remarkable-linux/drivers/dma/dmaengine.c
Dan Williams 6f49a57aa5 dmaengine: up-level reference counting to the module level
Simply, if a client wants any dmaengine channel then prevent all dmaengine
modules from being removed.  Once the clients are done re-enable module
removal.

Why?, beyond reducing complication:
1/ Tracking reference counts per-transaction in an efficient manner, as
   is currently done, requires a complicated scheme to avoid cache-line
   bouncing effects.
2/ Per-transaction ref-counting gives the false impression that a
   dma-driver can be gracefully removed ahead of its user (net, md, or
   dma-slave)
3/ None of the in-tree dma-drivers talk to hot pluggable hardware, but
   if such an engine were built one day we still would not need to notify
   clients of remove events.  The driver can simply return NULL to a
   ->prep() request, something that is much easier for a client to handle.

Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-01-06 11:38:14 -07:00

771 lines
21 KiB
C

/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
/*
* This code implements the DMA subsystem. It provides a HW-neutral interface
* for other kernel code to use asynchronous memory copy capabilities,
* if present, and allows different HW DMA drivers to register as providing
* this capability.
*
* Due to the fact we are accelerating what is already a relatively fast
* operation, the code goes to great lengths to avoid additional overhead,
* such as locking.
*
* LOCKING:
*
* The subsystem keeps two global lists, dma_device_list and dma_client_list.
* Both of these are protected by a mutex, dma_list_mutex.
*
* Each device has a channels list, which runs unlocked but is never modified
* once the device is registered, it's just setup by the driver.
*
* Each client is responsible for keeping track of the channels it uses. See
* the definition of dma_event_callback in dmaengine.h.
*
* Each device has a kref, which is initialized to 1 when the device is
* registered. A kref_get is done for each device registered. When the
* device is released, the corresponding kref_put is done in the release
* method. Every time one of the device's channels is allocated to a client,
* a kref_get occurs. When the channel is freed, the corresponding kref_put
* happens. The device's release function does a completion, so
* unregister_device does a remove event, device_unregister, a kref_put
* for the first reference, then waits on the completion for all other
* references to finish.
*
* Each channel has an open-coded implementation of Rusty Russell's "bigref,"
* with a kref and a per_cpu local_t. A dma_chan_get is called when a client
* signals that it wants to use a channel, and dma_chan_put is called when
* a channel is removed or a client using it is unregistered. A client can
* take extra references per outstanding transaction, as is the case with
* the NET DMA client. The release function does a kref_put on the device.
* -ChrisL, DanW
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/hardirq.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
static DEFINE_MUTEX(dma_list_mutex);
static LIST_HEAD(dma_device_list);
static LIST_HEAD(dma_client_list);
static long dmaengine_ref_count;
/* --- sysfs implementation --- */
static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
unsigned long count = 0;
int i;
for_each_possible_cpu(i)
count += per_cpu_ptr(chan->local, i)->memcpy_count;
return sprintf(buf, "%lu\n", count);
}
static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
unsigned long count = 0;
int i;
for_each_possible_cpu(i)
count += per_cpu_ptr(chan->local, i)->bytes_transferred;
return sprintf(buf, "%lu\n", count);
}
static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
return sprintf(buf, "%d\n", chan->client_count);
}
static struct device_attribute dma_attrs[] = {
__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
__ATTR(in_use, S_IRUGO, show_in_use, NULL),
__ATTR_NULL
};
static void dma_async_device_cleanup(struct kref *kref);
static void dma_dev_release(struct device *dev)
{
struct dma_chan *chan = to_dma_chan(dev);
kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
static struct class dma_devclass = {
.name = "dma",
.dev_attrs = dma_attrs,
.dev_release = dma_dev_release,
};
/* --- client and device registration --- */
#define dma_chan_satisfies_mask(chan, mask) \
__dma_chan_satisfies_mask((chan), &(mask))
static int
__dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
{
dma_cap_mask_t has;
bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
DMA_TX_TYPE_END);
return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
}
static struct module *dma_chan_to_owner(struct dma_chan *chan)
{
