remarkable-linux/kernel/bpf/hashtab.c
Alexei Starovoitov 15a07b3381 bpf: add lookup/update support for per-cpu hash and array maps
The functions bpf_map_lookup_elem(map, key, value) and
bpf_map_update_elem(map, key, value, flags) need to get/set
values from all-cpus for per-cpu hash and array maps,
so that user space can aggregate/update them as necessary.

Example of single counter aggregation in user space:
  unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF);
  long values[nr_cpus];
  long value = 0;

  bpf_lookup_elem(fd, key, values);
  for (i = 0; i < nr_cpus; i++)
    value += values[i];

The user space must provide round_up(value_size, 8) * nr_cpus
array to get/set values, since kernel will use 'long' copy
of per-cpu values to try to copy good counters atomically.
It's a best-effort, since bpf programs and user space are racing
to access the same memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-06 03:34:36 -05:00

646 lines
16 KiB
C

/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/bpf.h>
#include <linux/jhash.h>
#include <linux/filter.h>
#include <linux/vmalloc.h>
struct bucket {
struct hlist_head head;
raw_spinlock_t lock;
};
struct bpf_htab {
struct bpf_map map;
struct bucket *buckets;
atomic_t count; /* number of elements in this hashtable */
u32 n_buckets; /* number of hash buckets */
u32 elem_size; /* size of each element in bytes */
};
/* each htab element is struct htab_elem + key + value */
struct htab_elem {
struct hlist_node hash_node;
struct rcu_head rcu;
union {
u32 hash;
u32 key_size;
};
char key[0] __aligned(8);
};
/* Called from syscall */
static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
{
bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_HASH;
struct bpf_htab *htab;
int err, i;
u64 cost;
htab = kzalloc(sizeof(*htab), GFP_USER);
if (!htab)
return ERR_PTR(-ENOMEM);
/* mandatory map attributes */
htab->map.map_type = attr->map_type;
htab->map.key_size = attr->key_size;
htab->map.value_size = attr->value_size;
htab->map.max_entries = attr->max_entries;
/* check sanity of attributes.
* value_size == 0 may be allowed in the future to use map as a set
*/
err = -EINVAL;
if (htab->map.max_entries == 0 || htab->map.key_size == 0 ||
htab->map.value_size == 0)
goto free_htab;
/* hash table size must be power of 2 */
htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
err = -E2BIG;
if (htab->map.key_size > MAX_BPF_STACK)
/* eBPF programs initialize keys on stack, so they cannot be
* larger than max stack size
*/
goto free_htab;
if (htab->map.value_size >= (1 << (KMALLOC_SHIFT_MAX - 1)) -
MAX_BPF_STACK - sizeof(struct htab_elem))
/* if value_size is bigger, the user space won't be able to
* access the elements via bpf syscall. This check also makes
* sure that the elem_size doesn't overflow and it's
* kmalloc-able later in htab_map_update_elem()
*/
goto free_htab;
if (percpu && round_up(htab->map.value_size, 8) > PCPU_MIN_UNIT_SIZE)
/* make sure the size for pcpu_alloc() is reasonable */
goto free_htab;
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
if (percpu)
htab->elem_size += sizeof(void *);
else
htab->elem_size += htab->map.value_size;
/* prevent zero size kmalloc and check for u32 overflow */
if (htab->n_buckets == 0 ||
htab->n_buckets > U32_MAX / sizeof(struct bucket))
goto free_htab;
cost = (u64) htab->n_buckets * sizeof(struct bucket) +
(u64) htab->elem_size * htab->map.max_entries;
if (percpu)
cost += (u64) round_up(htab->map.value_size, 8) *
num_possible_cpus() * htab->map.max_entries;
if (cost >= U32_MAX - PAGE_SIZE)
/* make sure page count doesn't overflow */
goto free_htab;
htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
err = -ENOMEM;
htab->buckets = kmalloc_array(htab->n_buckets, sizeof(struct bucket),
GFP_USER | __GFP_NOWARN);
if (!htab->buckets) {
htab->buckets = vmalloc(htab->n_buckets * sizeof(struct bucket));
if (!htab->buckets)
goto free_htab;
}
for (i = 0; i < htab->n_buckets; i++) {
INIT_HLIST_HEAD(&htab->buckets[i].head);
raw_spin_lock_init(&htab->buckets[i].lock);
}
atomic_set(&htab->count, 0);
return &htab->map;
free_htab:
kfree(htab);
return ERR_PTR(err);
}
static inline u32 htab_map_hash(const void *key, u32 key_len)
{
return jhash(key, key_len, 0);
}
static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
{
return &htab->buckets[hash & (htab->n_buckets - 1)];
}
static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
{
return &__select_bucket(htab, hash)->head;
}
static struct htab_elem *lookup_elem_raw(struct hlist_head *head, u32 hash,
void *key, u32 key_size)
{
struct htab_elem *l;
hlist_for_each_entry_rcu(l, head, hash_node)
if (l->hash == hash && !memcmp(&l->key, key, key_size))
