remarkable-linux/net/core/net-sysfs.c
Linus Torvalds 42a2d923cc Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) The addition of nftables.  No longer will we need protocol aware
    firewall filtering modules, it can all live in userspace.

    At the core of nftables is a, for lack of a better term, virtual
    machine that executes byte codes to inspect packet or metadata
    (arriving interface index, etc.) and make verdict decisions.

    Besides support for loading packet contents and comparing them, the
    interpreter supports lookups in various datastructures as
    fundamental operations.  For example sets are supports, and
    therefore one could create a set of whitelist IP address entries
    which have ACCEPT verdicts attached to them, and use the appropriate
    byte codes to do such lookups.

    Since the interpreted code is composed in userspace, userspace can
    do things like optimize things before giving it to the kernel.

    Another major improvement is the capability of atomically updating
    portions of the ruleset.  In the existing netfilter implementation,
    one has to update the entire rule set in order to make a change and
    this is very expensive.

    Userspace tools exist to create nftables rules using existing
    netfilter rule sets, but both kernel implementations will need to
    co-exist for quite some time as we transition from the old to the
    new stuff.

    Kudos to Patrick McHardy, Pablo Neira Ayuso, and others who have
    worked so hard on this.

 2) Daniel Borkmann and Hannes Frederic Sowa made several improvements
    to our pseudo-random number generator, mostly used for things like
    UDP port randomization and netfitler, amongst other things.

    In particular the taus88 generater is updated to taus113, and test
    cases are added.

 3) Support 64-bit rates in HTB and TBF schedulers, from Eric Dumazet
    and Yang Yingliang.

 4) Add support for new 577xx tigon3 chips to tg3 driver, from Nithin
    Sujir.

 5) Fix two fatal flaws in TCP dynamic right sizing, from Eric Dumazet,
    Neal Cardwell, and Yuchung Cheng.

 6) Allow IP_TOS and IP_TTL to be specified in sendmsg() ancillary
    control message data, much like other socket option attributes.
    From Francesco Fusco.

 7) Allow applications to specify a cap on the rate computed
    automatically by the kernel for pacing flows, via a new
    SO_MAX_PACING_RATE socket option.  From Eric Dumazet.

 8) Make the initial autotuned send buffer sizing in TCP more closely
    reflect actual needs, from Eric Dumazet.

 9) Currently early socket demux only happens for TCP sockets, but we
    can do it for connected UDP sockets too.  Implementation from Shawn
    Bohrer.

10) Refactor inet socket demux with the goal of improving hash demux
    performance for listening sockets.  With the main goals being able
    to use RCU lookups on even request sockets, and eliminating the
    listening lock contention.  From Eric Dumazet.

11) The bonding layer has many demuxes in it's fast path, and an RCU
    conversion was started back in 3.11, several changes here extend the
    RCU usage to even more locations.  From Ding Tianhong and Wang
    Yufen, based upon suggestions by Nikolay Aleksandrov and Veaceslav
    Falico.

12) Allow stackability of segmentation offloads to, in particular, allow
    segmentation offloading over tunnels.  From Eric Dumazet.

13) Significantly improve the handling of secret keys we input into the
    various hash functions in the inet hashtables, TCP fast open, as
    well as syncookies.  From Hannes Frederic Sowa.  The key fundamental
    operation is "net_get_random_once()" which uses static keys.

    Hannes even extended this to ipv4/ipv6 fragmentation handling and
    our generic flow dissector.

14) The generic driver layer takes care now to set the driver data to
    NULL on device removal, so it's no longer necessary for drivers to
    explicitly set it to NULL any more.  Many drivers have been cleaned
    up in this way, from Jingoo Han.

15) Add a BPF based packet scheduler classifier, from Daniel Borkmann.

16) Improve CRC32 interfaces and generic SKB checksum iterators so that
    SCTP's checksumming can more cleanly be handled.  Also from Daniel
    Borkmann.

17) Add a new PMTU discovery mode, IP_PMTUDISC_INTERFACE, which forces
    using the interface MTU value.  This helps avoid PMTU attacks,
    particularly on DNS servers.  From Hannes Frederic Sowa.

