remarkable-linux/kernel/power/hibernate.c
Anisse Astier 1ad1410f63 PM / Hibernate: allow hibernation with PAGE_POISONING_ZERO
PAGE_POISONING_ZERO disables zeroing new pages on alloc, they are
poisoned (zeroed) as they become available.
In the hibernate use case, free pages will appear in the system without
being cleared, left there by the loading kernel.

This patch will make sure free pages are cleared on resume when
PAGE_POISONING_ZERO is enabled. We free the pages just after resume
because we can't do it later: going through any device resume code might
allocate some memory and invalidate the free pages bitmap.

Thus we don't need to disable hibernation when PAGE_POISONING_ZERO is
enabled.

Signed-off-by: Anisse Astier <anisse@astier.eu>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:35:27 +02:00

1201 lines
28 KiB
C

/*
* kernel/power/hibernate.c - Hibernation (a.k.a suspend-to-disk) support.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
* Copyright (c) 2004 Pavel Machek <pavel@ucw.cz>
* Copyright (c) 2009 Rafael J. Wysocki, Novell Inc.
* Copyright (C) 2012 Bojan Smojver <bojan@rexursive.com>
*
* This file is released under the GPLv2.
*/
#include <linux/export.h>
#include <linux/suspend.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/async.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pm.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/freezer.h>
#include <linux/gfp.h>
#include <linux/syscore_ops.h>
#include <linux/ctype.h>
#include <linux/genhd.h>
#include <linux/ktime.h>
#include <trace/events/power.h>
#include "power.h"
static int nocompress;
static int noresume;
static int nohibernate;
static int resume_wait;
static unsigned int resume_delay;
static char resume_file[256] = CONFIG_PM_STD_PARTITION;
dev_t swsusp_resume_device;
sector_t swsusp_resume_block;
__visible int in_suspend __nosavedata;
enum {
HIBERNATION_INVALID,
HIBERNATION_PLATFORM,
HIBERNATION_SHUTDOWN,
HIBERNATION_REBOOT,
#ifdef CONFIG_SUSPEND
HIBERNATION_SUSPEND,
#endif
HIBERNATION_TEST_RESUME,
/* keep last */
__HIBERNATION_AFTER_LAST
};
#define HIBERNATION_MAX (__HIBERNATION_AFTER_LAST-1)
#define HIBERNATION_FIRST (HIBERNATION_INVALID + 1)
static int hibernation_mode = HIBERNATION_SHUTDOWN;
bool freezer_test_done;
static const struct platform_hibernation_ops *hibernation_ops;
bool hibernation_available(void)
{
return (nohibernate == 0);
}
/**
* hibernation_set_ops - Set the global hibernate operations.
* @ops: Hibernation operations to use in subsequent hibernation transitions.
*/
void hibernation_set_ops(const struct platform_hibernation_ops *ops)
{
if (ops && !(ops->begin && ops->end && ops->pre_snapshot
&& ops->prepare && ops->finish && ops->enter && ops->pre_restore
&& ops->restore_cleanup && ops->leave)) {
WARN_ON(1);
return;
}
lock_system_sleep();
hibernation_ops = ops;
if (ops)
hibernation_mode = HIBERNATION_PLATFORM;
else if (hibernation_mode == HIBERNATION_PLATFORM)
hibernation_mode = HIBERNATION_SHUTDOWN;
unlock_system_sleep();
}
EXPORT_SYMBOL_GPL(hibernation_set_ops);
static bool entering_platform_hibernation;
bool system_entering_hibernation(void)
{
return entering_platform_hibernation;
}
EXPORT_SYMBOL(system_entering_hibernation);
#ifdef CONFIG_PM_DEBUG
static void hibernation_debug_sleep(void)
{
printk(KERN_INFO "hibernation debug: Waiting for 5 seconds.\n");
mdelay(5000);
}
static int hibernation_test(int level)
{
if (pm_test_level == level) {
hibernation_debug_sleep();
return 1;
}
return 0;
}
#else /* !CONFIG_PM_DEBUG */
static int hibernation_test(int level) { return 0; }
#endif /* !CONFIG_PM_DEBUG */
/**
* platform_begin - Call platform to start hibernation.
