remarkable-linux/arch/openrisc/kernel/process.c
Jeff Layton 91a27b2a75 vfs: define struct filename and have getname() return it
getname() is intended to copy pathname strings from userspace into a
kernel buffer. The result is just a string in kernel space. It would
however be quite helpful to be able to attach some ancillary info to
the string.

For instance, we could attach some audit-related info to reduce the
amount of audit-related processing needed. When auditing is enabled,
we could also call getname() on the string more than once and not
need to recopy it from userspace.

This patchset converts the getname()/putname() interfaces to return
a struct instead of a string. For now, the struct just tracks the
string in kernel space and the original userland pointer for it.

Later, we'll add other information to the struct as it becomes
convenient.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-10-12 20:14:55 -04:00

311 lines
7.5 KiB
C

/*
* OpenRISC process.c
*
* Linux architectural port borrowing liberally from similar works of
* others. All original copyrights apply as per the original source
* declaration.
*
* Modifications for the OpenRISC architecture:
* Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
* Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* This file handles the architecture-dependent parts of process handling...
*/
#define __KERNEL_SYSCALLS__
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/elfcore.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init_task.h>
#include <linux/mqueue.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/spr_defs.h>
#include <linux/smp.h>
/*
* Pointer to Current thread info structure.
*
* Used at user space -> kernel transitions.
*/
struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
void machine_restart(void)
{
printk(KERN_INFO "*** MACHINE RESTART ***\n");
__asm__("l.nop 1");
}
/*
* Similar to machine_power_off, but don't shut off power. Add code
* here to freeze the system for e.g. post-mortem debug purpose when
* possible. This halt has nothing to do with the idle halt.
*/
void machine_halt(void)
{
printk(KERN_INFO "*** MACHINE HALT ***\n");
__asm__("l.nop 1");
}
/* If or when software power-off is implemented, add code here. */
void machine_power_off(void)
{
printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
__asm__("l.nop 1");
}
void (*pm_power_off) (void) = machine_power_off;
/*
* When a process does an "exec", machine state like FPU and debug
* registers need to be reset. This is a hook function for that.
* Currently we don't have any such state to reset, so this is empty.
*/
void flush_thread(void)
{
}
void show_regs(struct pt_regs *regs)
{
extern void show_registers(struct pt_regs *regs);
/* __PHX__ cleanup this mess */
show_registers(regs);
}
unsigned long thread_saved_pc(struct task_struct *t)
{
return (unsigned long)user_regs(t->stack)->pc;
}
void release_thread(struct task_struct *dead_task)
{
}
/*
* Copy the thread-specific (arch specific) info from the current
* process to the new one p
*/
extern asmlinkage void ret_from_fork(void);
int
copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long unused, struct task_struct *p, struct pt_regs *regs)
{
struct pt_regs *childregs;
struct pt_regs *kregs;
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
struct thread_info *ti;
unsigned long top_of_kernel_stack;
top_of_kernel_stack = sp;
p->set_child_tid = p->clear_child_tid = NULL;
/* Copy registers */
/* redzone */
sp -= STACK_FRAME_OVERHEAD;
sp -= sizeof(struct pt_regs);
childregs = (struct pt_regs *)sp;
/* Copy parent registers */
*childregs = *regs;
if ((childregs->sr & SPR_SR_SM) == 1) {
/* for kernel thread, set `current_thread_info'
* and stackptr in new task
*/
childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
childregs->gpr[10] = (unsigned long)task_thread_info(p);
} else {
childregs->sp = usp;
}
childregs->gpr[11] = 0; /* Result from fork() */
/*
* The way this works is that at some point in the future
* some task will call _switch to switch to the new task.
* That will pop off the stack frame created below and start
* the new task running at ret_from_fork. The new task will
* do some house keeping and then return from the fork or clone
* system call, using the stack frame created above.
*/
/* redzone */
sp -= STACK_FRAME_OVERHEAD;
sp -= sizeof(struct pt_regs);
kregs = (struct pt_regs *)sp;
ti = task_thread_info(p);
ti->ksp = sp;
/* kregs->sp must store the location of the 'pre-switch' kernel stack
* pointer... for a newly forked process, this is simply the top of
* the kernel stack.
*/
kregs->sp = top_of_kernel_stack;
kregs->gpr[3] = (unsigned long)current; /* arg to schedule_tail */
kregs->gpr[10] = (unsigned long)task_thread_info(p);
kregs->gpr[9] = (unsigned long)ret_from_fork;
return 0;
}
/*
* Set up a thread for executing a new program
*/
void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
{
unsigned long sr = regs->sr & ~SPR_SR_SM;
set_fs(USER_DS);
memset(regs->gpr, 0, sizeof(regs->gpr));
regs->pc = pc;
regs->sr = sr;
regs->sp = sp;
/* printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
}
/* Fill in the fpu structure for a core dump. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
{
/* TODO */
return 0;
}
extern struct thread_info *_switch(struct thread_info *old_ti,
struct thread_info *new_ti);
struct task_struct *__switch_to(struct task_struct *old,
struct task_struct *new)
{
struct task_struct *last;
struct thread_info *new_ti, *old_ti;
unsigned long flags;
local_irq_save(flags);
/* current_set is an array of saved current pointers
* (one for each cpu). we need them at user->kernel transition,
* while we save them at kernel->user transition
*/
new_ti = new->stack;
old_ti = old->stack;
current_thread_info_set[smp_processor_id()] = new_ti;
last = (_switch(old_ti, new_ti))->task;
local_irq_restore(flags);
return last;
}
/*
* Write out registers in core dump format, as defined by the
* struct user_regs_struct
*/
void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
{
dest[0] = 0; /* r0 */
memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
dest[32] = regs->pc;
dest[33] = regs->sr;
dest[34] = 0;
dest[35] = 0;
}
extern void _kernel_thread_helper(void);
void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
{
do_exit(fn(arg));
}
/*
* Create a kernel thread.
*/
int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.gpr[20] = (unsigned long)fn;
regs.gpr[22] = (unsigned long)arg;
regs.sr = mfspr(SPR_SR);
regs.pc = (unsigned long)_kernel_thread_helper;
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
0, &regs, 0, NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage long _sys_execve(const char __user *name,
const char __user * const __user *argv,
const char __user * const __user *envp,
struct pt_regs *regs)
{
int error;
struct filename *filename;
filename = getname(name);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename->name, argv, envp, regs);
putname(filename);
out:
return error;
}
unsigned long get_wchan(struct task_struct *p)
{
/* TODO */
return 0;
}
int kernel_execve(const char *filename, char *const argv[], char *const envp[])
{
register long __res asm("r11") = __NR_execve;
register long __a asm("r3") = (long)(filename);
register long __b asm("r4") = (long)(argv);
register long __c asm("r5") = (long)(envp);
__asm__ volatile ("l.sys 1"
: "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
: "0"(__res), "1"(__a), "2"(__b), "3"(__c)
: "r6", "r7", "r8", "r12", "r13", "r15",
"r17", "r19", "r21", "r23", "r25", "r27",
"r29", "r31");
__asm__ volatile ("l.nop");
return __res;
}