18) Use generic XPS for transmit queue steering rather than internal
    (re-)implementation in virtio-net.  From Jason Wang.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
  random32: add test cases for taus113 implementation
  random32: upgrade taus88 generator to taus113 from errata paper
  random32: move rnd_state to linux/random.h
  random32: add prandom_reseed_late() and call when nonblocking pool becomes initialized
  random32: add periodic reseeding
  random32: fix off-by-one in seeding requirement
  PHY: Add RTL8201CP phy_driver to realtek
  xtsonic: add missing platform_set_drvdata() in xtsonic_probe()
  macmace: add missing platform_set_drvdata() in mace_probe()
  ethernet/arc/arc_emac: add missing platform_set_drvdata() in arc_emac_probe()
  ipv6: protect for_each_sk_fl_rcu in mem_check with rcu_read_lock_bh
  vlan: Implement vlan_dev_get_egress_qos_mask as an inline.
  ixgbe: add warning when max_vfs is out of range.
  igb: Update link modes display in ethtool
  netfilter: push reasm skb through instead of original frag skbs
  ip6_output: fragment outgoing reassembled skb properly
  MAINTAINERS: mv643xx_eth: take over maintainership from Lennart
  net_sched: tbf: support of 64bit rates
  ixgbe: deleting dfwd stations out of order can cause null ptr deref
  ixgbe: fix build err, num_rx_queues is only available with CONFIG_RPS
  ...
2013-11-13 17:40:34 +09:00

