
*/
if (x509->next == x509) {
kleave(" = -ENOKEY [unknown self-signed]");
return -ENOKEY;
}
might_sleep();
last = x509;
sig = &last->sig;
}
/* No match - see if the root certificate has a signer amongst the
* trusted keys.
*/
if (last && (last->akid_id || last->akid_skid)) {
key = x509_request_asymmetric_key(trust_keyring,
last->akid_id,
last->akid_skid,
false);
if (!IS_ERR(key)) {
x509 = last;
pr_devel("sinfo %u: Root cert %u signer is key %x\n",
sinfo->index, x509->index, key_serial(key));
goto matched;
}
if (PTR_ERR(key) != -ENOKEY)
return PTR_ERR(key);
}
/* As a last resort, see if we have a trusted public key that matches
* the signed info directly.
*/
key = x509_request_asymmetric_key(trust_keyring,
sinfo->signing_cert_id,
NULL,
false);
if (!IS_ERR(key)) {
pr_devel("sinfo %u: Direct signer is key %x\n",
sinfo->index, key_serial(key));
x509 = NULL;
goto matched;
}
if (PTR_ERR(key) != -ENOKEY)
return PTR_ERR(key);
kleave(" = -ENOKEY [no backref]");
return -ENOKEY;
matched:
ret = verify_signature(key, sig);
trusted = test_bit(KEY_FLAG_TRUSTED, &key->flags);
key_put(key);
if (ret < 0) {
if (ret == -ENOMEM)
return ret;
kleave(" = -EKEYREJECTED [verify %d]", ret);
return -EKEYREJECTED;
}
verified:
if (x509) {
x509->verified = true;
for (p = sinfo->signer; p != x509; p = p->signer) {
p->verified = true;
p->trusted = trusted;
}
}
sinfo->trusted = trusted;
kleave(" = 0");
return 0;
}
/**
* pkcs7_validate_trust - Validate PKCS#7 trust chain
* @pkcs7: The PKCS#7 certificate to validate
* @trust_keyring: Signing certificates to use as starting points
* @_trusted: Set to true if trustworth, false otherwise
*
* Validate that the certificate chain inside the PKCS#7 message intersects
* keys we already know and trust.
*
* Returns, in order of descending priority:
*
* (*) -EKEYREJECTED if a signature failed to match for which we have a valid
* key, or:
*
* (*) 0 if at least one signature chain intersects with the keys in the trust
* keyring, or:
*
* (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
* chain.
*
* (*) -ENOKEY if we couldn't find a match for any of the signature chains in
* the message.
*
* May also return -ENOMEM.
*/
int pkcs7_validate_trust(struct pkcs7_message *pkcs7,
struct key *trust_keyring,
bool *_trusted)
{
struct pkcs7_signed_info *sinfo;
struct x509_certificate *p;
int cached_ret = -ENOKEY;
int ret;
for (p = pkcs7->certs; p; p = p->next)
p->seen = false;
for (sinfo = pkcs7->signed_infos; sinfo; sinfo = sinfo->next) {
ret = pkcs7_validate_trust_one(pkcs7, sinfo, trust_keyring);
switch (ret) {
case -ENOKEY:
continue;
case -ENOPKG:
if (cached_ret == -ENOKEY)
cached_ret = -ENOPKG;
continue;
case 0:
*_trusted |= sinfo->trusted;
cached_ret = 0;
continue;
default:
return ret;
}
}
return cached_ret;
}
EXPORT_SYMBOL_GPL(pkcs7_validate_trust);