return chan->device->dev->driver->owner;
}
/**
* balance_ref_count - catch up the channel reference count
* @chan - channel to balance ->client_count versus dmaengine_ref_count
*
* balance_ref_count must be called under dma_list_mutex
*/
static void balance_ref_count(struct dma_chan *chan)
{
struct module *owner = dma_chan_to_owner(chan);
while (chan->client_count < dmaengine_ref_count) {
__module_get(owner);
chan->client_count++;
}
}
/**
* dma_chan_get - try to grab a dma channel's parent driver module
* @chan - channel to grab
*
* Must be called under dma_list_mutex
*/
static int dma_chan_get(struct dma_chan *chan)
{
int err = -ENODEV;
struct module *owner = dma_chan_to_owner(chan);
if (chan->client_count) {
__module_get(owner);
err = 0;
} else if (try_module_get(owner))
err = 0;
if (err == 0)
chan->client_count++;
/* allocate upon first client reference */
if (chan->client_count == 1 && err == 0) {
int desc_cnt = chan->device->device_alloc_chan_resources(chan, NULL);
if (desc_cnt < 0) {
err = desc_cnt;
chan->client_count = 0;
module_put(owner);
} else
balance_ref_count(chan);
}
return err;
}
/**
* dma_chan_put - drop a reference to a dma channel's parent driver module
* @chan - channel to release
*
* Must be called under dma_list_mutex
*/
static void dma_chan_put(struct dma_chan *chan)
{
if (!chan->client_count)
return; /* this channel failed alloc_chan_resources */
chan->client_count--;
module_put(dma_chan_to_owner(chan));
if (chan->client_count == 0)
chan->device->device_free_chan_resources(chan);
}
/**
* dma_client_chan_alloc - try to allocate channels to a client
* @client: &dma_client
*
* Called with dma_list_mutex held.
*/
static void dma_client_chan_alloc(struct dma_client *client)
{
struct dma_device *device;
struct dma_chan *chan;
enum dma_state_client ack;
/* Find a channel */
list_for_each_entry(device, &dma_device_list, global_node) {
/* Does the client require a specific DMA controller? */
if (client->slave && client->slave->dma_dev
&& client->slave->dma_dev != device->dev)
continue;
list_for_each_entry(chan, &device->channels, device_node) {
if (!dma_chan_satisfies_mask(chan, client->cap_mask))
continue;
if (!chan->client_count)
continue;
ack = client->event_callback(client, chan,
DMA_RESOURCE_AVAILABLE);
/* we are done once this client rejects
* an available resource
*/
if (ack == DMA_NAK)
return;
}
}
}
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
{
enum dma_status status;
unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
dma_async_issue_pending(chan);
do {
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
printk(KERN_ERR "dma_sync_wait_timeout!\n");
return DMA_ERROR;
}
} while (status == DMA_IN_PROGRESS);
return status;
}
EXPORT_SYMBOL(dma_sync_wait);
/**
* dma_chan_cleanup - release a DMA channel's resources
* @kref: kernel reference structure that contains the DMA channel device
*/
void dma_chan_cleanup(struct kref *kref)
{
struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
EXPORT_SYMBOL(dma_chan_cleanup);
static void dma_chan_free_rcu(struct rcu_head *rcu)
{
struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
kref_put(&chan->refcount, dma_chan_cleanup);
}
static void dma_chan_release(struct dma_chan *chan)
{
call_rcu(&chan->rcu, dma_chan_free_rcu);
}
/**
* dma_chans_notify_available - broadcast available channels to the clients
*/
static void dma_clients_notify_available(void)
{
struct dma_client *client;
mutex_lock(&dma_list_mutex);
list_for_each_entry(client, &dma_client_list, global_node)
dma_client_chan_alloc(client);
mutex_unlock(&dma_list_mutex);
}
/**
* dma_async_client_register - register a &dma_client
* @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
*/
void dma_async_client_register(struct dma_client *client)
{
struct dma_device *device, *_d;
struct dma_chan *chan;
int err;
/* validate client data */
BUG_ON(dma_has_cap(DMA_SLAVE, client->cap_mask) &&
!client->slave);
mutex_lock(&dma_list_mutex);
dmaengine_ref_count++;
/* try to grab channels */
list_for_each_entry_safe(device, _d, &dma_device_list, global_node)
list_for_each_entry(chan, &device->channels, device_node) {
err = dma_chan_get(chan);
if (err == -ENODEV) {
/* module removed before we could use it */
list_del_init(&device->global_node);
break;
} else if (err)
pr_err("dmaengine: failed to get %s: (%d)\n",
dev_name(&chan->dev), err);
}
list_add_tail(&client->global_node, &dma_client_list);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_register);
/**
* dma_async_client_unregister - unregister a client and free the &dma_client
* @client: &dma_client to free
*
* Force frees any allocated DMA channels, frees the &dma_client memory
*/
void dma_async_client_unregister(struct dma_client *client)