1366 lines
32 KiB
C

/*
* net-sysfs.c - network device class and attributes
*
* Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/capability.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/slab.h>
#include <linux/nsproxy.h>
#include <net/sock.h>
#include <net/net_namespace.h>
#include <linux/rtnetlink.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/pm_runtime.h>
#include "net-sysfs.h"
#ifdef CONFIG_SYSFS
static const char fmt_hex[] = "%#x\n";
static const char fmt_long_hex[] = "%#lx\n";
static const char fmt_dec[] = "%d\n";
static const char fmt_udec[] = "%u\n";
static const char fmt_ulong[] = "%lu\n";
static const char fmt_u64[] = "%llu\n";
static inline int dev_isalive(const struct net_device *dev)
{
return dev->reg_state <= NETREG_REGISTERED;
}
/* use same locking rules as GIF* ioctl's */
static ssize_t netdev_show(const struct device *dev,
struct device_attribute *attr, char *buf,
ssize_t (*format)(const struct net_device *, char *))
{
struct net_device *net = to_net_dev(dev);
ssize_t ret = -EINVAL;
read_lock(&dev_base_lock);
if (dev_isalive(net))
ret = (*format)(net, buf);
read_unlock(&dev_base_lock);
return ret;
}
/* generate a show function for simple field */
#define NETDEVICE_SHOW(field, format_string) \
static ssize_t format_##field(const struct net_device *net, char *buf) \
{ \
return sprintf(buf, format_string, net->field); \
} \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
return netdev_show(dev, attr, buf, format_##field); \
} \
#define NETDEVICE_SHOW_RO(field, format_string) \
NETDEVICE_SHOW(field, format_string); \
static DEVICE_ATTR_RO(field)
#define NETDEVICE_SHOW_RW(field, format_string) \
NETDEVICE_SHOW(field, format_string); \
static DEVICE_ATTR_RW(field)
/* use same locking and permission rules as SIF* ioctl's */
static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len,
int (*set)(struct net_device *, unsigned long))
{
struct net_device *netdev = to_net_dev(dev);
struct net *net = dev_net(netdev);
unsigned long new;
int ret = -EINVAL;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
ret = kstrtoul(buf, 0, &new);
if (ret)
goto err;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
if ((ret = (*set)(netdev, new)) == 0)
ret = len;
}
rtnl_unlock();
err:
return ret;
}
NETDEVICE_SHOW_RO(dev_id, fmt_hex);
NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
NETDEVICE_SHOW_RO(addr_len, fmt_dec);
NETDEVICE_SHOW_RO(iflink, fmt_dec);
NETDEVICE_SHOW_RO(ifindex, fmt_dec);
NETDEVICE_SHOW_RO(type, fmt_dec);
NETDEVICE_SHOW_RO(link_mode, fmt_dec);
/* use same locking rules as GIFHWADDR ioctl's */
static ssize_t address_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct net_device *net = to_net_dev(dev);
ssize_t ret = -EINVAL;
read_lock(&dev_base_lock);
if (dev_isalive(net))
ret = sysfs_format_mac(buf, net->dev_addr, net->addr_len);
read_unlock(&dev_base_lock);
return ret;
}
static DEVICE_ATTR_RO(address);
static ssize_t broadcast_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *net = to_net_dev(dev);
if (dev_isalive(net))
return sysfs_format_mac(buf, net->broadcast, net->addr_len);
return -EINVAL;
}
static DEVICE_ATTR_RO(broadcast);
static int change_carrier(struct net_device *net, unsigned long new_carrier)
{
if (!netif_running(net))
return -EINVAL;
return dev_change_carrier(net, (bool) new_carrier);
}
static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_carrier);
}
static ssize_t carrier_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
if (netif_running(netdev)) {
return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
}
return -EINVAL;
}
static DEVICE_ATTR_RW(carrier);
static ssize_t speed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
int ret = -EINVAL;
if (!rtnl_trylock())
return restart_syscall();
if (netif_running(netdev)) {
struct ethtool_cmd cmd;
if (!__ethtool_get_settings(netdev, &cmd))
ret = sprintf(buf, fmt_udec, ethtool_cmd_speed(&cmd));
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(speed);
static ssize_t duplex_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
int ret = -EINVAL;
if (!rtnl_trylock())
return restart_syscall();
if (netif_running(netdev)) {
struct ethtool_cmd cmd;
if (!__ethtool_get_settings(netdev, &cmd)) {
const char *duplex;
switch (cmd.duplex) {
case DUPLEX_HALF:
duplex = "half";
break;
case DUPLEX_FULL:
duplex = "full";
break;
default:
duplex = "unknown";
break;
}
ret = sprintf(buf, "%s\n", duplex);
}
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(duplex);
static ssize_t dormant_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
if (netif_running(netdev))
return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
return -EINVAL;
}
static DEVICE_ATTR_RO(dormant);
static const char *const operstates[] = {
"unknown",
"notpresent", /* currently unused */
