remarkable-linux/drivers/dma/intel_mid_dma.c
Russell King - ARM Linux 884485e1f1 dmaengine: consolidate assignment of DMA cookies
Everyone deals with assigning DMA cookies in the same way (it's part of
the API so they should be), so lets consolidate the common code into a
helper function to avoid this duplication.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jassi Brar <jassisinghbrar@gmail.com>
[imx-sdma.c & mxs-dma.c]
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Vinod Koul <vinod.koul@linux.intel.com>
2012-03-13 11:36:52 +05:30

1472 lines
40 KiB
C

/*
* intel_mid_dma.c - Intel Langwell DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* The driver design is based on dw_dmac driver
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/intel_mid_dma.h>
#include <linux/module.h>
#include "dmaengine.h"
#define MAX_CHAN 4 /*max ch across controllers*/
#include "intel_mid_dma_regs.h"
#define INTEL_MID_DMAC1_ID 0x0814
#define INTEL_MID_DMAC2_ID 0x0813
#define INTEL_MID_GP_DMAC2_ID 0x0827
#define INTEL_MFLD_DMAC1_ID 0x0830
#define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
#define LNW_PERIPHRAL_MASK_SIZE 0x10
#define LNW_PERIPHRAL_STATUS 0x0
#define LNW_PERIPHRAL_MASK 0x8
struct intel_mid_dma_probe_info {
u8 max_chan;
u8 ch_base;
u16 block_size;
u32 pimr_mask;
};
#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
.max_chan = (_max_chan), \
.ch_base = (_ch_base), \
.block_size = (_block_size), \
.pimr_mask = (_pimr_mask), \
})
/*****************************************************************************
Utility Functions*/
/**
* get_ch_index - convert status to channel
* @status: status mask
* @base: dma ch base value
*
* Modify the status mask and return the channel index needing
* attention (or -1 if neither)
*/
static int get_ch_index(int *status, unsigned int base)
{
int i;
for (i = 0; i < MAX_CHAN; i++) {
if (*status & (1 << (i + base))) {
*status = *status & ~(1 << (i + base));
pr_debug("MDMA: index %d New status %x\n", i, *status);
return i;
}
}
return -1;
}
/**
* get_block_ts - calculates dma transaction length
* @len: dma transfer length
* @tx_width: dma transfer src width
* @block_size: dma controller max block size
*
* Based on src width calculate the DMA trsaction length in data items
* return data items or FFFF if exceeds max length for block
*/
static int get_block_ts(int len, int tx_width, int block_size)
{
int byte_width = 0, block_ts = 0;
switch (tx_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
byte_width = 1;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
byte_width = 2;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
default:
byte_width = 4;
break;
}
block_ts = len/byte_width;
if (block_ts > block_size)
block_ts = 0xFFFF;
return block_ts;
}
/*****************************************************************************
DMAC1 interrupt Functions*/
/**
* dmac1_mask_periphral_intr - mask the periphral interrupt
* @mid: dma device for which masking is required
*
* Masks the DMA periphral interrupt
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_mask_periphral_intr(struct middma_device *mid)
{
u32 pimr;
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr |= mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* dmac1_unmask_periphral_intr - unmask the periphral interrupt
* @midc: dma channel for which masking is required
*
* UnMasks the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
{
u32 pimr;
struct middma_device *mid = to_middma_device(midc->chan.device);
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr &= ~mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* enable_dma_interrupt - enable the periphral interrupt
* @midc: dma channel for which enable interrupt is required
*
* Enable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
dmac1_unmask_periphral_intr(midc);
/*en ch interrupts*/
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/**
* disable_dma_interrupt - disable the periphral interrupt
* @midc: dma channel for which disable interrupt is required
*
* Disable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
/*Check LPE PISR, make sure fwd is disabled*/
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/*****************************************************************************
DMA channel helper Functions*/
/**
* mid_desc_get - get a descriptor
* @midc: dma channel for which descriptor is required
*
* Obtain a descriptor for the channel. Returns NULL if none are free.