{
struct dma_device *device;
struct dma_chan *chan;
if (!client)
return;
mutex_lock(&dma_list_mutex);
dmaengine_ref_count--;
BUG_ON(dmaengine_ref_count < 0);
/* drop channel references */
list_for_each_entry(device, &dma_device_list, global_node)
list_for_each_entry(chan, &device->channels, device_node)
dma_chan_put(chan);
list_del(&client->global_node);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_unregister);
/**
* dma_async_client_chan_request - send all available channels to the
* client that satisfy the capability mask
* @client - requester
*/
void dma_async_client_chan_request(struct dma_client *client)
{
mutex_lock(&dma_list_mutex);
dma_client_chan_alloc(client);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_chan_request);
/**
* dma_async_device_register - registers DMA devices found
* @device: &dma_device
*/
int dma_async_device_register(struct dma_device *device)
{
static int id;
int chancnt = 0, rc;
struct dma_chan* chan;
if (!device)
return -ENODEV;
/* validate device routines */
BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
!device->device_prep_dma_memcpy);
BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
!device->device_prep_dma_xor);
BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
!device->device_prep_dma_zero_sum);
BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
!device->device_prep_dma_memset);
BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
!device->device_prep_dma_interrupt);
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_prep_slave_sg);
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_terminate_all);
BUG_ON(!device->device_alloc_chan_resources);
BUG_ON(!device->device_free_chan_resources);
BUG_ON(!device->device_is_tx_complete);
BUG_ON(!device->device_issue_pending);
BUG_ON(!device->dev);
init_completion(&device->done);
kref_init(&device->refcount);
mutex_lock(&dma_list_mutex);
device->dev_id = id++;
mutex_unlock(&dma_list_mutex);
/* represent channels in sysfs. Probably want devs too */
list_for_each_entry(chan, &device->channels, device_node) {
chan->local = alloc_percpu(typeof(*chan->local));
if (chan->local == NULL)
continue;
chan->chan_id = chancnt++;
chan->dev.class = &dma_devclass;
chan->dev.parent = device->dev;
dev_set_name(&chan->dev, "dma%dchan%d",
device->dev_id, chan->chan_id);
rc = device_register(&chan->dev);
if (rc) {
chancnt--;
free_percpu(chan->local);
chan->local = NULL;
goto err_out;
}
/* One for the channel, one of the class device */
kref_get(&device->refcount);
kref_get(&device->refcount);
kref_init(&chan->refcount);
chan->client_count = 0;
chan->slow_ref = 0;
INIT_RCU_HEAD(&chan->rcu);
}
mutex_lock(&dma_list_mutex);
if (dmaengine_ref_count)
list_for_each_entry(chan, &device->channels, device_node) {
/* if clients are already waiting for channels we need
* to take references on their behalf
*/
if (dma_chan_get(chan) == -ENODEV) {
/* note we can only get here for the first
* channel as the remaining channels are
* guaranteed to get a reference
*/
rc = -ENODEV;
mutex_unlock(&dma_list_mutex);
goto err_out;
}
}
list_add_tail(&device->global_node, &dma_device_list);
mutex_unlock(&dma_list_mutex);
dma_clients_notify_available();
return 0;
err_out:
list_for_each_entry(chan, &device->channels, device_node) {
if (chan->local == NULL)
continue;
kref_put(&device->refcount, dma_async_device_cleanup);
device_unregister(&chan->dev);
chancnt--;
free_percpu(chan->local);
}
return rc;
}
EXPORT_SYMBOL(dma_async_device_register);
/**
* dma_async_device_cleanup - function called when all references are released
* @kref: kernel reference object
*/
static void dma_async_device_cleanup(struct kref *kref)
{
struct dma_device *device;
device = container_of(kref, struct dma_device, refcount);
complete(&device->done);
}
/**
* dma_async_device_unregister - unregister a DMA device
* @device: &dma_device
*/
void dma_async_device_unregister(struct dma_device *device)
{
struct dma_chan *chan;
mutex_lock(&dma_list_mutex);
list_del(&device->global_node);
mutex_unlock(&dma_list_mutex);
list_for_each_entry(chan, &device->channels, device_node) {
WARN_ONCE(chan->client_count,
"%s called while %d clients hold a reference\n",
__func__, chan->client_count);
device_unregister(&chan->dev);
dma_chan_release(chan);
}
kref_put(&device->refcount, dma_async_device_cleanup);
wait_for_completion(&device->done);
}
EXPORT_SYMBOL(dma_async_device_unregister);
/**
* dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
* @chan: DMA channel to offload copy to
* @dest: destination address (virtual)
* @src: source address (virtual)
* @len: length
*
* Both @dest and @src must be mappable to a bus address according to the
* DMA mapping API rules for streaming mappings.
