remarkable-linux/block/blk-merge.c
Linus Torvalds 3fc9d69093 Merge branch 'for-4.8/drivers' of git://git.kernel.dk/linux-block
Pull block driver updates from Jens Axboe:
 "This branch also contains core changes.  I've come to the conclusion
  that from 4.9 and forward, I'll be doing just a single branch.  We
  often have dependencies between core and drivers, and it's hard to
  always split them up appropriately without pulling core into drivers
  when that happens.

  That said, this contains:

   - separate secure erase type for the core block layer, from
     Christoph.

   - set of discard fixes, from Christoph.

   - bio shrinking fixes from Christoph, as a followup up to the
     op/flags change in the core branch.

   - map and append request fixes from Christoph.

   - NVMeF (NVMe over Fabrics) code from Christoph.  This is pretty
     exciting!

   - nvme-loop fixes from Arnd.

   - removal of ->driverfs_dev from Dan, after providing a
     device_add_disk() helper.

   - bcache fixes from Bhaktipriya and Yijing.

   - cdrom subchannel read fix from Vchannaiah.

   - set of lightnvm updates from Wenwei, Matias, Johannes, and Javier.

   - set of drbd updates and fixes from Fabian, Lars, and Philipp.

   - mg_disk error path fix from Bart.

   - user notification for failed device add for loop, from Minfei.

   - NVMe in general:
        + NVMe delay quirk from Guilherme.
        + SR-IOV support and command retry limits from Keith.
        + fix for memory-less NUMA node from Masayoshi.
        + use UINT_MAX for discard sectors, from Minfei.
        + cancel IO fixes from Ming.
        + don't allocate unused major, from Neil.
        + error code fixup from Dan.
        + use constants for PSDT/FUSE from James.
        + variable init fix from Jay.
        + fabrics fixes from Ming, Sagi, and Wei.
        + various fixes"

* 'for-4.8/drivers' of git://git.kernel.dk/linux-block: (115 commits)
  nvme/pci: Provide SR-IOV support
  nvme: initialize variable before logical OR'ing it
  block: unexport various bio mapping helpers
  scsi/osd: open code blk_make_request
  target: stop using blk_make_request
  block: simplify and export blk_rq_append_bio
  block: ensure bios return from blk_get_request are properly initialized
  virtio_blk: use blk_rq_map_kern
  memstick: don't allow REQ_TYPE_BLOCK_PC requests
  block: shrink bio size again
  block: simplify and cleanup bvec pool handling
  block: get rid of bio_rw and READA
  block: don't ignore -EOPNOTSUPP blkdev_issue_write_same
  block: introduce BLKDEV_DISCARD_ZERO to fix zeroout
  NVMe: don't allocate unused nvme_major
  nvme: avoid crashes when node 0 is memoryless node.
  nvme: Limit command retries
  loop: Make user notify for adding loop device failed
  nvme-loop: fix nvme-loop Kconfig dependencies
  nvmet: fix return value check in nvmet_subsys_alloc()
  ...
2016-07-26 15:37:51 -07:00