* Once the descriptor is returned it is private until put on another
* list or freed
*/
static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc, *_desc;
struct intel_mid_dma_desc *ret = NULL;
spin_lock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
}
spin_unlock_bh(&midc->lock);
return ret;
}
/**
* mid_desc_put - put a descriptor
* @midc: dma channel for which descriptor is required
* @desc: descriptor to put
*
* Return a descriptor from lwn_desc_get back to the free pool
*/
static void midc_desc_put(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
{
if (desc) {
spin_lock_bh(&midc->lock);
list_add_tail(&desc->desc_node, &midc->free_list);
spin_unlock_bh(&midc->lock);
}
}
/**
* midc_dostart - begin a DMA transaction
* @midc: channel for which txn is to be started
* @first: first descriptor of series
*
* Load a transaction into the engine. This must be called with midc->lock
* held and bh disabled.
*/
static void midc_dostart(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *first)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
/* channel is idle */
if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
/*error*/
pr_err("ERR_MDMA: channel is busy in start\n");
/* The tasklet will hopefully advance the queue... */
return;
}
midc->busy = true;
/*write registers and en*/
iowrite32(first->sar, midc->ch_regs + SAR);
iowrite32(first->dar, midc->ch_regs + DAR);
iowrite32(first->lli_phys, midc->ch_regs + LLP);
iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
(int)first->sar, (int)first->dar, first->cfg_hi,
first->cfg_lo, first->ctl_hi, first->ctl_lo);
first->status = DMA_IN_PROGRESS;
iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
}
/**
* midc_descriptor_complete - process completed descriptor
* @midc: channel owning the descriptor
* @desc: the descriptor itself
*
* Process a completed descriptor and perform any callbacks upon
* the completion. The completion handling drops the lock during the
* callbacks but must be called with the lock held.
*/
static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
__releases(&midc->lock) __acquires(&midc->lock)
{
struct dma_async_tx_descriptor *txd = &desc->txd;
dma_async_tx_callback callback_txd = NULL;
struct intel_mid_dma_lli *llitem;
void *param_txd = NULL;
midc->chan.completed_cookie = txd->cookie;
callback_txd = txd->callback;
param_txd = txd->callback_param;
if (desc->lli != NULL) {
/*clear the DONE bit of completed LLI in memory*/
llitem = desc->lli + desc->current_lli;
llitem->ctl_hi &= CLEAR_DONE;
if (desc->current_lli < desc->lli_length-1)
(desc->current_lli)++;
else
desc->current_lli = 0;
}
spin_unlock_bh(&midc->lock);
if (callback_txd) {
pr_debug("MDMA: TXD callback set ... calling\n");
callback_txd(param_txd);
}
if (midc->raw_tfr) {
desc->status = DMA_SUCCESS;
if (desc->lli != NULL) {
pci_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
pci_pool_destroy(desc->lli_pool);
desc->lli = NULL;
}
list_move(&desc->desc_node, &midc->free_list);
midc->busy = false;
}
spin_lock_bh(&midc->lock);
}
/**
* midc_scan_descriptors - check the descriptors in channel
* mark completed when tx is completete
* @mid: device
* @midc: channel to scan
*
* Walk the descriptor chain for the device and process any entries
* that are complete.
*/
static void midc_scan_descriptors(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
/*tx is complete*/
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->status == DMA_IN_PROGRESS)
midc_descriptor_complete(midc, desc);
}
return;
}
/**
* midc_lli_fill_sg - Helper function to convert
* SG list to Linked List Items.
*@midc: Channel
*@desc: DMA descriptor
*@sglist: Pointer to SG list
*@sglen: SG list length
*@flags: DMA transaction flags
*
* Walk through the SG list and convert the SG list into Linked
* List Items (LLI).
