remarkable-linux/kernel/slow-work.c
Chris Peterson 009789f040 slow-work: use round_jiffies() for thread pool's cull and OOM timers
Round the slow work queue's cull and OOM timeouts to whole second boundary
with round_jiffies().  The slow work queue uses a pair of timers to cull
idle threads and, after OOM, to delay new thread creation.

This patch also extracts the mod_timer() logic for the cull timer into a
separate helper function.

By rounding non-time-critical timers such as these to whole seconds, they
will be batched up to fire at the same time rather than being spread out.
This allows the CPU wake up less, which saves power.

Signed-off-by: Chris Peterson <cpeterso@cpeterso.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:49 -07:00

646 lines
18 KiB
C

/* Worker thread pool for slow items, such as filesystem lookups or mkdirs
*
* Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*
* See Documentation/slow-work.txt
*/
#include <linux/module.h>
#include <linux/slow-work.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/wait.h>
#define SLOW_WORK_CULL_TIMEOUT (5 * HZ) /* cull threads 5s after running out of
* things to do */
#define SLOW_WORK_OOM_TIMEOUT (5 * HZ) /* can't start new threads for 5s after
* OOM */
static void slow_work_cull_timeout(unsigned long);
static void slow_work_oom_timeout(unsigned long);
#ifdef CONFIG_SYSCTL
static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *,
void __user *, size_t *, loff_t *);
#endif
/*
* The pool of threads has at least min threads in it as long as someone is
* using the facility, and may have as many as max.
*
* A portion of the pool may be processing very slow operations.
*/
static unsigned slow_work_min_threads = 2;
static unsigned slow_work_max_threads = 4;
static unsigned vslow_work_proportion = 50; /* % of threads that may process
* very slow work */
#ifdef CONFIG_SYSCTL
static const int slow_work_min_min_threads = 2;
static int slow_work_max_max_threads = 255;
static const int slow_work_min_vslow = 1;
static const int slow_work_max_vslow = 99;
ctl_table slow_work_sysctls[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "min-threads",
.data = &slow_work_min_threads,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = slow_work_min_threads_sysctl,
.extra1 = (void *) &slow_work_min_min_threads,
.extra2 = &slow_work_max_threads,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "max-threads",
.data = &slow_work_max_threads,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = slow_work_max_threads_sysctl,
.extra1 = &slow_work_min_threads,
.extra2 = (void *) &slow_work_max_max_threads,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "vslow-percentage",
.data = &vslow_work_proportion,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &slow_work_min_vslow,
.extra2 = (void *) &slow_work_max_vslow,
},
{ .ctl_name = 0 }
};
#endif
/*
* The active state of the thread pool
*/
static atomic_t slow_work_thread_count;
static atomic_t vslow_work_executing_count;
static bool slow_work_may_not_start_new_thread;
static bool slow_work_cull; /* cull a thread due to lack of activity */
static DEFINE_TIMER(slow_work_cull_timer, slow_work_cull_timeout, 0, 0);
static DEFINE_TIMER(slow_work_oom_timer, slow_work_oom_timeout, 0, 0);
static struct slow_work slow_work_new_thread; /* new thread starter */
/*
* The queues of work items and the lock governing access to them. These are
* shared between all the CPUs. It doesn't make sense to have per-CPU queues
* as the number of threads bears no relation to the number of CPUs.
*
* There are two queues of work items: one for slow work items, and one for
* very slow work items.
*/
static LIST_HEAD(slow_work_queue);
static LIST_HEAD(vslow_work_queue);
static DEFINE_SPINLOCK(slow_work_queue_lock);
/*
* The thread controls. A variable used to signal to the threads that they
* should exit when the queue is empty, a waitqueue used by the threads to wait
* for signals, and a completion set by the last thread to exit.
*/
static bool slow_work_threads_should_exit;
static DECLARE_WAIT_QUEUE_HEAD(slow_work_thread_wq);
static DECLARE_COMPLETION(slow_work_last_thread_exited);
/*
* The number of users of the thread pool and its lock. Whilst this is zero we