return l;
return NULL;
}
/* Called from syscall or from eBPF program */
static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_head *head;
struct htab_elem *l;
u32 hash, key_size;
/* Must be called with rcu_read_lock. */
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
head = select_bucket(htab, hash);
l = lookup_elem_raw(head, hash, key, key_size);
return l;
}
static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l)
return l->key + round_up(map->key_size, 8);
return NULL;
}
/* Called from syscall */
static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_head *head;
struct htab_elem *l, *next_l;
u32 hash, key_size;
int i;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
head = select_bucket(htab, hash);
/* lookup the key */
l = lookup_elem_raw(head, hash, key, key_size);
if (!l) {
i = 0;
goto find_first_elem;
}
/* key was found, get next key in the same bucket */
next_l = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
struct htab_elem, hash_node);
if (next_l) {
/* if next elem in this hash list is non-zero, just return it */
memcpy(next_key, next_l->key, key_size);
return 0;
}
/* no more elements in this hash list, go to the next bucket */
i = hash & (htab->n_buckets - 1);
i++;
find_first_elem:
/* iterate over buckets */
for (; i < htab->n_buckets; i++) {
head = select_bucket(htab, i);
/* pick first element in the bucket */
next_l = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
struct htab_elem, hash_node);
if (next_l) {
/* if it's not empty, just return it */
memcpy(next_key, next_l->key, key_size);
return 0;
}
}
/* itereated over all buckets and all elements */
return -ENOENT;
}
static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
void __percpu *pptr)
{
*(void __percpu **)(l->key + key_size) = pptr;
}
static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
{
return *(void __percpu **)(l->key + key_size);
}
static void htab_percpu_elem_free(struct htab_elem *l)
{
free_percpu(htab_elem_get_ptr(l, l->key_size));
kfree(l);
}
static void htab_percpu_elem_free_rcu(struct rcu_head *head)
{
struct htab_elem *l = container_of(head, struct htab_elem, rcu);
htab_percpu_elem_free(l);
}
static void free_htab_elem(struct htab_elem *l, bool percpu, u32 key_size)
{
if (percpu) {
l->key_size = key_size;
call_rcu(&l->rcu, htab_percpu_elem_free_rcu);
} else {
kfree_rcu(l, rcu);
}
}
static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
void *value, u32 key_size, u32 hash,
bool percpu, bool onallcpus)
{
u32 size = htab->map.value_size;
struct htab_elem *l_new;
void __percpu *pptr;
l_new = kmalloc(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN);
if (!l_new)
return NULL;
memcpy(l_new->key, key, key_size);
if (percpu) {
/* round up value_size to 8 bytes */
size = round_up(size, 8);
/* alloc_percpu zero-fills */
pptr = __alloc_percpu_gfp(size, 8, GFP_ATOMIC | __GFP_NOWARN);
if (!pptr) {
kfree(l_new);
return NULL;
}
if (!onallcpus) {
/* copy true value_size bytes */
memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
} else {
int off = 0, cpu;
for_each_possible_cpu(cpu) {
bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
value + off, size);
off += size;
}
}
htab_elem_set_ptr(l_new, key_size, pptr);
} else {
memcpy(l_new->key + round_up(key_size, 8), value, size);
}
l_new->hash = hash;
return l_new;
}
static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
u64 map_flags)
{
if (!l_old && unlikely(atomic_read(&htab->count) >= htab->map.max_entries))
/* if elem with this 'key' doesn't exist and we've reached
* max_entries limit, fail insertion of new elem
*/
return -E2BIG;
if (l_old && map_flags == BPF_NOEXIST)
/* elem already exists */
return -EEXIST;
if (!l_old && map_flags == BPF_EXIST)
/* elem doesn't exist, cannot update it */
return -ENOENT;
return 0;
}
/* Called from syscall or from eBPF program */
static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new = NULL, *l_old;
struct hlist_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
/* allocate new element outside of the lock, since
* we're most likley going to insert it
*/
l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false);
if (!l_new)
return -ENOMEM;
b = __select_bucket(htab, hash);
head = &b->head;
/* bpf_map_update_elem() can be called in_irq() */
raw_spin_lock_irqsave(&b->lock, flags);
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
/* add new element to the head of the list, so that
* concurrent search will find it before old elem
*/
hlist_add_head_rcu(&l_new->hash_node, head);
if (l_old) {
hlist_del_rcu(&l_old->hash_node);
kfree_rcu(l_old, rcu);
} else {
atomic_inc(&htab->count);
}
raw_spin_unlock_irqrestore(&b->lock, flags);