*/
static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc,
struct scatterlist *sglist,
unsigned int sglen,
unsigned int flags)
{
struct intel_mid_dma_slave *mids;
struct scatterlist *sg;
dma_addr_t lli_next, sg_phy_addr;
struct intel_mid_dma_lli *lli_bloc_desc;
union intel_mid_dma_ctl_lo ctl_lo;
union intel_mid_dma_ctl_hi ctl_hi;
int i;
pr_debug("MDMA: Entered midc_lli_fill_sg\n");
mids = midc->mid_slave;
lli_bloc_desc = desc->lli;
lli_next = desc->lli_phys;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_hi.ctl_hi = desc->ctl_hi;
for_each_sg(sglist, sg, sglen, i) {
/*Populate CTL_LOW and LLI values*/
if (i != sglen - 1) {
lli_next = lli_next +
sizeof(struct intel_mid_dma_lli);
} else {
/*Check for circular list, otherwise terminate LLI to ZERO*/
if (flags & DMA_PREP_CIRCULAR_LIST) {
pr_debug("MDMA: LLI is configured in circular mode\n");
lli_next = desc->lli_phys;
} else {
lli_next = 0;
ctl_lo.ctlx.llp_dst_en = 0;
ctl_lo.ctlx.llp_src_en = 0;
}
}
/*Populate CTL_HI values*/
ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
desc->width,
midc->dma->block_size);
/*Populate SAR and DAR values*/
sg_phy_addr = sg_phys(sg);
if (desc->dirn == DMA_MEM_TO_DEV) {
lli_bloc_desc->sar = sg_phy_addr;
lli_bloc_desc->dar = mids->dma_slave.dst_addr;
} else if (desc->dirn == DMA_DEV_TO_MEM) {
lli_bloc_desc->sar = mids->dma_slave.src_addr;
lli_bloc_desc->dar = sg_phy_addr;
}
/*Copy values into block descriptor in system memroy*/
lli_bloc_desc->llp = lli_next;
lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
lli_bloc_desc++;
}
/*Copy very first LLI values to descriptor*/
desc->ctl_lo = desc->lli->ctl_lo;
desc->ctl_hi = desc->lli->ctl_hi;
desc->sar = desc->lli->sar;
desc->dar = desc->lli->dar;
return 0;
}
/*****************************************************************************
DMA engine callback Functions*/
/**
* intel_mid_dma_tx_submit - callback to submit DMA transaction
* @tx: dma engine descriptor
*
* Submit the DMA trasaction for this descriptor, start if ch idle
*/
static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&midc->lock);
cookie = dma_cookie_assign(tx);
if (list_empty(&midc->active_list))
list_add_tail(&desc->desc_node, &midc->active_list);
else
list_add_tail(&desc->desc_node, &midc->queue);
midc_dostart(midc, desc);
spin_unlock_bh(&midc->lock);
return cookie;
}
/**
* intel_mid_dma_issue_pending - callback to issue pending txn
* @chan: chan where pending trascation needs to be checked and submitted
*
* Call for scan to issue pending descriptors
*/
static void intel_mid_dma_issue_pending(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
spin_lock_bh(&midc->lock);
if (!list_empty(&midc->queue))
midc_scan_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
}
/**
* intel_mid_dma_tx_status - Return status of txn
* @chan: chan for where status needs to be checked
* @cookie: cookie for txn
* @txstate: DMA txn state
*
* Return status of DMA txn
*/
static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
dma_cookie_t last_used;
dma_cookie_t last_complete;
int ret;
last_complete = chan->completed_cookie;
last_used = chan->cookie;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret != DMA_SUCCESS) {
spin_lock_bh(&midc->lock);
midc_scan_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
last_complete = chan->completed_cookie;
last_used = chan->cookie;
ret = dma_async_is_complete(cookie, last_complete, last_used);
}
if (txstate) {
txstate->last = last_complete;
txstate->used = last_used;
txstate->residue = 0;
}
return ret;
}
static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct dma_slave_config *slave = (struct dma_slave_config *)arg;
struct intel_mid_dma_slave *mid_slave;
BUG_ON(!midc);
BUG_ON(!slave);
pr_debug("MDMA: slave control called\n");
mid_slave = to_intel_mid_dma_slave(slave);
BUG_ON(!mid_slave);
midc->mid_slave = mid_slave;
return 0;
}
/**
* intel_mid_dma_device_control - DMA device control