* have no threads hanging around, and when this reaches zero, we wait for all
* active or queued work items to complete and kill all the threads we do have.
*/
static int slow_work_user_count;
static DEFINE_MUTEX(slow_work_user_lock);
/*
* Calculate the maximum number of active threads in the pool that are
* permitted to process very slow work items.
*
* The answer is rounded up to at least 1, but may not equal or exceed the
* maximum number of the threads in the pool. This means we always have at
* least one thread that can process slow work items, and we always have at
* least one thread that won't get tied up doing so.
*/
static unsigned slow_work_calc_vsmax(void)
{
unsigned vsmax;
vsmax = atomic_read(&slow_work_thread_count) * vslow_work_proportion;
vsmax /= 100;
vsmax = max(vsmax, 1U);
return min(vsmax, slow_work_max_threads - 1);
}
/*
* Attempt to execute stuff queued on a slow thread. Return true if we managed
* it, false if there was nothing to do.
*/
static bool slow_work_execute(void)
{
struct slow_work *work = NULL;
unsigned vsmax;
bool very_slow;
vsmax = slow_work_calc_vsmax();
/* see if we can schedule a new thread to be started if we're not
* keeping up with the work */
if (!waitqueue_active(&slow_work_thread_wq) &&
(!list_empty(&slow_work_queue) || !list_empty(&vslow_work_queue)) &&
atomic_read(&slow_work_thread_count) < slow_work_max_threads &&
!slow_work_may_not_start_new_thread)
slow_work_enqueue(&slow_work_new_thread);
/* find something to execute */
spin_lock_irq(&slow_work_queue_lock);
if (!list_empty(&vslow_work_queue) &&
atomic_read(&vslow_work_executing_count) < vsmax) {
work = list_entry(vslow_work_queue.next,
struct slow_work, link);
if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags))
BUG();
list_del_init(&work->link);
atomic_inc(&vslow_work_executing_count);
very_slow = true;
} else if (!list_empty(&slow_work_queue)) {
work = list_entry(slow_work_queue.next,
struct slow_work, link);
if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags))
BUG();
list_del_init(&work->link);
very_slow = false;
} else {
very_slow = false; /* avoid the compiler warning */
}
spin_unlock_irq(&slow_work_queue_lock);
if (!work)
return false;
if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags))
BUG();
work->ops->execute(work);
if (very_slow)
atomic_dec(&vslow_work_executing_count);
clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags);
/* if someone tried to enqueue the item whilst we were executing it,
* then it'll be left unenqueued to avoid multiple threads trying to
* execute it simultaneously
*
* there is, however, a race between us testing the pending flag and
* getting the spinlock, and between the enqueuer setting the pending
* flag and getting the spinlock, so we use a deferral bit to tell us
* if the enqueuer got there first
*/
if (test_bit(SLOW_WORK_PENDING, &work->flags)) {
spin_lock_irq(&slow_work_queue_lock);
if (!test_bit(SLOW_WORK_EXECUTING, &work->flags) &&
test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags))
goto auto_requeue;
spin_unlock_irq(&slow_work_queue_lock);
}
work->ops->put_ref(work);
return true;
auto_requeue:
/* we must complete the enqueue operation
* - we transfer our ref on the item back to the appropriate queue
* - don't wake another thread up as we're awake already
*/
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags))
list_add_tail(&work->link, &vslow_work_queue);
else
list_add_tail(&work->link, &slow_work_queue);
spin_unlock_irq(&slow_work_queue_lock);
return true;
}
/**
* slow_work_enqueue - Schedule a slow work item for processing
* @work: The work item to queue
*
* Schedule a slow work item for processing. If the item is already undergoing
* execution, this guarantees not to re-enter the execution routine until the
* first execution finishes.
*
* The item is pinned by this function as it retains a reference to it, managed
* through the item operations. The item is unpinned once it has been
* executed.
*
* An item may hog the thread that is running it for a relatively large amount
* of time, sufficient, for example, to perform several lookup, mkdir, create
* and setxattr operations. It may sleep on I/O and may sleep to obtain locks.
*
* Conversely, if a number of items are awaiting processing, it may take some