return 0;
err:
raw_spin_unlock_irqrestore(&b->lock, flags);
kfree(l_new);
return ret;
}
static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags,
bool onallcpus)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new = NULL, *l_old;
struct hlist_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
b = __select_bucket(htab, hash);
head = &b->head;
/* bpf_map_update_elem() can be called in_irq() */
raw_spin_lock_irqsave(&b->lock, flags);
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
if (l_old) {
void __percpu *pptr = htab_elem_get_ptr(l_old, key_size);
u32 size = htab->map.value_size;
/* per-cpu hash map can update value in-place */
if (!onallcpus) {
memcpy(this_cpu_ptr(pptr), value, size);
} else {
int off = 0, cpu;
size = round_up(size, 8);
for_each_possible_cpu(cpu) {
bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
value + off, size);
off += size;
}
}
} else {
l_new = alloc_htab_elem(htab, key, value, key_size,
hash, true, onallcpus);
if (!l_new) {
ret = -ENOMEM;
goto err;
}
hlist_add_head_rcu(&l_new->hash_node, head);
atomic_inc(&htab->count);
}
ret = 0;
err:
raw_spin_unlock_irqrestore(&b->lock, flags);
return ret;
}
static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags)
{
return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
}
/* Called from syscall or from eBPF program */
static int htab_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_HASH;
struct hlist_head *head;
struct bucket *b;
struct htab_elem *l;
unsigned long flags;
u32 hash, key_size;
int ret = -ENOENT;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
b = __select_bucket(htab, hash);
head = &b->head;
raw_spin_lock_irqsave(&b->lock, flags);
l = lookup_elem_raw(head, hash, key, key_size);
if (l) {
hlist_del_rcu(&l->hash_node);
atomic_dec(&htab->count);
free_htab_elem(l, percpu, key_size);
ret = 0;
}
raw_spin_unlock_irqrestore(&b->lock, flags);
return ret;
}
static void delete_all_elements(struct bpf_htab *htab)
{
int i;
for (i = 0; i < htab->n_buckets; i++) {
struct hlist_head *head = select_bucket(htab, i);
struct hlist_node *n;
struct htab_elem *l;
hlist_for_each_entry_safe(l, n, head, hash_node) {
hlist_del_rcu(&l->hash_node);
atomic_dec(&htab->count);
if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) {
l->key_size = htab->map.key_size;
htab_percpu_elem_free(l);
} else {
kfree(l);
}
}
}
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
static void htab_map_free(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
/* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
* so the programs (can be more than one that used this map) were
* disconnected from events. Wait for outstanding critical sections in
* these programs to complete
*/
synchronize_rcu();
/* some of kfree_rcu() callbacks for elements of this map may not have
* executed. It's ok. Proceed to free residual elements and map itself
*/
delete_all_elements(htab);
kvfree(htab->buckets);
kfree(htab);
}
static const struct bpf_map_ops htab_ops = {
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_map_lookup_elem,
.map_update_elem = htab_map_update_elem,
.map_delete_elem = htab_map_delete_elem,
};
static struct bpf_map_type_list htab_type __read_mostly = {
.ops = &htab_ops,
.type = BPF_MAP_TYPE_HASH,
};
/* Called from eBPF program */
static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l)
return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
else
return NULL;
}
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
{
struct htab_elem *l;
void __percpu *pptr;
int ret = -ENOENT;
int cpu, off = 0;
u32 size;
/* per_cpu areas are zero-filled and bpf programs can only
* access 'value_size' of them, so copying rounded areas
* will not leak any kernel data
*/
size = round_up(map->value_size, 8);
rcu_read_lock();
l = __htab_map_lookup_elem(map, key);
if (!l)
goto out;
pptr = htab_elem_get_ptr(l, map->key_size);
for_each_possible_cpu(cpu) {
bpf_long_memcpy(value + off,
per_cpu_ptr(pptr, cpu), size);
off += size;
}
ret = 0;
out:
rcu_read_unlock();
return ret;
}
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
return __htab_percpu_map_update_elem(map, key, value, map_flags, true);
}
static const struct bpf_map_ops htab_percpu_ops = {
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_percpu_map_lookup_elem,
.map_update_elem = htab_percpu_map_update_elem,
.map_delete_elem = htab_map_delete_elem,
};
static struct bpf_map_type_list htab_percpu_type __read_mostly = {
.ops = &htab_percpu_ops,
.type = BPF_MAP_TYPE_PERCPU_HASH,
};
static int __init register_htab_map(void)
{
bpf_register_map_type(&htab_type);
bpf_register_map_type(&htab_percpu_type);
return 0;
}
late_initcall(register_htab_map);