* @platform_mode: Whether or not to use the platform driver.
*/
static int platform_begin(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->begin() : 0;
}
/**
* platform_end - Call platform to finish transition to the working state.
* @platform_mode: Whether or not to use the platform driver.
*/
static void platform_end(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->end();
}
/**
* platform_pre_snapshot - Call platform to prepare the machine for hibernation.
* @platform_mode: Whether or not to use the platform driver.
*
* Use the platform driver to prepare the system for creating a hibernate image,
* if so configured, and return an error code if that fails.
*/
static int platform_pre_snapshot(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->pre_snapshot() : 0;
}
/**
* platform_leave - Call platform to prepare a transition to the working state.
* @platform_mode: Whether or not to use the platform driver.
*
* Use the platform driver prepare to prepare the machine for switching to the
* normal mode of operation.
*
* This routine is called on one CPU with interrupts disabled.
*/
static void platform_leave(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->leave();
}
/**
* platform_finish - Call platform to switch the system to the working state.
* @platform_mode: Whether or not to use the platform driver.
*
* Use the platform driver to switch the machine to the normal mode of
* operation.
*
* This routine must be called after platform_prepare().
*/
static void platform_finish(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->finish();
}
/**
* platform_pre_restore - Prepare for hibernate image restoration.
* @platform_mode: Whether or not to use the platform driver.
*
* Use the platform driver to prepare the system for resume from a hibernation
* image.
*
* If the restore fails after this function has been called,
* platform_restore_cleanup() must be called.
*/
static int platform_pre_restore(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->pre_restore() : 0;
}
/**
* platform_restore_cleanup - Switch to the working state after failing restore.
* @platform_mode: Whether or not to use the platform driver.
*
* Use the platform driver to switch the system to the normal mode of operation
* after a failing restore.
*
* If platform_pre_restore() has been called before the failing restore, this
* function must be called too, regardless of the result of
* platform_pre_restore().
*/
static void platform_restore_cleanup(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->restore_cleanup();
}
/**
* platform_recover - Recover from a failure to suspend devices.
* @platform_mode: Whether or not to use the platform driver.
*/
static void platform_recover(int platform_mode)
{
if (platform_mode && hibernation_ops && hibernation_ops->recover)
hibernation_ops->recover();
}
/**
* swsusp_show_speed - Print time elapsed between two events during hibernation.
* @start: Starting event.
* @stop: Final event.
* @nr_pages: Number of memory pages processed between @start and @stop.
* @msg: Additional diagnostic message to print.
*/
void swsusp_show_speed(ktime_t start, ktime_t stop,
unsigned nr_pages, char *msg)
{
ktime_t diff;
u64 elapsed_centisecs64;
unsigned int centisecs;
unsigned int k;
unsigned int kps;
diff = ktime_sub(stop, start);
elapsed_centisecs64 = ktime_divns(diff, 10*NSEC_PER_MSEC);
centisecs = elapsed_centisecs64;
if (centisecs == 0)
centisecs = 1; /* avoid div-by-zero */
k = nr_pages * (PAGE_SIZE / 1024);
kps = (k * 100) / centisecs;
printk(KERN_INFO "PM: %s %u kbytes in %u.%02u seconds (%u.%02u MB/s)\n",
msg, k,
centisecs / 100, centisecs % 100,
kps / 1000, (kps % 1000) / 10);
}
/**
* create_image - Create a hibernation image.
* @platform_mode: Whether or not to use the platform driver.
*
* Execute device drivers' "late" and "noirq" freeze callbacks, create a
* hibernation image and run the drivers' "noirq" and "early" thaw callbacks.
*
* Control reappears in this routine after the subsequent restore.