* @chan: chan for DMA control
* @cmd: control cmd
* @arg: cmd arg value
*
* Perform DMA control command
*/
static int intel_mid_dma_device_control(struct dma_chan *chan,
enum dma_ctrl_cmd cmd, unsigned long arg)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
union intel_mid_dma_cfg_lo cfg_lo;
if (cmd == DMA_SLAVE_CONFIG)
return dma_slave_control(chan, arg);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
spin_lock_bh(&midc->lock);
if (midc->busy == false) {
spin_unlock_bh(&midc->lock);
return 0;
}
/*Suspend and disable the channel*/
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
cfg_lo.cfgx.ch_susp = 1;
iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
midc->busy = false;
/* Disable interrupts */
disable_dma_interrupt(midc);
midc->descs_allocated = 0;
spin_unlock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->lli != NULL) {
pci_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
pci_pool_destroy(desc->lli_pool);
desc->lli = NULL;
}
list_move(&desc->desc_node, &midc->free_list);
}
return 0;
}
/**
* intel_mid_dma_prep_memcpy - Prep memcpy txn
* @chan: chan for DMA transfer
* @dest: destn address
* @src: src address
* @len: DMA transfer len
* @flags: DMA flags
*
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
* The periphral txn details should be filled in slave structure properly
* Returns the descriptor for this txn
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct intel_mid_dma_chan *midc;
struct intel_mid_dma_desc *desc = NULL;
struct intel_mid_dma_slave *mids;
union intel_mid_dma_ctl_lo ctl_lo;
union intel_mid_dma_ctl_hi ctl_hi;
union intel_mid_dma_cfg_lo cfg_lo;
union intel_mid_dma_cfg_hi cfg_hi;
enum dma_slave_buswidth width;
pr_debug("MDMA: Prep for memcpy\n");
BUG_ON(!chan);
if (!len)
return NULL;
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
midc->dma->pci_id, midc->ch_id, len);
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
mids->cfg_mode, mids->dma_slave.direction,
mids->hs_mode, mids->dma_slave.src_addr_width);
/*calculate CFG_LO*/
if (mids->hs_mode == LNW_DMA_SW_HS) {
cfg_lo.cfg_lo = 0;
cfg_lo.cfgx.hs_sel_dst = 1;
cfg_lo.cfgx.hs_sel_src = 1;
} else if (mids->hs_mode == LNW_DMA_HW_HS)
cfg_lo.cfg_lo = 0x00000;
/*calculate CFG_HI*/
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
/*SW HS only*/
cfg_hi.cfg_hi = 0;
} else {
cfg_hi.cfg_hi = 0;
if (midc->dma->pimr_mask) {
cfg_hi.cfgx.protctl = 0x0; /*default value*/
cfg_hi.cfgx.fifo_mode = 1;
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
cfg_hi.cfgx.src_per = 0;
if (mids->device_instance == 0)
cfg_hi.cfgx.dst_per = 3;
if (mids->device_instance == 1)
cfg_hi.cfgx.dst_per = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
if (mids->device_instance == 0)
cfg_hi.cfgx.src_per = 2;
if (mids->device_instance == 1)
cfg_hi.cfgx.src_per = 0;
cfg_hi.cfgx.dst_per = 0;
}
} else {
cfg_hi.cfgx.protctl = 0x1; /*default value*/
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
midc->ch_id - midc->dma->chan_base;
}
}
/*calculate CTL_HI*/
ctl_hi.ctlx.reser = 0;
ctl_hi.ctlx.done = 0;
width = mids->dma_slave.src_addr_width;
ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
pr_debug("MDMA:calc len %d for block size %d\n",
ctl_hi.ctlx.block_ts, midc->dma->block_size);
/*calculate CTL_LO*/
ctl_lo.ctl_lo = 0;
ctl_lo.ctlx.int_en = 1;
ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
/*
* Here we need some translation from "enum dma_slave_buswidth"
* to the format for our dma controller
* standard intel_mid_dmac's format
* 1 Byte 0b000
* 2 Bytes 0b001
* 4 Bytes 0b010
*/
ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
ctl_lo.ctlx.tt_fc = 0;
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 0;
} else {
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 2;
ctl_lo.ctlx.tt_fc = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
ctl_lo.ctlx.sinc = 2;
ctl_lo.ctlx.dinc = 0;
ctl_lo.ctlx.tt_fc = 2;
}
}
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
