remarkable-linux/include/linux/raid/md_k.h
NeilBrown dfc7064500 md: restart recovery cleanly after device failure.
When we get any IO error during a recovery (rebuilding a spare), we abort
the recovery and restart it.

For RAID6 (and multi-drive RAID1) it may not be best to restart at the
beginning: when multiple failures can be tolerated, the recovery may be
able to continue and re-doing all that has already been done doesn't make
sense.

We already have the infrastructure to record where a recovery is up to
and restart from there, but it is not being used properly.
This is because:
  - We sometimes abort with MD_RECOVERY_ERR rather than just MD_RECOVERY_INTR,
    which causes the recovery not be be checkpointed.
  - We remove spares and then re-added them which loses important state
    information.

The distinction between MD_RECOVERY_ERR and MD_RECOVERY_INTR really isn't
needed.  If there is an error, the relevant drive will be marked as
Faulty, and that is enough to ensure correct handling of the error.  So we
first remove MD_RECOVERY_ERR, changing some of the uses of it to
MD_RECOVERY_INTR.

Then we cause the attempt to remove a non-faulty device from an array to
fail (unless recovery is impossible as the array is too degraded).  Then
when remove_and_add_spares attempts to remove the devices on which
recovery can continue, it will fail, they will remain in place, and
recovery will continue on them as desired.

Issue:  If we are halfway through rebuilding a spare and another drive
fails, and a new spare is immediately available,  do we want to:
 1/ complete the current rebuild, then go back and rebuild the new spare or
 2/ restart the rebuild from the start and rebuild both devices in
    parallel.

Both options can be argued for.  The code currently takes option 2 as
  a/ this requires least code change
  b/ this results in a minimally-degraded array in minimal time.

Cc: "Eivind Sarto" <ivan@kasenna.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-24 09:56:10 -07:00