"down",
"lowerlayerdown",
"testing", /* currently unused */
"dormant",
"up"
};
static ssize_t operstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct net_device *netdev = to_net_dev(dev);
unsigned char operstate;
read_lock(&dev_base_lock);
operstate = netdev->operstate;
if (!netif_running(netdev))
operstate = IF_OPER_DOWN;
read_unlock(&dev_base_lock);
if (operstate >= ARRAY_SIZE(operstates))
return -EINVAL; /* should not happen */
return sprintf(buf, "%s\n", operstates[operstate]);
}
static DEVICE_ATTR_RO(operstate);
/* read-write attributes */
static int change_mtu(struct net_device *net, unsigned long new_mtu)
{
return dev_set_mtu(net, (int) new_mtu);
}
static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_mtu);
}
NETDEVICE_SHOW_RW(mtu, fmt_dec);
static int change_flags(struct net_device *net, unsigned long new_flags)
{
return dev_change_flags(net, (unsigned int) new_flags);
}
static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_flags);
}
NETDEVICE_SHOW_RW(flags, fmt_hex);
static int change_tx_queue_len(struct net_device *net, unsigned long new_len)
{
net->tx_queue_len = new_len;
return 0;
}
static ssize_t tx_queue_len_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return netdev_store(dev, attr, buf, len, change_tx_queue_len);
}
NETDEVICE_SHOW_RW(tx_queue_len, fmt_ulong);
static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct net_device *netdev = to_net_dev(dev);
struct net *net = dev_net(netdev);
size_t count = len;
ssize_t ret;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
/* ignore trailing newline */
if (len > 0 && buf[len - 1] == '\n')
--count;
if (!rtnl_trylock())
return restart_syscall();
ret = dev_set_alias(netdev, buf, count);
rtnl_unlock();
return ret < 0 ? ret : len;
}
static ssize_t ifalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct net_device *netdev = to_net_dev(dev);
ssize_t ret = 0;
if (!rtnl_trylock())
return restart_syscall();
if (netdev->ifalias)
ret = sprintf(buf, "%s\n", netdev->ifalias);
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RW(ifalias);
static int change_group(struct net_device *net, unsigned long new_group)
{
dev_set_group(net, (int) new_group);
return 0;
}
static ssize_t group_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_group);
}
NETDEVICE_SHOW(group, fmt_dec);
static DEVICE_ATTR(netdev_group, S_IRUGO | S_IWUSR, group_show, group_store);
static ssize_t phys_port_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
ssize_t ret = -EINVAL;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
struct netdev_phys_port_id ppid;
ret = dev_get_phys_port_id(netdev, &ppid);
if (!ret)
ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(phys_port_id);
static struct attribute *net_class_attrs[] = {
&dev_attr_netdev_group.attr,
&dev_attr_type.attr,
&dev_attr_dev_id.attr,
&dev_attr_iflink.attr,
&dev_attr_ifindex.attr,
&dev_attr_addr_assign_type.attr,
&dev_attr_addr_len.attr,
&dev_attr_link_mode.attr,
&dev_attr_address.attr,
&dev_attr_broadcast.attr,
&dev_attr_speed.attr,
&dev_attr_duplex.attr,
&dev_attr_dormant.attr,
&dev_attr_operstate.attr,
&dev_attr_ifalias.attr,
&dev_attr_carrier.attr,
&dev_attr_mtu.attr,
&dev_attr_flags.attr,
&dev_attr_tx_queue_len.attr,
&dev_attr_phys_port_id.attr,
NULL,
};
ATTRIBUTE_GROUPS(net_class);
/* Show a given an attribute in the statistics group */
static ssize_t netstat_show(const struct device *d,
struct device_attribute *attr, char *buf,
unsigned long offset)
{
struct net_device *dev = to_net_dev(d);
ssize_t ret = -EINVAL;
WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
offset % sizeof(u64) != 0);
read_lock(&dev_base_lock);
if (dev_isalive(dev)) {
struct rtnl_link_stats64 temp;
const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *) stats) + offset));
}
read_unlock(&dev_base_lock);
return ret;
}
/* generate a read-only statistics attribute */
#define NETSTAT_ENTRY(name) \
static ssize_t name##_show(struct device *d, \
struct device_attribute *attr, char *buf) \
{ \
return netstat_show(d, attr, buf, \
offsetof(struct rtnl_link_stats64, name)); \
} \
static DEVICE_ATTR_RO(name)
NETSTAT_ENTRY(rx_packets);
NETSTAT_ENTRY(tx_packets);
NETSTAT_ENTRY(rx_bytes);
NETSTAT_ENTRY(tx_bytes);
NETSTAT_ENTRY(rx_errors);
NETSTAT_ENTRY(tx_errors);
NETSTAT_ENTRY(rx_dropped);
NETSTAT_ENTRY(tx_dropped);
NETSTAT_ENTRY(multicast);
NETSTAT_ENTRY(collisions);
NETSTAT_ENTRY(rx_length_errors);
NETSTAT_ENTRY(rx_over_errors);
NETSTAT_ENTRY(rx_crc_errors);
NETSTAT_ENTRY(rx_frame_errors);
NETSTAT_ENTRY(rx_fifo_errors);
NETSTAT_ENTRY(rx_missed_errors);
NETSTAT_ENTRY(tx_aborted_errors);
NETSTAT_ENTRY(tx_carrier_errors);
NETSTAT_ENTRY(tx_fifo_errors);
NETSTAT_ENTRY(tx_heartbeat_errors);
NETSTAT_ENTRY(tx_window_errors);
NETSTAT_ENTRY(rx_compressed);