* Both @dest and @src must stay memory resident (kernel memory or locked
* user space pages).
*/
dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
void *src, size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
/**
* dma_async_memcpy_buf_to_pg - offloaded copy from address to page
* @chan: DMA channel to offload copy to
* @page: destination page
* @offset: offset in page to copy to
* @kdata: source address (virtual)
* @len: length
*
* Both @page/@offset and @kdata must be mappable to a bus address according
* to the DMA mapping API rules for streaming mappings.
* Both @page/@offset and @kdata must stay memory resident (kernel memory or
* locked user space pages)
*/
dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
unsigned int offset, void *kdata, size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
/**
* dma_async_memcpy_pg_to_pg - offloaded copy from page to page
* @chan: DMA channel to offload copy to
* @dest_pg: destination page
* @dest_off: offset in page to copy to
* @src_pg: source page
* @src_off: offset in page to copy from
* @len: length
*
* Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
* address according to the DMA mapping API rules for streaming mappings.
* Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
* (kernel memory or locked user space pages).
*/
dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
unsigned int dest_off, struct page *src_pg, unsigned int src_off,
size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan)
{
tx->chan = chan;
spin_lock_init(&tx->lock);
}
EXPORT_SYMBOL(dma_async_tx_descriptor_init);
/* dma_wait_for_async_tx - spin wait for a transaction to complete
* @tx: in-flight transaction to wait on
*
* This routine assumes that tx was obtained from a call to async_memcpy,
* async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped
* and submitted). Walking the parent chain is only meant to cover for DMA
* drivers that do not implement the DMA_INTERRUPT capability and may race with
* the driver's descriptor cleanup routine.
*/
enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
enum dma_status status;
struct dma_async_tx_descriptor *iter;
struct dma_async_tx_descriptor *parent;
if (!tx)
return DMA_SUCCESS;
WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for"
" %s\n", __func__, dev_name(&tx->chan->dev));
/* poll through the dependency chain, return when tx is complete */
do {
iter = tx;
/* find the root of the unsubmitted dependency chain */
do {
parent = iter->parent;
if (!parent)
break;
else
iter = parent;
} while (parent);
/* there is a small window for ->parent == NULL and
* ->cookie == -EBUSY
*/
while (iter->cookie == -EBUSY)
cpu_relax();
status = dma_sync_wait(iter->chan, iter->cookie);
} while (status == DMA_IN_PROGRESS || (iter != tx));
return status;
}
EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
/* dma_run_dependencies - helper routine for dma drivers to process
* (start) dependent operations on their target channel
* @tx: transaction with dependencies
*/
void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
{
struct dma_async_tx_descriptor *dep = tx->next;
struct dma_async_tx_descriptor *dep_next;
struct dma_chan *chan;
if (!dep)
return;
chan = dep->chan;
/* keep submitting up until a channel switch is detected
* in that case we will be called again as a result of
* processing the interrupt from async_tx_channel_switch
*/
for (; dep; dep = dep_next) {
spin_lock_bh(&dep->lock);
dep->parent = NULL;
dep_next = dep->next;
if (dep_next && dep_next->chan == chan)
dep->next = NULL; /* ->next will be submitted */
else
dep_next = NULL; /* submit current dep and terminate */
spin_unlock_bh(&dep->lock);
dep->tx_submit(dep);
}
chan->device->device_issue_pending(chan);
}
EXPORT_SYMBOL_GPL(dma_run_dependencies);
static int __init dma_bus_init(void)
{
mutex_init(&dma_list_mutex);
return class_register(&dma_devclass);
}
subsys_initcall(dma_bus_init);