791 lines
19 KiB
C

/*
* Functions related to segment and merge handling
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <trace/events/block.h>
#include "blk.h"
static struct bio *blk_bio_discard_split(struct request_queue *q,
struct bio *bio,
struct bio_set *bs,
unsigned *nsegs)
{
unsigned int max_discard_sectors, granularity;
int alignment;
sector_t tmp;
unsigned split_sectors;
*nsegs = 1;
/* Zero-sector (unknown) and one-sector granularities are the same. */
granularity = max(q->limits.discard_granularity >> 9, 1U);
max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
max_discard_sectors -= max_discard_sectors % granularity;
if (unlikely(!max_discard_sectors)) {
/* XXX: warn */
return NULL;
}
if (bio_sectors(bio) <= max_discard_sectors)
return NULL;
split_sectors = max_discard_sectors;
/*
* If the next starting sector would be misaligned, stop the discard at
* the previous aligned sector.
*/
alignment = (q->limits.discard_alignment >> 9) % granularity;
tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
tmp = sector_div(tmp, granularity);
if (split_sectors > tmp)
split_sectors -= tmp;
return bio_split(bio, split_sectors, GFP_NOIO, bs);
}
static struct bio *blk_bio_write_same_split(struct request_queue *q,
struct bio *bio,
struct bio_set *bs,
unsigned *nsegs)
{
*nsegs = 1;
if (!q->limits.max_write_same_sectors)
return NULL;
if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
return NULL;
return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
}
static inline unsigned get_max_io_size(struct request_queue *q,
struct bio *bio)
{
unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
unsigned mask = queue_logical_block_size(q) - 1;
/* aligned to logical block size */
sectors &= ~(mask >> 9);
return sectors;
}
static struct bio *blk_bio_segment_split(struct request_queue *q,
struct bio *bio,
struct bio_set *bs,
unsigned *segs)
{
struct bio_vec bv, bvprv, *bvprvp = NULL;
struct bvec_iter iter;
unsigned seg_size = 0, nsegs = 0, sectors = 0;
unsigned front_seg_size = bio->bi_seg_front_size;
bool do_split = true;
struct bio *new = NULL;
const unsigned max_sectors = get_max_io_size(q, bio);
bio_for_each_segment(bv, bio, iter) {
/*
* If the queue doesn't support SG gaps and adding this
* offset would create a gap, disallow it.
*/
if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
goto split;
if (sectors + (bv.bv_len >> 9) > max_sectors) {
/*
* Consider this a new segment if we're splitting in
* the middle of this vector.
*/
if (nsegs < queue_max_segments(q) &&
sectors < max_sectors) {
nsegs++;
sectors = max_sectors;
}
if (sectors)
goto split;
/* Make this single bvec as the 1st segment */
}
if (bvprvp && blk_queue_cluster(q)) {
if (seg_size + bv.bv_len > queue_max_segment_size(q))
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
goto new_segment;
seg_size += bv.bv_len;
bvprv = bv;
bvprvp = &bvprv;
sectors += bv.bv_len >> 9;
if (nsegs == 1 && seg_size > front_seg_size)
front_seg_size = seg_size;
continue;
}
new_segment:
if (nsegs == queue_max_segments(q))
goto split;
nsegs++;
bvprv = bv;
bvprvp = &bvprv;
seg_size = bv.bv_len;
sectors += bv.bv_len >> 9;
if (nsegs == 1 && seg_size > front_seg_size)
front_seg_size = seg_size;
}
do_split = false;
split:
*segs = nsegs;
if (do_split) {
new = bio_split(bio, sectors, GFP_NOIO, bs);
if (new)
bio = new;
}
bio->bi_seg_front_size = front_seg_size;
if (seg_size > bio->bi_seg_back_size)
bio->bi_seg_back_size = seg_size;
return do_split ? new : NULL;
}
void blk_queue_split(struct request_queue *q, struct bio **bio,
struct bio_set *bs)
{
struct bio *split, *res;
unsigned nsegs;
if (bio_op(*bio) == REQ_OP_DISCARD)
split = blk_bio_discard_split(q, *bio, bs, &nsegs);
else if (bio_op(*bio) == REQ_OP_WRITE_SAME)
split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
else
split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
/* physical segments can be figured out during splitting */
res = split ? split : *bio;
res->bi_phys_segments = nsegs;
bio_set_flag(res, BIO_SEG_VALID);
if (split) {
/* there isn't chance to merge the splitted bio */
split->bi_rw |= REQ_NOMERGE;
bio_chain(split, *bio);
trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
generic_make_request(*bio);
*bio = split;
}
}
EXPORT_SYMBOL(blk_queue_split);