NETSTAT_ENTRY(tx_compressed);
static struct attribute *netstat_attrs[] = {
&dev_attr_rx_packets.attr,
&dev_attr_tx_packets.attr,
&dev_attr_rx_bytes.attr,
&dev_attr_tx_bytes.attr,
&dev_attr_rx_errors.attr,
&dev_attr_tx_errors.attr,
&dev_attr_rx_dropped.attr,
&dev_attr_tx_dropped.attr,
&dev_attr_multicast.attr,
&dev_attr_collisions.attr,
&dev_attr_rx_length_errors.attr,
&dev_attr_rx_over_errors.attr,
&dev_attr_rx_crc_errors.attr,
&dev_attr_rx_frame_errors.attr,
&dev_attr_rx_fifo_errors.attr,
&dev_attr_rx_missed_errors.attr,
&dev_attr_tx_aborted_errors.attr,
&dev_attr_tx_carrier_errors.attr,
&dev_attr_tx_fifo_errors.attr,
&dev_attr_tx_heartbeat_errors.attr,
&dev_attr_tx_window_errors.attr,
&dev_attr_rx_compressed.attr,
&dev_attr_tx_compressed.attr,
NULL
};
static struct attribute_group netstat_group = {
.name = "statistics",
.attrs = netstat_attrs,
};
#if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
static struct attribute *wireless_attrs[] = {
NULL
};
static struct attribute_group wireless_group = {
.name = "wireless",
.attrs = wireless_attrs,
};
#endif
#else /* CONFIG_SYSFS */
#define net_class_groups NULL
#endif /* CONFIG_SYSFS */
#ifdef CONFIG_RPS
/*
* RX queue sysfs structures and functions.
*/
struct rx_queue_attribute {
struct attribute attr;
ssize_t (*show)(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attr, char *buf);
ssize_t (*store)(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attr, const char *buf, size_t len);
};
#define to_rx_queue_attr(_attr) container_of(_attr, \
struct rx_queue_attribute, attr)
#define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
struct netdev_rx_queue *queue = to_rx_queue(kobj);
if (!attribute->show)
return -EIO;
return attribute->show(queue, attribute, buf);
}
static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
struct netdev_rx_queue *queue = to_rx_queue(kobj);
if (!attribute->store)
return -EIO;
return attribute->store(queue, attribute, buf, count);
}
static const struct sysfs_ops rx_queue_sysfs_ops = {
.show = rx_queue_attr_show,
.store = rx_queue_attr_store,
};
static ssize_t show_rps_map(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attribute, char *buf)
{
struct rps_map *map;
cpumask_var_t mask;
size_t len = 0;
int i;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
rcu_read_lock();
map = rcu_dereference(queue->rps_map);
if (map)
for (i = 0; i < map->len; i++)
cpumask_set_cpu(map->cpus[i], mask);
len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask);
if (PAGE_SIZE - len < 3) {
rcu_read_unlock();
free_cpumask_var(mask);
return -EINVAL;
}
rcu_read_unlock();
free_cpumask_var(mask);
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t store_rps_map(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attribute,
const char *buf, size_t len)
{
struct rps_map *old_map, *map;
cpumask_var_t mask;
int err, cpu, i;
static DEFINE_SPINLOCK(rps_map_lock);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
if (err) {
free_cpumask_var(mask);
return err;
}
map = kzalloc(max_t(unsigned int,
RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
GFP_KERNEL);
if (!map) {
free_cpumask_var(mask);
return -ENOMEM;
}
i = 0;
for_each_cpu_and(cpu, mask, cpu_online_mask)
map->cpus[i++] = cpu;
if (i)
map->len = i;
else {
kfree(map);
map = NULL;
}
spin_lock(&rps_map_lock);
old_map = rcu_dereference_protected(queue->rps_map,
lockdep_is_held(&rps_map_lock));
rcu_assign_pointer(queue->rps_map, map);
spin_unlock(&rps_map_lock);
if (map)
static_key_slow_inc(&rps_needed);
if (old_map) {
kfree_rcu(old_map, rcu);
static_key_slow_dec(&rps_needed);
}
free_cpumask_var(mask);
return len;
}
static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attr,
char *buf)
{
struct rps_dev_flow_table *flow_table;
unsigned long val = 0;
rcu_read_lock();
flow_table = rcu_dereference(queue->rps_flow_table);
if (flow_table)
val = (unsigned long)flow_table->mask + 1;
rcu_read_unlock();
return sprintf(buf, "%lu\n", val);
}
static void rps_dev_flow_table_release(struct rcu_head *rcu)
{
struct rps_dev_flow_table *table = container_of(rcu,
struct rps_dev_flow_table, rcu);
vfree(table);
}
static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
struct rx_queue_attribute *attr,
const char *buf, size_t len)
{
unsigned long mask, count;
struct rps_dev_flow_table *table, *old_table;
static DEFINE_SPINLOCK(rps_dev_flow_lock);
int rc;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
rc = kstrtoul(buf, 0, &count);
if (rc < 0)
return rc;
if (count) {
mask = count - 1;
/* mask = roundup_pow_of_two(count) - 1;
* without overflows...
*/
while ((mask | (mask >> 1)) != mask)
mask |= (mask >> 1);
/* On 64 bit arches, must check mask fits in table->mask (u32),
* and on 32bit arches, must check RPS_DEV_FLOW_TABLE_SIZE(mask + 1)
* doesnt overflow.
