remarkable-linux/Documentation/cpu-freq/user-guide.txt
Linus Torvalds c1aac62f36 A slightly quieter cycle for documentation this time around.
Three more DocBook template files have been converted to RST; only 21 to
 go.  There are various build improvements and the usual array of
 documentation improvements and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJYriFXAAoJEI3ONVYwIuV6iTMP/iV7ownq9IK1f8askcXKM76i
 NoRdj4/JywAPQ73vLhOSDVELGdVJNRBjdyOdBRzxPgsqAhFmm79lVYV2eLIffQ2k
 7LcVbEQR77I+4z9SwqIVbIWNCBry7Hu8aWh7moDL3I6yeuay408yr5YW2lIlsqHZ
 V/LZgkTWDe+iQPeXNA4Djzylx0lcRlAy4yMSLjN1+gb9/uBnXb9J0eGJzgfZfrL8
 fiIhymg3bv8vB99l6LMR5vT343QLWXf1yS31A7rPQvwkDo6zFehUJA0XNfIsl2dw
 VQYsvl9vp9wy3e6Y0qKXPn1XhAhCrm64P3crBxK31MMvcKZVCfeRSZ78wrvpvewy
 MVLlXdqop1bHPHowtRfA5jwxr1NqcYp+Jg0+YGX3iXpPi1Jfk36DNUy9iWvtvIzr
 lWgQcIKsdCwwYUcvPR8Kt8T/3q/AHbYlI6mimWlkmbZwncQcgCrH5xSG+c2BIPfV
 fn3W6eLHBn8RyVsxlaXlA0Y9TNtI/Cm85b3Ri10pFvhl868ppWfJxXHi7UtcbU58
 sQzahISCTXOH/NQwkkh7kFMtczbB43rAcChvF7EUYpazVBpJ4P4HxKFg3eIzIdc6
 VlBSaMu1hxUGoYxNNYuKr/nYstuczLOKzK7q4j/JOExY3RgTWP+T3bF02wgubvoa
 D/9WfScewkgCJRoA7i17
 =C5nd
 -----END PGP SIGNATURE-----

Merge tag 'docs-4.11' of git://git.lwn.net/linux

Pull documentation updates from Jonathan Corbet:
 "A slightly quieter cycle for documentation this time around.

  Three more DocBook template files have been converted to RST; only 21
  to go. There are various build improvements and the usual array of
  documentation improvements and fixes"

* tag 'docs-4.11' of git://git.lwn.net/linux: (44 commits)
  docs / driver-api: Fix structure references in device_link.rst
  PM / docs: Fix structure references in device.rst
  Add a target to check broken external links in the Documentation
  Documentation: Fix linux-api list typo
  Documentation: DocBook/Makefile comment typo
  Improve sparse documentation
  Documentation: make Makefile.sphinx no-ops quieter
  Documentation: DMA-ISA-LPC.txt
  Documentation: input: fix path to input code definitions
  docs: Remove the copyright year from conf.py
  docs: Fix a warning in the Korean HOWTO.rst translation
  PM / sleep / docs: Convert PM notifiers document to reST
  PM / core / docs: Convert sleep states API document to reST
  PM / core: Update kerneldoc comments in pm.h
  doc-rst: Fix recursive make invocation from macros
  doc-rst: Delete output of failed dot-SVG conversion
  doc-rst: Break shell command sequences on failure
  Documentation/sphinx: make targets independent of Sphinx work for HAVE_SPHINX=0
  doc-rst: fixed cleandoc target when used with O=dir
  Documentation/sphinx: prevent generation of .pyc files in the source tree
  ...
2017-02-22 18:51:29 -08:00