enable_dma_interrupt(midc);
desc = midc_desc_get(midc);
if (desc == NULL)
goto err_desc_get;
desc->sar = src;
desc->dar = dest ;
desc->len = len;
desc->cfg_hi = cfg_hi.cfg_hi;
desc->cfg_lo = cfg_lo.cfg_lo;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->ctl_hi = ctl_hi.ctl_hi;
desc->width = width;
desc->dirn = mids->dma_slave.direction;
desc->lli_phys = 0;
desc->lli = NULL;
desc->lli_pool = NULL;
return &desc->txd;
err_desc_get:
pr_err("ERR_MDMA: Failed to get desc\n");
midc_desc_put(midc, desc);
return NULL;
}
/**
* intel_mid_dma_prep_slave_sg - Prep slave sg txn
* @chan: chan for DMA transfer
* @sgl: scatter gather list
* @sg_len: length of sg txn
* @direction: DMA transfer dirtn
* @flags: DMA flags
*
* Prepares LLI based periphral transfer
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct intel_mid_dma_chan *midc = NULL;
struct intel_mid_dma_slave *mids = NULL;
struct intel_mid_dma_desc *desc = NULL;
struct dma_async_tx_descriptor *txd = NULL;
union intel_mid_dma_ctl_lo ctl_lo;
pr_debug("MDMA: Prep for slave SG\n");
if (!sg_len) {
pr_err("MDMA: Invalid SG length\n");
return NULL;
}
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
if (!midc->dma->pimr_mask) {
/* We can still handle sg list with only one item */
if (sg_len == 1) {
txd = intel_mid_dma_prep_memcpy(chan,
mids->dma_slave.dst_addr,
mids->dma_slave.src_addr,
sgl->length,
flags);
return txd;
} else {
pr_warn("MDMA: SG list is not supported by this controller\n");
return NULL;
}
}
pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
sg_len, direction, flags);
txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
if (NULL == txd) {
pr_err("MDMA: Prep memcpy failed\n");
return NULL;
}
desc = to_intel_mid_dma_desc(txd);
desc->dirn = direction;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_lo.ctlx.llp_dst_en = 1;
ctl_lo.ctlx.llp_src_en = 1;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->lli_length = sg_len;
desc->current_lli = 0;
/* DMA coherent memory pool for LLI descriptors*/
desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
midc->dma->pdev,
(sizeof(struct intel_mid_dma_lli)*sg_len),
32, 0);
if (NULL == desc->lli_pool) {
pr_err("MID_DMA:LLI pool create failed\n");
return NULL;
}
desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
if (!desc->lli) {
pr_err("MID_DMA: LLI alloc failed\n");
pci_pool_destroy(desc->lli_pool);
return NULL;
}
midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
if (flags & DMA_PREP_INTERRUPT) {
iowrite32(UNMASK_INTR_REG(midc->ch_id),
midc->dma_base + MASK_BLOCK);
pr_debug("MDMA:Enabled Block interrupt\n");
}
return &desc->txd;
}
/**
* intel_mid_dma_free_chan_resources - Frees dma resources
* @chan: chan requiring attention
*
* Frees the allocated resources on this DMA chan
*/
static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
if (true == midc->busy) {
/*trying to free ch in use!!!!!*/
pr_err("ERR_MDMA: trying to free ch in use\n");
}
spin_lock_bh(&midc->lock);
midc->descs_allocated = 0;
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
spin_unlock_bh(&midc->lock);
midc->in_use = false;
midc->busy = false;
/* Disable CH interrupts */
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
pm_runtime_put(&mid->pdev->dev);
}
/**
* intel_mid_dma_alloc_chan_resources - Allocate dma resources
* @chan: chan requiring attention
*
* Allocates DMA resources on this chan
* Return the descriptors allocated
*/
static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc;
dma_addr_t phys;
int i = 0;
pm_runtime_get_sync(&mid->pdev->dev);
if (mid->state == SUSPENDED) {
if (dma_resume(&mid->pdev->dev)) {
pr_err("ERR_MDMA: resume failed");
return -EFAULT;
}
}
/* ASSERT: channel is idle */
if (test_ch_en(mid->dma_base, midc->ch_id)) {
/*ch is not idle*/
pr_err("ERR_MDMA: ch not idle\n");
pm_runtime_put(&mid->pdev->dev);
return -EIO;
}
chan->completed_cookie = chan->cookie = 1;
spin_lock_bh(&midc->lock);