*/
#if BITS_PER_LONG > 32
if (mask > (unsigned long)(u32)mask)
return -EINVAL;
#else
if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
/ sizeof(struct rps_dev_flow)) {
/* Enforce a limit to prevent overflow */
return -EINVAL;
}
#endif
table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
if (!table)
return -ENOMEM;
table->mask = mask;
for (count = 0; count <= mask; count++)
table->flows[count].cpu = RPS_NO_CPU;
} else
table = NULL;
spin_lock(&rps_dev_flow_lock);
old_table = rcu_dereference_protected(queue->rps_flow_table,
lockdep_is_held(&rps_dev_flow_lock));
rcu_assign_pointer(queue->rps_flow_table, table);
spin_unlock(&rps_dev_flow_lock);
if (old_table)
call_rcu(&old_table->rcu, rps_dev_flow_table_release);
return len;
}
static struct rx_queue_attribute rps_cpus_attribute =
__ATTR(rps_cpus, S_IRUGO | S_IWUSR, show_rps_map, store_rps_map);
static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute =
__ATTR(rps_flow_cnt, S_IRUGO | S_IWUSR,
show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
static struct attribute *rx_queue_default_attrs[] = {
&rps_cpus_attribute.attr,
&rps_dev_flow_table_cnt_attribute.attr,
NULL
};
static void rx_queue_release(struct kobject *kobj)
{
struct netdev_rx_queue *queue = to_rx_queue(kobj);
struct rps_map *map;
struct rps_dev_flow_table *flow_table;
map = rcu_dereference_protected(queue->rps_map, 1);
if (map) {
RCU_INIT_POINTER(queue->rps_map, NULL);
kfree_rcu(map, rcu);
}
flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
if (flow_table) {
RCU_INIT_POINTER(queue->rps_flow_table, NULL);
call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
}
memset(kobj, 0, sizeof(*kobj));
dev_put(queue->dev);
}
static struct kobj_type rx_queue_ktype = {
.sysfs_ops = &rx_queue_sysfs_ops,
.release = rx_queue_release,
.default_attrs = rx_queue_default_attrs,
};
static int rx_queue_add_kobject(struct net_device *net, int index)
{
struct netdev_rx_queue *queue = net->_rx + index;
struct kobject *kobj = &queue->kobj;
int error = 0;
kobj->kset = net->queues_kset;
error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
"rx-%u", index);
if (error) {
kobject_put(kobj);
return error;
}
kobject_uevent(kobj, KOBJ_ADD);
dev_hold(queue->dev);
return error;
}
#endif /* CONFIG_RPS */
int
net_rx_queue_update_kobjects(struct net_device *net, int old_num, int new_num)
{
#ifdef CONFIG_RPS
int i;
int error = 0;
for (i = old_num; i < new_num; i++) {
error = rx_queue_add_kobject(net, i);
if (error) {
new_num = old_num;
break;
}
}
while (--i >= new_num)
kobject_put(&net->_rx[i].kobj);
return error;
#else
return 0;
#endif
}
#ifdef CONFIG_SYSFS
/*
* netdev_queue sysfs structures and functions.
*/
struct netdev_queue_attribute {
struct attribute attr;
ssize_t (*show)(struct netdev_queue *queue,
struct netdev_queue_attribute *attr, char *buf);
ssize_t (*store)(struct netdev_queue *queue,
struct netdev_queue_attribute *attr, const char *buf, size_t len);
};
#define to_netdev_queue_attr(_attr) container_of(_attr, \
struct netdev_queue_attribute, attr)
#define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
static ssize_t netdev_queue_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr);
struct netdev_queue *queue = to_netdev_queue(kobj);
if (!attribute->show)
return -EIO;
return attribute->show(queue, attribute, buf);
}
static ssize_t netdev_queue_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t count)
{
struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr);
struct netdev_queue *queue = to_netdev_queue(kobj);
if (!attribute->store)
return -EIO;
return attribute->store(queue, attribute, buf, count);
}
static const struct sysfs_ops netdev_queue_sysfs_ops = {
.show = netdev_queue_attr_show,
.store = netdev_queue_attr_store,
};
static ssize_t show_trans_timeout(struct netdev_queue *queue,
struct netdev_queue_attribute *attribute,
char *buf)
{
unsigned long trans_timeout;
spin_lock_irq(&queue->_xmit_lock);
trans_timeout = queue->trans_timeout;
spin_unlock_irq(&queue->_xmit_lock);
return sprintf(buf, "%lu", trans_timeout);
}
static struct netdev_queue_attribute queue_trans_timeout =
__ATTR(tx_timeout, S_IRUGO, show_trans_timeout, NULL);
#ifdef CONFIG_BQL
/*
* Byte queue limits sysfs structures and functions.
*/
static ssize_t bql_show(char *buf, unsigned int value)
{
return sprintf(buf, "%u\n", value);
}
static ssize_t bql_set(const char *buf, const size_t count,
unsigned int *pvalue)
{
unsigned int value;
int err;
if (!strcmp(buf, "max") || !strcmp(buf, "max\n"))
value = DQL_MAX_LIMIT;
else {
err = kstrtouint(buf, 10, &value);
if (err < 0)
return err;
if (value > DQL_MAX_LIMIT)
return -EINVAL;
}
*pvalue = value;
return count;
}
static ssize_t bql_show_hold_time(struct netdev_queue *queue,
struct netdev_queue_attribute *attr,
char *buf)
{