379 lines
11 KiB
C

/*
md_k.h : kernel internal structure of the Linux MD driver
Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _MD_K_H
#define _MD_K_H
/* and dm-bio-list.h is not under include/linux because.... ??? */
#include "../../../drivers/md/dm-bio-list.h"
#ifdef CONFIG_BLOCK
#define LEVEL_MULTIPATH (-4)
#define LEVEL_LINEAR (-1)
#define LEVEL_FAULTY (-5)
/* we need a value for 'no level specified' and 0
* means 'raid0', so we need something else. This is
* for internal use only
*/
#define LEVEL_NONE (-1000000)
#define MaxSector (~(sector_t)0)
typedef struct mddev_s mddev_t;
typedef struct mdk_rdev_s mdk_rdev_t;
/*
* options passed in raidrun:
*/
/* Currently this must fit in an 'int' */
#define MAX_CHUNK_SIZE (1<<30)
/*
* MD's 'extended' device
*/
struct mdk_rdev_s
{
struct list_head same_set; /* RAID devices within the same set */
sector_t size; /* Device size (in blocks) */
mddev_t *mddev; /* RAID array if running */
long last_events; /* IO event timestamp */
struct block_device *bdev; /* block device handle */
struct page *sb_page;
int sb_loaded;
__u64 sb_events;
sector_t data_offset; /* start of data in array */
sector_t sb_offset;
int sb_size; /* bytes in the superblock */
int preferred_minor; /* autorun support */
struct kobject kobj;
/* A device can be in one of three states based on two flags:
* Not working: faulty==1 in_sync==0
* Fully working: faulty==0 in_sync==1
* Working, but not
* in sync with array
* faulty==0 in_sync==0
*
* It can never have faulty==1, in_sync==1
* This reduces the burden of testing multiple flags in many cases
*/
unsigned long flags;
#define Faulty 1 /* device is known to have a fault */
#define In_sync 2 /* device is in_sync with rest of array */
#define WriteMostly 4 /* Avoid reading if at all possible */
#define BarriersNotsupp 5 /* BIO_RW_BARRIER is not supported */
#define AllReserved 6 /* If whole device is reserved for
* one array */
#define AutoDetected 7 /* added by auto-detect */
#define Blocked 8 /* An error occured on an externally
* managed array, don't allow writes
* until it is cleared */
wait_queue_head_t blocked_wait;
int desc_nr; /* descriptor index in the superblock */
int raid_disk; /* role of device in array */
int saved_raid_disk; /* role that device used to have in the
* array and could again if we did a partial
* resync from the bitmap
*/
sector_t recovery_offset;/* If this device has been partially
* recovered, this is where we were
* up to.
*/
atomic_t nr_pending; /* number of pending requests.
* only maintained for arrays that
* support hot removal
*/
atomic_t read_errors; /* number of consecutive read errors that
* we have tried to ignore.
*/
atomic_t corrected_errors; /* number of corrected read errors,
* for reporting to userspace and storing
* in superblock.
*/
struct work_struct del_work; /* used for delayed sysfs removal */
};
struct mddev_s
{
void *private;
struct mdk_personality *pers;
dev_t unit;
int md_minor;
struct list_head disks;
unsigned long flags;
#define MD_CHANGE_DEVS 0 /* Some device status has changed */
#define MD_CHANGE_CLEAN 1 /* transition to or from 'clean' */
#define MD_CHANGE_PENDING 2 /* superblock update in progress */
int ro;
struct gendisk *gendisk;
struct kobject kobj;
/* Superblock information */
int major_version,
minor_version,
patch_version;
int persistent;
int external; /* metadata is
* managed externally */
char metadata_type[17]; /* externally set*/
int chunk_size;
time_t ctime, utime;
int level, layout;
char clevel[16];
int raid_disks;
int max_disks;
sector_t size; /* used size of component devices */
sector_t array_size; /* exported array size */
__u64 events;
char uuid[16];
/* If the array is being reshaped, we need to record the
* new shape and an indication of where we are up to.
* This is written to the superblock.
* If reshape_position is MaxSector, then no reshape is happening (yet).
*/
sector_t reshape_position;
int delta_disks, new_level, new_layout, new_chunk;
struct mdk_thread_s *thread; /* management thread */
struct mdk_thread_s *sync_thread; /* doing resync or reconstruct */
sector_t curr_resync; /* last block scheduled */
unsigned long resync_mark; /* a recent timestamp */
sector_t resync_mark_cnt;/* blocks written at resync_mark */
sector_t curr_mark_cnt; /* blocks scheduled now */
sector_t resync_max_sectors; /* may be set by personality */
sector_t resync_mismatches; /* count of sectors where
* parity/replica mismatch found
*/
/* allow user-space to request suspension of IO to regions of the array */
sector_t suspend_lo;
sector_t suspend_hi;
/* if zero, use the system-wide default */
int sync_speed_min;
int sync_speed_max;
/* resync even though the same disks are shared among md-devices */
int parallel_resync;
int ok_start_degraded;
/* recovery/resync flags
* NEEDED: we might need to start a resync/recover
* RUNNING: a thread is running, or about to be started
* SYNC: actually doing a resync, not a recovery