*/
static int create_image(int platform_mode)
{
int error;
error = dpm_suspend_end(PMSG_FREEZE);
if (error) {
printk(KERN_ERR "PM: Some devices failed to power down, "
"aborting hibernation\n");
return error;
}
error = platform_pre_snapshot(platform_mode);
if (error || hibernation_test(TEST_PLATFORM))
goto Platform_finish;
error = disable_nonboot_cpus();
if (error || hibernation_test(TEST_CPUS))
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error) {
printk(KERN_ERR "PM: Some system devices failed to power down, "
"aborting hibernation\n");
goto Enable_irqs;
}
if (hibernation_test(TEST_CORE) || pm_wakeup_pending())
goto Power_up;
in_suspend = 1;
save_processor_state();
trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, true);
error = swsusp_arch_suspend();
/* Restore control flow magically appears here */
restore_processor_state();
trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, false);
if (error)
printk(KERN_ERR "PM: Error %d creating hibernation image\n",
error);
if (!in_suspend) {
events_check_enabled = false;
clear_free_pages();
}
platform_leave(platform_mode);
Power_up:
syscore_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
Platform_finish:
platform_finish(platform_mode);
dpm_resume_start(in_suspend ?
(error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE);
return error;
}
/**
* hibernation_snapshot - Quiesce devices and create a hibernation image.
* @platform_mode: If set, use platform driver to prepare for the transition.
*
* This routine must be called with pm_mutex held.
*/
int hibernation_snapshot(int platform_mode)
{
pm_message_t msg;
int error;
pm_suspend_clear_flags();
error = platform_begin(platform_mode);
if (error)
goto Close;
/* Preallocate image memory before shutting down devices. */
error = hibernate_preallocate_memory();
if (error)
goto Close;
error = freeze_kernel_threads();
if (error)
goto Cleanup;
if (hibernation_test(TEST_FREEZER)) {
/*
* Indicate to the caller that we are returning due to a
* successful freezer test.
*/
freezer_test_done = true;
goto Thaw;
}
error = dpm_prepare(PMSG_FREEZE);
if (error) {
dpm_complete(PMSG_RECOVER);
goto Thaw;
}
suspend_console();
pm_restrict_gfp_mask();
error = dpm_suspend(PMSG_FREEZE);
if (error || hibernation_test(TEST_DEVICES))
platform_recover(platform_mode);
else
error = create_image(platform_mode);
/*
* In the case that we call create_image() above, the control
* returns here (1) after the image has been created or the
* image creation has failed and (2) after a successful restore.
*/
/* We may need to release the preallocated image pages here. */
if (error || !in_suspend)
swsusp_free();
msg = in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE;
dpm_resume(msg);
if (error || !in_suspend)
pm_restore_gfp_mask();
resume_console();
dpm_complete(msg);
Close:
platform_end(platform_mode);
return error;
Thaw:
thaw_kernel_threads();
Cleanup:
swsusp_free();
goto Close;
}
int __weak hibernate_resume_nonboot_cpu_disable(void)
{
return disable_nonboot_cpus();
}
/**
* resume_target_kernel - Restore system state from a hibernation image.
* @platform_mode: Whether or not to use the platform driver.
*
* Execute device drivers' "noirq" and "late" freeze callbacks, restore the
* contents of highmem that have not been restored yet from the image and run
* the low-level code that will restore the remaining contents of memory and
* switch to the just restored target kernel.
*/
static int resume_target_kernel(bool platform_mode)
{
int error;
error = dpm_suspend_end(PMSG_QUIESCE);
if (error) {
printk(KERN_ERR "PM: Some devices failed to power down, "
"aborting resume\n");
return error;
}
error = platform_pre_restore(platform_mode);
if (error)
goto Cleanup;
error = hibernate_resume_nonboot_cpu_disable();
if (error)
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error)
goto Enable_irqs;
save_processor_state();
error = restore_highmem();
if (!error) {
error = swsusp_arch_resume();
/*
* The code below is only ever reached in case of a failure.
* Otherwise, execution continues at the place where
* swsusp_arch_suspend() was called.
*/
BUG_ON(!error);
/*
* This call to restore_highmem() reverts the changes made by
* the previous one.
*/
restore_highmem();
}
/*
* The only reason why swsusp_arch_resume() can fail is memory being
* very tight, so we have to free it as soon as we can to avoid
* subsequent failures.
*/
swsusp_free();
restore_processor_state();
touch_softlockup_watchdog();
syscore_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
Cleanup:
platform_restore_cleanup(platform_mode);
dpm_resume_start(PMSG_RECOVER);
return error;
}
/**
* hibernation_restore - Quiesce devices and restore from a hibernation image.