static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
struct bio *bio,
bool no_sg_merge)
{
struct bio_vec bv, bvprv = { NULL };
int cluster, prev = 0;
unsigned int seg_size, nr_phys_segs;
struct bio *fbio, *bbio;
struct bvec_iter iter;
if (!bio)
return 0;
/*
* This should probably be returning 0, but blk_add_request_payload()
* (Christoph!!!!)
*/
if (bio_op(bio) == REQ_OP_DISCARD)
return 1;
if (bio_op(bio) == REQ_OP_WRITE_SAME)
return 1;
fbio = bio;
cluster = blk_queue_cluster(q);
seg_size = 0;
nr_phys_segs = 0;
for_each_bio(bio) {
bio_for_each_segment(bv, bio, iter) {
/*
* If SG merging is disabled, each bio vector is
* a segment
*/
if (no_sg_merge)
goto new_segment;
if (prev && cluster) {
if (seg_size + bv.bv_len
> queue_max_segment_size(q))
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
goto new_segment;
seg_size += bv.bv_len;
bvprv = bv;
continue;
}
new_segment:
if (nr_phys_segs == 1 && seg_size >
fbio->bi_seg_front_size)
fbio->bi_seg_front_size = seg_size;
nr_phys_segs++;
bvprv = bv;
prev = 1;
seg_size = bv.bv_len;
}
bbio = bio;
}
if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
fbio->bi_seg_front_size = seg_size;
if (seg_size > bbio->bi_seg_back_size)
bbio->bi_seg_back_size = seg_size;
return nr_phys_segs;
}
void blk_recalc_rq_segments(struct request *rq)
{
bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
&rq->q->queue_flags);
rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
no_sg_merge);
}
void blk_recount_segments(struct request_queue *q, struct bio *bio)
{
unsigned short seg_cnt;
/* estimate segment number by bi_vcnt for non-cloned bio */
if (bio_flagged(bio, BIO_CLONED))
seg_cnt = bio_segments(bio);
else
seg_cnt = bio->bi_vcnt;
if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
(seg_cnt < queue_max_segments(q)))
bio->bi_phys_segments = seg_cnt;
else {
struct bio *nxt = bio->bi_next;
bio->bi_next = NULL;
bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
bio->bi_next = nxt;
}
bio_set_flag(bio, BIO_SEG_VALID);
}
EXPORT_SYMBOL(blk_recount_segments);
static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
struct bio *nxt)
{
struct bio_vec end_bv = { NULL }, nxt_bv;
if (!blk_queue_cluster(q))
return 0;
if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
queue_max_segment_size(q))
return 0;
if (!bio_has_data(bio))
return 1;
bio_get_last_bvec(bio, &end_bv);
bio_get_first_bvec(nxt, &nxt_bv);
if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
return 0;
/*
* bio and nxt are contiguous in memory; check if the queue allows
* these two to be merged into one
*/
if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
return 1;
return 0;
}
static inline void
__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
struct scatterlist *sglist, struct bio_vec *bvprv,
struct scatterlist **sg, int *nsegs, int *cluster)
{
int nbytes = bvec->bv_len;
if (*sg && *cluster) {
if ((*sg)->length + nbytes > queue_max_segment_size(q))
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
goto new_segment;
(*sg)->length += nbytes;
} else {
new_segment:
if (!*sg)
*sg = sglist;
else {
/*
* If the driver previously mapped a shorter
* list, we could see a termination bit
* prematurely unless it fully inits the sg
* table on each mapping. We KNOW that there
* must be more entries here or the driver
* would be buggy, so force clear the
* termination bit to avoid doing a full
* sg_init_table() in drivers for each command.
*/
sg_unmark_end(*sg);
*sg = sg_next(*sg);
}
sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
(*nsegs)++;
}
*bvprv = *bvec;
}
static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
struct scatterlist *sglist,
struct scatterlist **sg)
{
struct bio_vec bvec, bvprv = { NULL };
struct bvec_iter iter;
int nsegs, cluster;
nsegs = 0;
cluster = blk_queue_cluster(q);
if (bio_op(bio) == REQ_OP_DISCARD) {
/*
* This is a hack - drivers should be neither modifying the
* biovec, nor relying on bi_vcnt - but because of
* blk_add_request_payload(), a discard bio may or may not have
* a payload we need to set up here (thank you Christoph) and
* bi_vcnt is really the only way of telling if we need to.
*/
if (bio->bi_vcnt)
goto single_segment;
return 0;
}
if (bio_op(bio) == REQ_OP_WRITE_SAME) {
single_segment:
*sg = sglist;
bvec = bio_iovec(bio);
sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
return 1;
}
for_each_bio(bio)
bio_for_each_segment(bvec, bio, iter)
__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
&nsegs, &cluster);
return nsegs;
}
/*
* map a request to scatterlist, return number of sg entries setup. Caller
* must make sure sg can hold rq->nr_phys_segments entries
*/
int blk_rq_map_sg(struct request_queue *q, struct request *rq,
struct scatterlist *sglist)
{
struct scatterlist *sg = NULL;
int nsegs = 0;
if (rq->bio)
nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
(blk_rq_bytes(rq) & q->dma_pad_mask)) {
unsigned int pad_len =
(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
sg->length += pad_len;
rq->extra_len += pad_len;
}
if (q->dma_drain_size && q->dma_drain_needed(rq)) {
if (op_is_write(req_op(rq)))
memset(q->dma_drain_buffer, 0, q->dma_drain_size);
sg_unmark_end(sg);
sg = sg_next(sg);
sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
q->dma_drain_size,
((unsigned long)q->dma_drain_buffer) &
(PAGE_SIZE - 1));
nsegs++;
rq->extra_len += q->dma_drain_size;
}
if (sg)
sg_mark_end(sg);
/*
* Something must have been wrong if the figured number of
* segment is bigger than number of req's physical segments
*/
WARN_ON(nsegs > rq->nr_phys_segments);
return nsegs;
}
EXPORT_SYMBOL(blk_rq_map_sg);
static inline int ll_new_hw_segment(struct request_queue *q,
struct request *req,
struct bio *bio)
{
int nr_phys_segs = bio_phys_segments(q, bio);
if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
goto no_merge;
if (blk_integrity_merge_bio(q, req, bio) == false)
goto no_merge;
/*
* This will form the start of a new hw segment. Bump both
* counters.
*/
req->nr_phys_segments += nr_phys_segs;
return 1;
no_merge:
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
int ll_back_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio)
{
if (req_gap_back_merge(req, bio))
return 0;
if (blk_integrity_rq(req) &&
integrity_req_gap_back_merge(req, bio))
return 0;
if (blk_rq_sectors(req) + bio_sectors(bio) >
blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
if (!bio_flagged(req->biotail, BIO_SEG_VALID))
blk_recount_segments(q, req->biotail);
if (!bio_flagged(bio, BIO_SEG_VALID))
blk_recount_segments(q, bio);
return ll_new_hw_segment(q, req, bio);
}
int ll_front_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio)
{
if (req_gap_front_merge(req, bio))
return 0;
if (blk_integrity_rq(req) &&
integrity_req_gap_front_merge(req, bio))
return 0;
if (blk_rq_sectors(req) + bio_sectors(bio) >
blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
if (!bio_flagged(bio, BIO_SEG_VALID))
blk_recount_segments(q, bio);
if (!bio_flagged(req->bio, BIO_SEG_VALID))
blk_recount_segments(q, req->bio);
return ll_new_hw_segment(q, req, bio);
}
/*
* blk-mq uses req->special to carry normal driver per-request payload, it
* does not indicate a prepared command that we cannot merge with.
*/
static bool req_no_special_merge(struct request *req)
{
struct request_queue *q = req->q;
return !q->mq_ops && req->special;
}
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
struct request *next)
{
int total_phys_segments;
unsigned int seg_size =
req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
/*
* First check if the either of the requests are re-queued
* requests. Can't merge them if they are.
*/
if (req_no_special_merge(req) || req_no_special_merge(next))
return 0;
if (req_gap_back_merge(req, next->bio))
return 0;
/*
* Will it become too large?
*/
if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
return 0;
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
if (req->nr_phys_segments == 1)
req->bio->bi_seg_front_size = seg_size;
if (next->nr_phys_segments == 1)
next->biotail->bi_seg_back_size = seg_size;
total_phys_segments--;
}
if (total_phys_segments > queue_max_segments(q))
return 0;
if (blk_integrity_merge_rq(q, req, next) == false)
return 0;
/* Merge is OK... */
req->nr_phys_segments = total_phys_segments;
return 1;
}
/**
* blk_rq_set_mixed_merge - mark a request as mixed merge
* @rq: request to mark as mixed merge
*
* Description:
* @rq is about to be mixed merged. Make sure the attributes
* which can be mixed are set in each bio and mark @rq as mixed
* merged.