struct dql *dql = &queue->dql;
return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
}
static ssize_t bql_set_hold_time(struct netdev_queue *queue,
struct netdev_queue_attribute *attribute,
const char *buf, size_t len)
{
struct dql *dql = &queue->dql;
unsigned int value;
int err;
err = kstrtouint(buf, 10, &value);
if (err < 0)
return err;
dql->slack_hold_time = msecs_to_jiffies(value);
return len;
}
static struct netdev_queue_attribute bql_hold_time_attribute =
__ATTR(hold_time, S_IRUGO | S_IWUSR, bql_show_hold_time,
bql_set_hold_time);
static ssize_t bql_show_inflight(struct netdev_queue *queue,
struct netdev_queue_attribute *attr,
char *buf)
{
struct dql *dql = &queue->dql;
return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
}
static struct netdev_queue_attribute bql_inflight_attribute =
__ATTR(inflight, S_IRUGO, bql_show_inflight, NULL);
#define BQL_ATTR(NAME, FIELD) \
static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
struct netdev_queue_attribute *attr, \
char *buf) \
{ \
return bql_show(buf, queue->dql.FIELD); \
} \
\
static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
struct netdev_queue_attribute *attr, \
const char *buf, size_t len) \
{ \
return bql_set(buf, len, &queue->dql.FIELD); \
} \
\
static struct netdev_queue_attribute bql_ ## NAME ## _attribute = \
__ATTR(NAME, S_IRUGO | S_IWUSR, bql_show_ ## NAME, \
bql_set_ ## NAME);
BQL_ATTR(limit, limit)
BQL_ATTR(limit_max, max_limit)
BQL_ATTR(limit_min, min_limit)
static struct attribute *dql_attrs[] = {
&bql_limit_attribute.attr,
&bql_limit_max_attribute.attr,
&bql_limit_min_attribute.attr,
&bql_hold_time_attribute.attr,
&bql_inflight_attribute.attr,
NULL
};
static struct attribute_group dql_group = {
.name = "byte_queue_limits",
.attrs = dql_attrs,
};
#endif /* CONFIG_BQL */
#ifdef CONFIG_XPS
static inline unsigned int get_netdev_queue_index(struct netdev_queue *queue)
{
struct net_device *dev = queue->dev;
int i;
for (i = 0; i < dev->num_tx_queues; i++)
if (queue == &dev->_tx[i])
break;
BUG_ON(i >= dev->num_tx_queues);
return i;
}
static ssize_t show_xps_map(struct netdev_queue *queue,
struct netdev_queue_attribute *attribute, char *buf)
{
struct net_device *dev = queue->dev;
struct xps_dev_maps *dev_maps;
cpumask_var_t mask;
unsigned long index;
size_t len = 0;
int i;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
index = get_netdev_queue_index(queue);
rcu_read_lock();
dev_maps = rcu_dereference(dev->xps_maps);
if (dev_maps) {
for_each_possible_cpu(i) {
struct xps_map *map =
rcu_dereference(dev_maps->cpu_map[i]);
if (map) {
int j;
for (j = 0; j < map->len; j++) {
if (map->queues[j] == index) {
cpumask_set_cpu(i, mask);
break;
}
}
}
}
}
rcu_read_unlock();
len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask);
if (PAGE_SIZE - len < 3) {
free_cpumask_var(mask);
return -EINVAL;
}
free_cpumask_var(mask);
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t store_xps_map(struct netdev_queue *queue,
struct netdev_queue_attribute *attribute,
const char *buf, size_t len)
{
struct net_device *dev = queue->dev;
unsigned long index;
cpumask_var_t mask;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
index = get_netdev_queue_index(queue);
err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
if (err) {
free_cpumask_var(mask);
return err;
}
err = netif_set_xps_queue(dev, mask, index);
free_cpumask_var(mask);
return err ? : len;
}
static struct netdev_queue_attribute xps_cpus_attribute =
__ATTR(xps_cpus, S_IRUGO | S_IWUSR, show_xps_map, store_xps_map);
#endif /* CONFIG_XPS */
static struct attribute *netdev_queue_default_attrs[] = {
&queue_trans_timeout.attr,
#ifdef CONFIG_XPS
&xps_cpus_attribute.attr,
#endif
NULL
};
static void netdev_queue_release(struct kobject *kobj)
{
struct netdev_queue *queue = to_netdev_queue(kobj);
memset(kobj, 0, sizeof(*kobj));
dev_put(queue->dev);
}
static struct kobj_type netdev_queue_ktype = {
.sysfs_ops = &netdev_queue_sysfs_ops,
.release = netdev_queue_release,
.default_attrs = netdev_queue_default_attrs,
};
static int netdev_queue_add_kobject(struct net_device *net, int index)
{
struct netdev_queue *queue = net->_tx + index;
struct kobject *kobj = &queue->kobj;
int error = 0;
kobj->kset = net->queues_kset;
error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
"tx-%u", index);
if (error)
goto exit;
#ifdef CONFIG_BQL
error = sysfs_create_group(kobj, &dql_group);
if (error)
goto exit;
#endif
kobject_uevent(kobj, KOBJ_ADD);
dev_hold(queue->dev);
return 0;
exit:
kobject_put(kobj);
return error;
}
#endif /* CONFIG_SYSFS */
int
netdev_queue_update_kobjects(struct net_device *net, int old_num, int new_num)
{
#ifdef CONFIG_SYSFS
int i;
int error = 0;
for (i = old_num; i < new_num; i++) {
error = netdev_queue_add_kobject(net, i);
if (error) {