* @platform_mode: If set, use platform driver to prepare for the transition.
*
* This routine must be called with pm_mutex held. If it is successful, control
* reappears in the restored target kernel in hibernation_snapshot().
*/
int hibernation_restore(int platform_mode)
{
int error;
pm_prepare_console();
suspend_console();
pm_restrict_gfp_mask();
error = dpm_suspend_start(PMSG_QUIESCE);
if (!error) {
error = resume_target_kernel(platform_mode);
/*
* The above should either succeed and jump to the new kernel,
* or return with an error. Otherwise things are just
* undefined, so let's be paranoid.
*/
BUG_ON(!error);
}
dpm_resume_end(PMSG_RECOVER);
pm_restore_gfp_mask();
resume_console();
pm_restore_console();
return error;
}
/**
* hibernation_platform_enter - Power off the system using the platform driver.
*/
int hibernation_platform_enter(void)
{
int error;
if (!hibernation_ops)
return -ENOSYS;
/*
* We have cancelled the power transition by running
* hibernation_ops->finish() before saving the image, so we should let
* the firmware know that we're going to enter the sleep state after all
*/
error = hibernation_ops->begin();
if (error)
goto Close;
entering_platform_hibernation = true;
suspend_console();
error = dpm_suspend_start(PMSG_HIBERNATE);
if (error) {
if (hibernation_ops->recover)
hibernation_ops->recover();
goto Resume_devices;
}
error = dpm_suspend_end(PMSG_HIBERNATE);
if (error)
goto Resume_devices;
error = hibernation_ops->prepare();
if (error)
goto Platform_finish;
error = disable_nonboot_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
syscore_suspend();
if (pm_wakeup_pending()) {
error = -EAGAIN;
goto Power_up;
}
hibernation_ops->enter();
/* We should never get here */
while (1);
Power_up:
syscore_resume();
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
Platform_finish:
hibernation_ops->finish();
dpm_resume_start(PMSG_RESTORE);
Resume_devices:
entering_platform_hibernation = false;
dpm_resume_end(PMSG_RESTORE);
resume_console();
Close:
hibernation_ops->end();
return error;
}
/**
* power_down - Shut the machine down for hibernation.
*
* Use the platform driver, if configured, to put the system into the sleep
* state corresponding to hibernation, or try to power it off or reboot,
* depending on the value of hibernation_mode.
*/
static void power_down(void)
{
#ifdef CONFIG_SUSPEND
int error;
#endif
switch (hibernation_mode) {
case HIBERNATION_REBOOT:
kernel_restart(NULL);
break;
case HIBERNATION_PLATFORM:
hibernation_platform_enter();
case HIBERNATION_SHUTDOWN:
if (pm_power_off)
kernel_power_off();
break;
#ifdef CONFIG_SUSPEND
case HIBERNATION_SUSPEND:
error = suspend_devices_and_enter(PM_SUSPEND_MEM);
if (error) {
if (hibernation_ops)
hibernation_mode = HIBERNATION_PLATFORM;
else
hibernation_mode = HIBERNATION_SHUTDOWN;
power_down();
}
/*
* Restore swap signature.
*/
error = swsusp_unmark();
if (error)
printk(KERN_ERR "PM: Swap will be unusable! "
"Try swapon -a.\n");
return;
#endif
}
kernel_halt();
/*
* Valid image is on the disk, if we continue we risk serious data
* corruption after resume.
*/
printk(KERN_CRIT "PM: Please power down manually\n");
while (1)
cpu_relax();
}
static int load_image_and_restore(void)
{
int error;
unsigned int flags;
pr_debug("PM: Loading hibernation image.\n");
lock_device_hotplug();
error = create_basic_memory_bitmaps();
if (error)
goto Unlock;
error = swsusp_read(&flags);
swsusp_close(FMODE_READ);
if (!error)
hibernation_restore(flags & SF_PLATFORM_MODE);
printk(KERN_ERR "PM: Failed to load hibernation image, recovering.\n");
swsusp_free();
free_basic_memory_bitmaps();
Unlock:
unlock_device_hotplug();
return error;
}
/**
* hibernate - Carry out system hibernation, including saving the image.