229 lines
6.4 KiB
Plaintext

CPU frequency and voltage scaling code in the Linux(TM) kernel
L i n u x C P U F r e q
U S E R G U I D E
Dominik Brodowski <linux@brodo.de>
Clock scaling allows you to change the clock speed of the CPUs on the
fly. This is a nice method to save battery power, because the lower
the clock speed, the less power the CPU consumes.
Contents:
---------
1. Supported Architectures and Processors
1.1 ARM and ARM64
1.2 x86
1.3 sparc64
1.4 ppc
1.5 SuperH
1.6 Blackfin
2. "Policy" / "Governor"?
2.1 Policy
2.2 Governor
3. How to change the CPU cpufreq policy and/or speed
3.1 Preferred interface: sysfs
1. Supported Architectures and Processors
=========================================
1.1 ARM and ARM64
-----------------
Almost all ARM and ARM64 platforms support CPU frequency scaling.
1.2 x86
-------
The following processors for the x86 architecture are supported by cpufreq:
AMD Elan - SC400, SC410
AMD mobile K6-2+
AMD mobile K6-3+
AMD mobile Duron
AMD mobile Athlon
AMD Opteron
AMD Athlon 64
Cyrix Media GXm
Intel mobile PIII and Intel mobile PIII-M on certain chipsets
Intel Pentium 4, Intel Xeon
Intel Pentium M (Centrino)
National Semiconductors Geode GX
Transmeta Crusoe
Transmeta Efficeon
VIA Cyrix 3 / C3
various processors on some ACPI 2.0-compatible systems [*]
And many more
[*] Only if "ACPI Processor Performance States" are available
to the ACPI<->BIOS interface.
1.3 sparc64
-----------
The following processors for the sparc64 architecture are supported by
cpufreq:
UltraSPARC-III
1.4 ppc
-------
Several "PowerBook" and "iBook2" notebooks are supported.
The following POWER processors are supported in powernv mode:
POWER8
POWER9
1.5 SuperH
----------
All SuperH processors supporting rate rounding through the clock
framework are supported by cpufreq.
1.6 Blackfin
------------
The following Blackfin processors are supported by cpufreq:
BF522, BF523, BF524, BF525, BF526, BF527, Rev 0.1 or higher
BF531, BF532, BF533, Rev 0.3 or higher
BF534, BF536, BF537, Rev 0.2 or higher
BF561, Rev 0.3 or higher
BF542, BF544, BF547, BF548, BF549, Rev 0.1 or higher
2. "Policy" / "Governor" ?
==========================
Some CPU frequency scaling-capable processor switch between various
frequencies and operating voltages "on the fly" without any kernel or
user involvement. This guarantees very fast switching to a frequency
which is high enough to serve the user's needs, but low enough to save
power.
2.1 Policy
----------
On these systems, all you can do is select the lower and upper
frequency limit as well as whether you want more aggressive
power-saving or more instantly available processing power.
2.2 Governor
------------
On all other cpufreq implementations, these boundaries still need to
be set. Then, a "governor" must be selected. Such a "governor" decides
what speed the processor shall run within the boundaries. One such
"governor" is the "userspace" governor. This one allows the user - or
a yet-to-implement userspace program - to decide what specific speed
the processor shall run at.
3. How to change the CPU cpufreq policy and/or speed
====================================================
3.1 Preferred Interface: sysfs
------------------------------
The preferred interface is located in the sysfs filesystem. If you
mounted it at /sys, the cpufreq interface is located in a subdirectory
"cpufreq" within the cpu-device directory
(e.g. /sys/devices/system/cpu/cpu0/cpufreq/ for the first CPU).
affected_cpus : List of Online CPUs that require software
coordination of frequency.
cpuinfo_cur_freq : Current frequency of the CPU as obtained from
the hardware, in KHz. This is the frequency
the CPU actually runs at.
cpuinfo_min_freq : this file shows the minimum operating
frequency the processor can run at(in kHz)
cpuinfo_max_freq : this file shows the maximum operating
frequency the processor can run at(in kHz)
cpuinfo_transition_latency The time it takes on this CPU to
switch between two frequencies in nano
seconds. If unknown or known to be
that high that the driver does not
work with the ondemand governor, -1
(CPUFREQ_ETERNAL) will be returned.
Using this information can be useful
to choose an appropriate polling
frequency for a kernel governor or
userspace daemon. Make sure to not
switch the frequency too often
resulting in performance loss.
related_cpus : List of Online + Offline CPUs that need software
coordination of frequency.
scaling_available_frequencies : List of available frequencies, in KHz.
scaling_available_governors : this file shows the CPUfreq governors
available in this kernel. You can see the
currently activated governor in
scaling_cur_freq : Current frequency of the CPU as determined by
the governor and cpufreq core, in KHz. This is
the frequency the kernel thinks the CPU runs
at.
scaling_driver : this file shows what cpufreq driver is
used to set the frequency on this CPU
scaling_governor, and by "echoing" the name of another
governor you can change it. Please note
that some governors won't load - they only
work on some specific architectures or
processors.
scaling_min_freq and
scaling_max_freq show the current "policy limits" (in
kHz). By echoing new values into these
files, you can change these limits.
NOTE: when setting a policy you need to
first set scaling_max_freq, then
scaling_min_freq.
scaling_setspeed This can be read to get the currently programmed
value by the governor. This can be written to
change the current frequency for a group of
CPUs, represented by a policy. This is supported
currently only by the userspace governor.
bios_limit : If the BIOS tells the OS to limit a CPU to
lower frequencies, the user can read out the
maximum available frequency from this file.
This typically can happen through (often not
intended) BIOS settings, restrictions
triggered through a service processor or other
BIOS/HW based implementations.
This does not cover thermal ACPI limitations
which can be detected through the generic
thermal driver.
If you have selected the "userspace" governor which allows you to
set the CPU operating frequency to a specific value, you can read out
the current frequency in
scaling_setspeed. By "echoing" a new frequency into this
you can change the speed of the CPU,
but only within the limits of
scaling_min_freq and scaling_max_freq.