while (midc->descs_allocated < DESCS_PER_CHANNEL) {
spin_unlock_bh(&midc->lock);
desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
if (!desc) {
pr_err("ERR_MDMA: desc failed\n");
pm_runtime_put(&mid->pdev->dev);
return -ENOMEM;
/*check*/
}
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = intel_mid_dma_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = phys;
spin_lock_bh(&midc->lock);
i = ++midc->descs_allocated;
list_add_tail(&desc->desc_node, &midc->free_list);
}
spin_unlock_bh(&midc->lock);
midc->in_use = true;
midc->busy = false;
pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
return i;
}
/**
* midc_handle_error - Handle DMA txn error
* @mid: controller where error occurred
* @midc: chan where error occurred
*
* Scan the descriptor for error
*/
static void midc_handle_error(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
midc_scan_descriptors(mid, midc);
}
/**
* dma_tasklet - DMA interrupt tasklet
* @data: tasklet arg (the controller structure)
*
* Scan the controller for interrupts for completion/error
* Clear the interrupt and call for handling completion/error
*/
static void dma_tasklet(unsigned long data)
{
struct middma_device *mid = NULL;
struct intel_mid_dma_chan *midc = NULL;
u32 status, raw_tfr, raw_block;
int i;
mid = (struct middma_device *)data;
if (mid == NULL) {
pr_err("ERR_MDMA: tasklet Null param\n");
return;
}
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
raw_tfr = ioread32(mid->dma_base + RAW_TFR);
raw_block = ioread32(mid->dma_base + RAW_BLOCK);
status = raw_tfr | raw_block;
status &= mid->intr_mask;
while (status) {
/*txn interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
midc->raw_tfr = raw_tfr;
midc->raw_block = raw_block;
spin_lock_bh(&midc->lock);
/*clearing this interrupts first*/
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
if (raw_block) {
iowrite32((1 << midc->ch_id),
mid->dma_base + CLEAR_BLOCK);
}
midc_scan_descriptors(mid, midc);
pr_debug("MDMA:Scan of desc... complete, unmasking\n");
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_TFR);
if (raw_block) {
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_BLOCK);
}
spin_unlock_bh(&midc->lock);
}
status = ioread32(mid->dma_base + RAW_ERR);
status &= mid->intr_mask;
while (status) {
/*err interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
spin_lock_bh(&midc->lock);
midc_handle_error(mid, midc);
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_ERR);
spin_unlock_bh(&midc->lock);
}
pr_debug("MDMA:Exiting takslet...\n");
return;
}
static void dma_tasklet1(unsigned long data)
{
pr_debug("MDMA:in takslet1...\n");
return dma_tasklet(data);
}
static void dma_tasklet2(unsigned long data)
{
pr_debug("MDMA:in takslet2...\n");
return dma_tasklet(data);
}
/**
* intel_mid_dma_interrupt - DMA ISR
* @irq: IRQ where interrupt occurred
* @data: ISR cllback data (the controller structure)
*
* See if this is our interrupt if so then schedule the tasklet
* otherwise ignore
*/
static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
{
struct middma_device *mid = data;
u32 tfr_status, err_status;
int call_tasklet = 0;
tfr_status = ioread32(mid->dma_base + RAW_TFR);
err_status = ioread32(mid->dma_base + RAW_ERR);
if (!tfr_status && !err_status)
return IRQ_NONE;
/*DMA Interrupt*/
pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
tfr_status &= mid->intr_mask;
if (tfr_status) {
/*need to disable intr*/
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
call_tasklet = 1;
}
err_status &= mid->intr_mask;
if (err_status) {
iowrite32((err_status << INT_MASK_WE),
mid->dma_base + MASK_ERR);
call_tasklet = 1;
}
if (call_tasklet)
tasklet_schedule(&mid->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
/**
* mid_setup_dma - Setup the DMA controller
* @pdev: Controller PCI device structure
*
* Initialize the DMA controller, channels, registers with DMA engine,
* ISR. Initialize DMA controller channels.