*/
int hibernate(void)
{
int error, nr_calls = 0;
bool snapshot_test = false;
if (!hibernation_available()) {
pr_debug("PM: Hibernation not available.\n");
return -EPERM;
}
lock_system_sleep();
/* The snapshot device should not be opened while we're running */
if (!atomic_add_unless(&snapshot_device_available, -1, 0)) {
error = -EBUSY;
goto Unlock;
}
pm_prepare_console();
error = __pm_notifier_call_chain(PM_HIBERNATION_PREPARE, -1, &nr_calls);
if (error) {
nr_calls--;
goto Exit;
}
printk(KERN_INFO "PM: Syncing filesystems ... ");
sys_sync();
printk("done.\n");
error = freeze_processes();
if (error)
goto Exit;
lock_device_hotplug();
/* Allocate memory management structures */
error = create_basic_memory_bitmaps();
if (error)
goto Thaw;
error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM);
if (error || freezer_test_done)
goto Free_bitmaps;
if (in_suspend) {
unsigned int flags = 0;
if (hibernation_mode == HIBERNATION_PLATFORM)
flags |= SF_PLATFORM_MODE;
if (nocompress)
flags |= SF_NOCOMPRESS_MODE;
else
flags |= SF_CRC32_MODE;
pr_debug("PM: writing image.\n");
error = swsusp_write(flags);
swsusp_free();
if (!error) {
if (hibernation_mode == HIBERNATION_TEST_RESUME)
snapshot_test = true;
else
power_down();
}
in_suspend = 0;
pm_restore_gfp_mask();
} else {
pr_debug("PM: Image restored successfully.\n");
}
Free_bitmaps:
free_basic_memory_bitmaps();
Thaw:
unlock_device_hotplug();
if (snapshot_test) {
pr_debug("PM: Checking hibernation image\n");
error = swsusp_check();
if (!error)
error = load_image_and_restore();
}
thaw_processes();
/* Don't bother checking whether freezer_test_done is true */
freezer_test_done = false;
Exit:
__pm_notifier_call_chain(PM_POST_HIBERNATION, nr_calls, NULL);
pm_restore_console();
atomic_inc(&snapshot_device_available);
Unlock:
unlock_system_sleep();
return error;
}
/**
* software_resume - Resume from a saved hibernation image.
*
* This routine is called as a late initcall, when all devices have been
* discovered and initialized already.
*
* The image reading code is called to see if there is a hibernation image
* available for reading. If that is the case, devices are quiesced and the
* contents of memory is restored from the saved image.
*
* If this is successful, control reappears in the restored target kernel in
* hibernation_snapshot() which returns to hibernate(). Otherwise, the routine
* attempts to recover gracefully and make the kernel return to the normal mode
* of operation.
*/
static int software_resume(void)
{
int error, nr_calls = 0;
/*
* If the user said "noresume".. bail out early.
*/
if (noresume || !hibernation_available())
return 0;
/*
* name_to_dev_t() below takes a sysfs buffer mutex when sysfs
* is configured into the kernel. Since the regular hibernate
* trigger path is via sysfs which takes a buffer mutex before
* calling hibernate functions (which take pm_mutex) this can
* cause lockdep to complain about a possible ABBA deadlock
* which cannot happen since we're in the boot code here and
* sysfs can't be invoked yet. Therefore, we use a subclass
* here to avoid lockdep complaining.
*/
mutex_lock_nested(&pm_mutex, SINGLE_DEPTH_NESTING);
if (swsusp_resume_device)
goto Check_image;
if (!strlen(resume_file)) {
error = -ENOENT;
goto Unlock;
}
pr_debug("PM: Checking hibernation image partition %s\n", resume_file);
if (resume_delay) {
printk(KERN_INFO "Waiting %dsec before reading resume device...\n",
resume_delay);
ssleep(resume_delay);
}
/* Check if the device is there */
swsusp_resume_device = name_to_dev_t(resume_file);
/*
* name_to_dev_t is ineffective to verify parition if resume_file is in
* integer format. (e.g. major:minor)
*/
if (isdigit(resume_file[0]) && resume_wait) {
int partno;
while (!get_gendisk(swsusp_resume_device, &partno))
msleep(10);
}
if (!swsusp_resume_device) {
/*
* Some device discovery might still be in progress; we need
* to wait for this to finish.