* INTR: resync needs to be aborted for some reason
* DONE: thread is done and is waiting to be reaped
* REQUEST: user-space has requested a sync (used with SYNC)
* CHECK: user-space request for for check-only, no repair
* RESHAPE: A reshape is happening
*
* If neither SYNC or RESHAPE are set, then it is a recovery.
*/
#define MD_RECOVERY_RUNNING 0
#define MD_RECOVERY_SYNC 1
#define MD_RECOVERY_INTR 3
#define MD_RECOVERY_DONE 4
#define MD_RECOVERY_NEEDED 5
#define MD_RECOVERY_REQUESTED 6
#define MD_RECOVERY_CHECK 7
#define MD_RECOVERY_RESHAPE 8
#define MD_RECOVERY_FROZEN 9
unsigned long recovery;
int in_sync; /* know to not need resync */
struct mutex reconfig_mutex;
atomic_t active;
int changed; /* true if we might need to reread partition info */
int degraded; /* whether md should consider
* adding a spare
*/
int barriers_work; /* initialised to true, cleared as soon
* as a barrier request to slave
* fails. Only supported
*/
struct bio *biolist; /* bios that need to be retried
* because BIO_RW_BARRIER is not supported
*/
atomic_t recovery_active; /* blocks scheduled, but not written */
wait_queue_head_t recovery_wait;
sector_t recovery_cp;
sector_t resync_max; /* resync should pause
* when it gets here */
spinlock_t write_lock;
wait_queue_head_t sb_wait; /* for waiting on superblock updates */
atomic_t pending_writes; /* number of active superblock writes */
unsigned int safemode; /* if set, update "clean" superblock
* when no writes pending.
*/
unsigned int safemode_delay;
struct timer_list safemode_timer;
atomic_t writes_pending;
struct request_queue *queue; /* for plugging ... */
atomic_t write_behind; /* outstanding async IO */
unsigned int max_write_behind; /* 0 = sync */
struct bitmap *bitmap; /* the bitmap for the device */
struct file *bitmap_file; /* the bitmap file */
long bitmap_offset; /* offset from superblock of
* start of bitmap. May be
* negative, but not '0'
*/
long default_bitmap_offset; /* this is the offset to use when
* hot-adding a bitmap. It should
* eventually be settable by sysfs.
*/
struct list_head all_mddevs;
};
static inline void rdev_dec_pending(mdk_rdev_t *rdev, mddev_t *mddev)
{
int faulty = test_bit(Faulty, &rdev->flags);
if (atomic_dec_and_test(&rdev->nr_pending) && faulty)
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors)
{
atomic_add(nr_sectors, &bdev->bd_contains->bd_disk->sync_io);
}
struct mdk_personality
{
char *name;
int level;
struct list_head list;
struct module *owner;
int (*make_request)(struct request_queue *q, struct bio *bio);
int (*run)(mddev_t *mddev);
int (*stop)(mddev_t *mddev);
void (*status)(struct seq_file *seq, mddev_t *mddev);
/* error_handler must set ->faulty and clear ->in_sync
* if appropriate, and should abort recovery if needed
*/
void (*error_handler)(mddev_t *mddev, mdk_rdev_t *rdev);
int (*hot_add_disk) (mddev_t *mddev, mdk_rdev_t *rdev);
int (*hot_remove_disk) (mddev_t *mddev, int number);
int (*spare_active) (mddev_t *mddev);
sector_t (*sync_request)(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster);
int (*resize) (mddev_t *mddev, sector_t sectors);
int (*check_reshape) (mddev_t *mddev);
int (*start_reshape) (mddev_t *mddev);
int (*reconfig) (mddev_t *mddev, int layout, int chunk_size);
/* quiesce moves between quiescence states
* 0 - fully active
* 1 - no new requests allowed
* others - reserved
*/
void (*quiesce) (mddev_t *mddev, int state);
};
struct md_sysfs_entry {
struct attribute attr;
ssize_t (*show)(mddev_t *, char *);
ssize_t (*store)(mddev_t *, const char *, size_t);
};
static inline char * mdname (mddev_t * mddev)
{
return mddev->gendisk ? mddev->gendisk->disk_name : "mdX";
}
/*
* iterates through some rdev ringlist. It's safe to remove the
* current 'rdev'. Dont touch 'tmp' though.
*/
#define rdev_for_each_list(rdev, tmp, list) \
\
for ((tmp) = (list).next; \
(rdev) = (list_entry((tmp), mdk_rdev_t, same_set)), \
(tmp) = (tmp)->next, (tmp)->prev != &(list) \
; )
/*
* iterates through the 'same array disks' ringlist
*/
#define rdev_for_each(rdev, tmp, mddev) \
rdev_for_each_list(rdev, tmp, (mddev)->disks)
typedef struct mdk_thread_s {
void (*run) (mddev_t *mddev);
mddev_t *mddev;
wait_queue_head_t wqueue;
unsigned long flags;
struct task_struct *tsk;
unsigned long timeout;
} mdk_thread_t;
#define THREAD_WAKEUP 0
#define __wait_event_lock_irq(wq, condition, lock, cmd) \
do { \
wait_queue_t __wait; \
init_waitqueue_entry(&__wait, current); \
\
add_wait_queue(&wq, &__wait); \
for (;;) { \
set_current_state(TASK_UNINTERRUPTIBLE); \
if (condition) \
break; \
spin_unlock_irq(&lock); \
cmd; \
schedule(); \
spin_lock_irq(&lock); \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event_lock_irq(wq, condition, lock, cmd) \
do { \
if (condition) \
break; \
__wait_event_lock_irq(wq, condition, lock, cmd); \
} while (0)
static inline void safe_put_page(struct page *p)
{
if (p) put_page(p);
}
#endif /* CONFIG_BLOCK */
#endif