new_num = old_num;
break;
}
}
while (--i >= new_num) {
struct netdev_queue *queue = net->_tx + i;
#ifdef CONFIG_BQL
sysfs_remove_group(&queue->kobj, &dql_group);
#endif
kobject_put(&queue->kobj);
}
return error;
#else
return 0;
#endif /* CONFIG_SYSFS */
}
static int register_queue_kobjects(struct net_device *net)
{
int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
#ifdef CONFIG_SYSFS
net->queues_kset = kset_create_and_add("queues",
NULL, &net->dev.kobj);
if (!net->queues_kset)
return -ENOMEM;
#endif
#ifdef CONFIG_RPS
real_rx = net->real_num_rx_queues;
#endif
real_tx = net->real_num_tx_queues;
error = net_rx_queue_update_kobjects(net, 0, real_rx);
if (error)
goto error;
rxq = real_rx;
error = netdev_queue_update_kobjects(net, 0, real_tx);
if (error)
goto error;
txq = real_tx;
return 0;
error:
netdev_queue_update_kobjects(net, txq, 0);
net_rx_queue_update_kobjects(net, rxq, 0);
return error;
}
static void remove_queue_kobjects(struct net_device *net)
{
int real_rx = 0, real_tx = 0;
#ifdef CONFIG_RPS
real_rx = net->real_num_rx_queues;
#endif
real_tx = net->real_num_tx_queues;
net_rx_queue_update_kobjects(net, real_rx, 0);
netdev_queue_update_kobjects(net, real_tx, 0);
#ifdef CONFIG_SYSFS
kset_unregister(net->queues_kset);
#endif
}
static bool net_current_may_mount(void)
{
struct net *net = current->nsproxy->net_ns;
return ns_capable(net->user_ns, CAP_SYS_ADMIN);
}
static void *net_grab_current_ns(void)
{
struct net *ns = current->nsproxy->net_ns;
#ifdef CONFIG_NET_NS
if (ns)
atomic_inc(&ns->passive);
#endif
return ns;
}
static const void *net_initial_ns(void)
{
return &init_net;
}
static const void *net_netlink_ns(struct sock *sk)
{
return sock_net(sk);
}
struct kobj_ns_type_operations net_ns_type_operations = {
.type = KOBJ_NS_TYPE_NET,
.current_may_mount = net_current_may_mount,
.grab_current_ns = net_grab_current_ns,
.netlink_ns = net_netlink_ns,
.initial_ns = net_initial_ns,
.drop_ns = net_drop_ns,
};
EXPORT_SYMBOL_GPL(net_ns_type_operations);
static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
{
struct net_device *dev = to_net_dev(d);
int retval;
/* pass interface to uevent. */
retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
if (retval)
goto exit;
/* pass ifindex to uevent.
* ifindex is useful as it won't change (interface name may change)
* and is what RtNetlink uses natively. */
retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
exit:
return retval;
}
/*
* netdev_release -- destroy and free a dead device.
* Called when last reference to device kobject is gone.
*/
static void netdev_release(struct device *d)
{
struct net_device *dev = to_net_dev(d);
BUG_ON(dev->reg_state != NETREG_RELEASED);
kfree(dev->ifalias);
netdev_freemem(dev);
}
static const void *net_namespace(struct device *d)
{
struct net_device *dev;
dev = container_of(d, struct net_device, dev);
return dev_net(dev);
}
static struct class net_class = {
.name = "net",
.dev_release = netdev_release,
.dev_groups = net_class_groups,
.dev_uevent = netdev_uevent,
.ns_type = &net_ns_type_operations,
.namespace = net_namespace,
};
/* Delete sysfs entries but hold kobject reference until after all
* netdev references are gone.
*/
void netdev_unregister_kobject(struct net_device * net)
{
struct device *dev = &(net->dev);
kobject_get(&dev->kobj);
remove_queue_kobjects(net);
pm_runtime_set_memalloc_noio(dev, false);
device_del(dev);
}
/* Create sysfs entries for network device. */
int netdev_register_kobject(struct net_device *net)
{
struct device *dev = &(net->dev);
const struct attribute_group **groups = net->sysfs_groups;
int error = 0;
device_initialize(dev);
dev->class = &net_class;
dev->platform_data = net;
dev->groups = groups;
dev_set_name(dev, "%s", net->name);
#ifdef CONFIG_SYSFS
/* Allow for a device specific group */
if (*groups)
groups++;
*groups++ = &netstat_group;
#if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
if (net->ieee80211_ptr)
*groups++ = &wireless_group;
#if IS_ENABLED(CONFIG_WIRELESS_EXT)
else if (net->wireless_handlers)
*groups++ = &wireless_group;
#endif
#endif
#endif /* CONFIG_SYSFS */
error = device_add(dev);
if (error)
return error;
error = register_queue_kobjects(net);
if (error) {
device_del(dev);
return error;
}
pm_runtime_set_memalloc_noio(dev, true);
return error;
}
int netdev_class_create_file_ns(struct class_attribute *class_attr,
const void *ns)
{
return class_create_file_ns(&net_class, class_attr, ns);
}
EXPORT_SYMBOL(netdev_class_create_file_ns);
void netdev_class_remove_file_ns(struct class_attribute *class_attr,
const void *ns)
{
class_remove_file_ns(&net_class, class_attr, ns);
}
EXPORT_SYMBOL(netdev_class_remove_file_ns);
int netdev_kobject_init(void)
{
kobj_ns_type_register(&net_ns_type_operations);
return class_register(&net_class);
}