*/
wait_for_device_probe();
if (resume_wait) {
while ((swsusp_resume_device = name_to_dev_t(resume_file)) == 0)
msleep(10);
async_synchronize_full();
}
swsusp_resume_device = name_to_dev_t(resume_file);
if (!swsusp_resume_device) {
error = -ENODEV;
goto Unlock;
}
}
Check_image:
pr_debug("PM: Hibernation image partition %d:%d present\n",
MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device));
pr_debug("PM: Looking for hibernation image.\n");
error = swsusp_check();
if (error)
goto Unlock;
/* The snapshot device should not be opened while we're running */
if (!atomic_add_unless(&snapshot_device_available, -1, 0)) {
error = -EBUSY;
swsusp_close(FMODE_READ);
goto Unlock;
}
pm_prepare_console();
error = __pm_notifier_call_chain(PM_RESTORE_PREPARE, -1, &nr_calls);
if (error) {
nr_calls--;
goto Close_Finish;
}
pr_debug("PM: Preparing processes for restore.\n");
error = freeze_processes();
if (error)
goto Close_Finish;
error = load_image_and_restore();
thaw_processes();
Finish:
__pm_notifier_call_chain(PM_POST_RESTORE, nr_calls, NULL);
pm_restore_console();
atomic_inc(&snapshot_device_available);
/* For success case, the suspend path will release the lock */
Unlock:
mutex_unlock(&pm_mutex);
pr_debug("PM: Hibernation image not present or could not be loaded.\n");
return error;
Close_Finish:
swsusp_close(FMODE_READ);
goto Finish;
}
late_initcall_sync(software_resume);
static const char * const hibernation_modes[] = {
[HIBERNATION_PLATFORM] = "platform",
[HIBERNATION_SHUTDOWN] = "shutdown",
[HIBERNATION_REBOOT] = "reboot",
#ifdef CONFIG_SUSPEND
[HIBERNATION_SUSPEND] = "suspend",
#endif
[HIBERNATION_TEST_RESUME] = "test_resume",
};
/*
* /sys/power/disk - Control hibernation mode.
*
* Hibernation can be handled in several ways. There are a few different ways
* to put the system into the sleep state: using the platform driver (e.g. ACPI
* or other hibernation_ops), powering it off or rebooting it (for testing
* mostly).
*
* The sysfs file /sys/power/disk provides an interface for selecting the
* hibernation mode to use. Reading from this file causes the available modes
* to be printed. There are 3 modes that can be supported:
*
* 'platform'
* 'shutdown'
* 'reboot'
*
* If a platform hibernation driver is in use, 'platform' will be supported
* and will be used by default. Otherwise, 'shutdown' will be used by default.
* The selected option (i.e. the one corresponding to the current value of
* hibernation_mode) is enclosed by a square bracket.
*
* To select a given hibernation mode it is necessary to write the mode's
* string representation (as returned by reading from /sys/power/disk) back
* into /sys/power/disk.