*/
static int mid_setup_dma(struct pci_dev *pdev)
{
struct middma_device *dma = pci_get_drvdata(pdev);
int err, i;
/* DMA coherent memory pool for DMA descriptor allocations */
dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
sizeof(struct intel_mid_dma_desc),
32, 0);
if (NULL == dma->dma_pool) {
pr_err("ERR_MDMA:pci_pool_create failed\n");
err = -ENOMEM;
goto err_dma_pool;
}
INIT_LIST_HEAD(&dma->common.channels);
dma->pci_id = pdev->device;
if (dma->pimr_mask) {
dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
LNW_PERIPHRAL_MASK_SIZE);
if (dma->mask_reg == NULL) {
pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
err = -ENOMEM;
goto err_ioremap;
}
} else
dma->mask_reg = NULL;
pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
/*init CH structures*/
dma->intr_mask = 0;
dma->state = RUNNING;
for (i = 0; i < dma->max_chan; i++) {
struct intel_mid_dma_chan *midch = &dma->ch[i];
midch->chan.device = &dma->common;
midch->chan.cookie = 1;
midch->ch_id = dma->chan_base + i;
pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
midch->dma_base = dma->dma_base;
midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
midch->dma = dma;
dma->intr_mask |= 1 << (dma->chan_base + i);
spin_lock_init(&midch->lock);
INIT_LIST_HEAD(&midch->active_list);
INIT_LIST_HEAD(&midch->queue);
INIT_LIST_HEAD(&midch->free_list);
/*mask interrupts*/
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_SRC_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_DST_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_ERR);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_TFR);
disable_dma_interrupt(midch);
list_add_tail(&midch->chan.device_node, &dma->common.channels);
}
pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
/*init dma structure*/
dma_cap_zero(dma->common.cap_mask);
dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
dma->common.dev = &pdev->dev;
dma->common.device_alloc_chan_resources =
intel_mid_dma_alloc_chan_resources;
dma->common.device_free_chan_resources =
intel_mid_dma_free_chan_resources;
dma->common.device_tx_status = intel_mid_dma_tx_status;
dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
dma->common.device_issue_pending = intel_mid_dma_issue_pending;
dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
dma->common.device_control = intel_mid_dma_device_control;
/*enable dma cntrl*/
iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
/*register irq */
if (dma->pimr_mask) {
pr_debug("MDMA:Requesting irq shared for DMAC1\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
IRQF_SHARED, "INTEL_MID_DMAC1", dma);
if (0 != err)
goto err_irq;
} else {
dma->intr_mask = 0x03;
pr_debug("MDMA:Requesting irq for DMAC2\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
IRQF_SHARED, "INTEL_MID_DMAC2", dma);
if (0 != err)
goto err_irq;
}
/*register device w/ engine*/
err = dma_async_device_register(&dma->common);
if (0 != err) {
pr_err("ERR_MDMA:device_register failed: %d\n", err);
goto err_engine;
}
if (dma->pimr_mask) {
pr_debug("setting up tasklet1 for DMAC1\n");
tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
} else {
pr_debug("setting up tasklet2 for DMAC2\n");
tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
}
return 0;
err_engine:
free_irq(pdev->irq, dma);
err_irq:
if (dma->mask_reg)
iounmap(dma->mask_reg);
err_ioremap:
pci_pool_destroy(dma->dma_pool);
err_dma_pool:
pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
return err;
}
/**
* middma_shutdown - Shutdown the DMA controller
* @pdev: Controller PCI device structure
*
* Called by remove
* Unregister DMa controller, clear all structures and free interrupt
*/
static void middma_shutdown(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
dma_async_device_unregister(&device->common);
pci_pool_destroy(device->dma_pool);
if (device->mask_reg)
iounmap(device->mask_reg);
if (device->dma_base)
iounmap(device->dma_base);
free_irq(pdev->irq, device);
return;
}
/**
* intel_mid_dma_probe - PCI Probe
* @pdev: Controller PCI device structure
* @id: pci device id structure
*
* Initialize the PCI device, map BARs, query driver data.