*/
void blk_rq_set_mixed_merge(struct request *rq)
{
unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
struct bio *bio;
if (rq->cmd_flags & REQ_MIXED_MERGE)
return;
/*
* @rq will no longer represent mixable attributes for all the
* contained bios. It will just track those of the first one.
* Distributes the attributs to each bio.
*/
for (bio = rq->bio; bio; bio = bio->bi_next) {
WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
(bio->bi_rw & REQ_FAILFAST_MASK) != ff);
bio->bi_rw |= ff;
}
rq->cmd_flags |= REQ_MIXED_MERGE;
}
static void blk_account_io_merge(struct request *req)
{
if (blk_do_io_stat(req)) {
struct hd_struct *part;
int cpu;
cpu = part_stat_lock();
part = req->part;
part_round_stats(cpu, part);
part_dec_in_flight(part, rq_data_dir(req));
hd_struct_put(part);
part_stat_unlock();
}
}
/*
* Has to be called with the request spinlock acquired
*/
static int attempt_merge(struct request_queue *q, struct request *req,
struct request *next)
{
if (!rq_mergeable(req) || !rq_mergeable(next))
return 0;
if (req_op(req) != req_op(next))
return 0;
/*
* not contiguous
*/
if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
return 0;
if (rq_data_dir(req) != rq_data_dir(next)
|| req->rq_disk != next->rq_disk
|| req_no_special_merge(next))
return 0;
if (req_op(req) == REQ_OP_WRITE_SAME &&
!blk_write_same_mergeable(req->bio, next->bio))
return 0;
/*
* If we are allowed to merge, then append bio list
* from next to rq and release next. merge_requests_fn
* will have updated segment counts, update sector
* counts here.
*/
if (!ll_merge_requests_fn(q, req, next))
return 0;
/*
* If failfast settings disagree or any of the two is already
* a mixed merge, mark both as mixed before proceeding. This
* makes sure that all involved bios have mixable attributes
* set properly.
*/
if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
(req->cmd_flags & REQ_FAILFAST_MASK) !=
(next->cmd_flags & REQ_FAILFAST_MASK)) {
blk_rq_set_mixed_merge(req);
blk_rq_set_mixed_merge(next);
}
/*
* At this point we have either done a back merge
* or front merge. We need the smaller start_time of
* the merged requests to be the current request
* for accounting purposes.
*/
if (time_after(req->start_time, next->start_time))
req->start_time = next->start_time;
req->biotail->bi_next = next->bio;
req->biotail = next->biotail;
req->__data_len += blk_rq_bytes(next);
elv_merge_requests(q, req, next);
/*
* 'next' is going away, so update stats accordingly
*/
blk_account_io_merge(next);
req->ioprio = ioprio_best(req->ioprio, next->ioprio);
if (blk_rq_cpu_valid(next))
req->cpu = next->cpu;
/* owner-ship of bio passed from next to req */
next->bio = NULL;
__blk_put_request(q, next);
return 1;
}
int attempt_back_merge(struct request_queue *q, struct request *rq)
{
struct request *next = elv_latter_request(q, rq);
if (next)
return attempt_merge(q, rq, next);
return 0;
}
int attempt_front_merge(struct request_queue *q, struct request *rq)
{
struct request *prev = elv_former_request(q, rq);
if (prev)
return attempt_merge(q, prev, rq);
return 0;
}
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
struct request *next)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_allow_rq_merge_fn)
if (!e->type->ops.elevator_allow_rq_merge_fn(q, rq, next))
return 0;
return attempt_merge(q, rq, next);
}
bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
{
if (!rq_mergeable(rq) || !bio_mergeable(bio))
return false;
if (req_op(rq) != bio_op(bio))
return false;
/* different data direction or already started, don't merge */
if (bio_data_dir(bio) != rq_data_dir(rq))
return false;
/* must be same device and not a special request */
if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
return false;
/* only merge integrity protected bio into ditto rq */
if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
return false;
/* must be using the same buffer */
if (req_op(rq) == REQ_OP_WRITE_SAME &&
!blk_write_same_mergeable(rq->bio, bio))
return false;
return true;
}
int blk_try_merge(struct request *rq, struct bio *bio)
{
if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
return ELEVATOR_BACK_MERGE;
else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
return ELEVATOR_FRONT_MERGE;
return ELEVATOR_NO_MERGE;
}