*/
static ssize_t disk_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
int i;
char *start = buf;
if (!hibernation_available())
return sprintf(buf, "[disabled]\n");
for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) {
if (!hibernation_modes[i])
continue;
switch (i) {
case HIBERNATION_SHUTDOWN:
case HIBERNATION_REBOOT:
#ifdef CONFIG_SUSPEND
case HIBERNATION_SUSPEND:
#endif
case HIBERNATION_TEST_RESUME:
break;
case HIBERNATION_PLATFORM:
if (hibernation_ops)
break;
/* not a valid mode, continue with loop */
continue;
}
if (i == hibernation_mode)
buf += sprintf(buf, "[%s] ", hibernation_modes[i]);
else
buf += sprintf(buf, "%s ", hibernation_modes[i]);
}
buf += sprintf(buf, "\n");
return buf-start;
}
static ssize_t disk_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
int error = 0;
int i;
int len;
char *p;
int mode = HIBERNATION_INVALID;
if (!hibernation_available())
return -EPERM;
p = memchr(buf, '\n', n);
len = p ? p - buf : n;
lock_system_sleep();
for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) {
if (len == strlen(hibernation_modes[i])
&& !strncmp(buf, hibernation_modes[i], len)) {
mode = i;
break;
}
}
if (mode != HIBERNATION_INVALID) {
switch (mode) {
case HIBERNATION_SHUTDOWN:
case HIBERNATION_REBOOT:
#ifdef CONFIG_SUSPEND
case HIBERNATION_SUSPEND:
#endif
case HIBERNATION_TEST_RESUME:
hibernation_mode = mode;
break;
case HIBERNATION_PLATFORM:
if (hibernation_ops)
hibernation_mode = mode;
else
error = -EINVAL;
}
} else
error = -EINVAL;
if (!error)
pr_debug("PM: Hibernation mode set to '%s'\n",
hibernation_modes[mode]);
unlock_system_sleep();
return error ? error : n;
}
power_attr(disk);
static ssize_t resume_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf,"%d:%d\n", MAJOR(swsusp_resume_device),
MINOR(swsusp_resume_device));
}
static ssize_t resume_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
dev_t res;
int len = n;
char *name;
if (len && buf[len-1] == '\n')
len--;
name = kstrndup(buf, len, GFP_KERNEL);
if (!name)
return -ENOMEM;
res = name_to_dev_t(name);
kfree(name);
if (!res)
return -EINVAL;
lock_system_sleep();
swsusp_resume_device = res;
unlock_system_sleep();
printk(KERN_INFO "PM: Starting manual resume from disk\n");
noresume = 0;
software_resume();
return n;
}
power_attr(resume);
static ssize_t image_size_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%lu\n", image_size);
}
static ssize_t image_size_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
unsigned long size;
if (sscanf(buf, "%lu", &size) == 1) {
image_size = size;
return n;
}
return -EINVAL;
}
power_attr(image_size);
static ssize_t reserved_size_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", reserved_size);
}
static ssize_t reserved_size_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t n)
{
unsigned long size;
if (sscanf(buf, "%lu", &size) == 1) {
reserved_size = size;
return n;
}
return -EINVAL;
}
power_attr(reserved_size);
static struct attribute * g[] = {
&disk_attr.attr,
&resume_attr.attr,
&image_size_attr.attr,
&reserved_size_attr.attr,
NULL,
};
static struct attribute_group attr_group = {
.attrs = g,
};
static int __init pm_disk_init(void)
{
return sysfs_create_group(power_kobj, &attr_group);
}
core_initcall(pm_disk_init);
static int __init resume_setup(char *str)
{
if (noresume)
return 1;
strncpy( resume_file, str, 255 );
return 1;
}
static int __init resume_offset_setup(char *str)
{
unsigned long long offset;
if (noresume)
return 1;
if (sscanf(str, "%llu", &offset) == 1)
swsusp_resume_block = offset;
return 1;
}
static int __init hibernate_setup(char *str)
{
if (!strncmp(str, "noresume", 8)) {
noresume = 1;
} else if (!strncmp(str, "nocompress", 10)) {
nocompress = 1;
} else if (!strncmp(str, "no", 2)) {
noresume = 1;
nohibernate = 1;
} else if (IS_ENABLED(CONFIG_DEBUG_RODATA)
&& !strncmp(str, "protect_image", 13)) {
enable_restore_image_protection();
}
return 1;
}
static int __init noresume_setup(char *str)
{
noresume = 1;
return 1;
}
static int __init resumewait_setup(char *str)
{
resume_wait = 1;
return 1;
}
static int __init resumedelay_setup(char *str)
{
int rc = kstrtouint(str, 0, &resume_delay);
if (rc)
return rc;
return 1;
}
static int __init nohibernate_setup(char *str)
{
noresume = 1;
nohibernate = 1;
return 1;
}
__setup("noresume", noresume_setup);
__setup("resume_offset=", resume_offset_setup);
__setup("resume=", resume_setup);
__setup("hibernate=", hibernate_setup);
__setup("resumewait", resumewait_setup);
__setup("resumedelay=", resumedelay_setup);
__setup("nohibernate", nohibernate_setup);