* Call setup_dma to complete contoller and chan initilzation
*/
static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct middma_device *device;
u32 base_addr, bar_size;
struct intel_mid_dma_probe_info *info;
int err;
pr_debug("MDMA: probe for %x\n", pdev->device);
info = (void *)id->driver_data;
pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
info->max_chan, info->ch_base,
info->block_size, info->pimr_mask);
err = pci_enable_device(pdev);
if (err)
goto err_enable_device;
err = pci_request_regions(pdev, "intel_mid_dmac");
if (err)
goto err_request_regions;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
pr_err("ERR_MDMA:kzalloc failed probe\n");
err = -ENOMEM;
goto err_kzalloc;
}
device->pdev = pci_dev_get(pdev);
base_addr = pci_resource_start(pdev, 0);
bar_size = pci_resource_len(pdev, 0);
device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
if (!device->dma_base) {
pr_err("ERR_MDMA:ioremap failed\n");
err = -ENOMEM;
goto err_ioremap;
}
pci_set_drvdata(pdev, device);
pci_set_master(pdev);
device->max_chan = info->max_chan;
device->chan_base = info->ch_base;
device->block_size = info->block_size;
device->pimr_mask = info->pimr_mask;
err = mid_setup_dma(pdev);
if (err)
goto err_dma;
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_allow(&pdev->dev);
return 0;
err_dma:
iounmap(device->dma_base);
err_ioremap:
pci_dev_put(pdev);
kfree(device);
err_kzalloc:
err_set_dma_mask:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_request_regions:
err_enable_device:
pr_err("ERR_MDMA:Probe failed %d\n", err);
return err;
}
/**
* intel_mid_dma_remove - PCI remove
* @pdev: Controller PCI device structure
*
* Free up all resources and data
* Call shutdown_dma to complete contoller and chan cleanup
*/
static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_forbid(&pdev->dev);
middma_shutdown(pdev);
pci_dev_put(pdev);
kfree(device);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
/* Power Management */
/*
* dma_suspend - PCI suspend function
*
* @pci: PCI device structure
* @state: PM message
*
* This function is called by OS when a power event occurs
*/
static int dma_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
int i;
struct middma_device *device = pci_get_drvdata(pci);
pr_debug("MDMA: dma_suspend called\n");
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
dmac1_mask_periphral_intr(device);
device->state = SUSPENDED;
pci_save_state(pci);
pci_disable_device(pci);
pci_set_power_state(pci, PCI_D3hot);
return 0;
}
/**
* dma_resume - PCI resume function
*
* @pci: PCI device structure
*
* This function is called by OS when a power event occurs
*/
int dma_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
int ret;
struct middma_device *device = pci_get_drvdata(pci);
pr_debug("MDMA: dma_resume called\n");
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
ret = pci_enable_device(pci);
if (ret) {
pr_err("MDMA: device can't be enabled for %x\n", pci->device);
return ret;
}
device->state = RUNNING;
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
return 0;
}
static int dma_runtime_suspend(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pci_dev);
device->state = SUSPENDED;
return 0;
}
static int dma_runtime_resume(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pci_dev);
device->state = RUNNING;
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
return 0;
}
static int dma_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pdev);
int i;
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
return pm_schedule_suspend(dev, 0);
}
/******************************************************************************
* PCI stuff
*/
static struct pci_device_id intel_mid_dma_ids[] = {
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
static const struct dev_pm_ops intel_mid_dma_pm = {
.runtime_suspend = dma_runtime_suspend,
.runtime_resume = dma_runtime_resume,
.runtime_idle = dma_runtime_idle,
.suspend = dma_suspend,
.resume = dma_resume,
};
static struct pci_driver intel_mid_dma_pci_driver = {
.name = "Intel MID DMA",
.id_table = intel_mid_dma_ids,
.probe = intel_mid_dma_probe,
.remove = __devexit_p(intel_mid_dma_remove),
#ifdef CONFIG_PM
.driver = {
.pm = &intel_mid_dma_pm,
},
#endif
};
static int __init intel_mid_dma_init(void)
{
pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
INTEL_MID_DMA_DRIVER_VERSION);
return pci_register_driver(&intel_mid_dma_pci_driver);
}
fs_initcall(intel_mid_dma_init);
static void __exit intel_mid_dma_exit(void)
{
pci_unregister_driver(&intel_mid_dma_pci_driver);
}
module_exit(intel_mid_dma_exit);
MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);