* time before any given item is given attention. The number of threads in the
* pool may be increased to deal with demand, but only up to a limit.
*
* If SLOW_WORK_VERY_SLOW is set on the work item, then it will be placed in
* the very slow queue, from which only a portion of the threads will be
* allowed to pick items to execute. This ensures that very slow items won't
* overly block ones that are just ordinarily slow.
*
* Returns 0 if successful, -EAGAIN if not.
*/
int slow_work_enqueue(struct slow_work *work)
{
unsigned long flags;
BUG_ON(slow_work_user_count <= 0);
BUG_ON(!work);
BUG_ON(!work->ops);
BUG_ON(!work->ops->get_ref);
/* when honouring an enqueue request, we only promise that we will run
* the work function in the future; we do not promise to run it once
* per enqueue request
*
* we use the PENDING bit to merge together repeat requests without
* having to disable IRQs and take the spinlock, whilst still
* maintaining our promise
*/
if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) {
spin_lock_irqsave(&slow_work_queue_lock, flags);
/* we promise that we will not attempt to execute the work
* function in more than one thread simultaneously
*
* this, however, leaves us with a problem if we're asked to
* enqueue the work whilst someone is executing the work
* function as simply queueing the work immediately means that
* another thread may try executing it whilst it is already
* under execution
*
* to deal with this, we set the ENQ_DEFERRED bit instead of
* enqueueing, and the thread currently executing the work
* function will enqueue the work item when the work function
* returns and it has cleared the EXECUTING bit
*/
if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) {
set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags);
} else {
if (work->ops->get_ref(work) < 0)
goto cant_get_ref;
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags))
list_add_tail(&work->link, &vslow_work_queue);
else
list_add_tail(&work->link, &slow_work_queue);
wake_up(&slow_work_thread_wq);
}
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
}
return 0;
cant_get_ref:
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
return -EAGAIN;
}
EXPORT_SYMBOL(slow_work_enqueue);
/*
* Schedule a cull of the thread pool at some time in the near future
*/
static void slow_work_schedule_cull(void)
{
mod_timer(&slow_work_cull_timer,
round_jiffies(jiffies + SLOW_WORK_CULL_TIMEOUT));
}
/*
* Worker thread culling algorithm
*/
static bool slow_work_cull_thread(void)
{
unsigned long flags;
bool do_cull = false;
spin_lock_irqsave(&slow_work_queue_lock, flags);
if (slow_work_cull) {
slow_work_cull = false;
if (list_empty(&slow_work_queue) &&
list_empty(&vslow_work_queue) &&
atomic_read(&slow_work_thread_count) >
slow_work_min_threads) {
slow_work_schedule_cull();
do_cull = true;
}
}
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
return do_cull;
}
/*
* Determine if there is slow work available for dispatch
*/
static inline bool slow_work_available(int vsmax)
{
return !list_empty(&slow_work_queue) ||
(!list_empty(&vslow_work_queue) &&
atomic_read(&vslow_work_executing_count) < vsmax);
}
/*
* Worker thread dispatcher
*/
static int slow_work_thread(void *_data)
{
int vsmax;
DEFINE_WAIT(wait);
set_freezable();
set_user_nice(current, -5);
for (;;) {
vsmax = vslow_work_proportion;
vsmax *= atomic_read(&slow_work_thread_count);
vsmax /= 100;
prepare_to_wait_exclusive(&slow_work_thread_wq, &wait,
TASK_INTERRUPTIBLE);
if (!freezing(current) &&
!slow_work_threads_should_exit &&
!slow_work_available(vsmax) &&
!slow_work_cull)
schedule();
finish_wait(&slow_work_thread_wq, &wait);
try_to_freeze();
vsmax = vslow_work_proportion;
vsmax *= atomic_read(&slow_work_thread_count);
vsmax /= 100;
if (slow_work_available(vsmax) && slow_work_execute()) {
cond_resched();
if (list_empty(&slow_work_queue) &&
list_empty(&vslow_work_queue) &&
atomic_read(&slow_work_thread_count) >
slow_work_min_threads)
slow_work_schedule_cull();
continue;
}
if (slow_work_threads_should_exit)
break;
if (slow_work_cull && slow_work_cull_thread())
break;
}
if (atomic_dec_and_test(&slow_work_thread_count))
complete_and_exit(&slow_work_last_thread_exited, 0);
return 0;
}
/*
* Handle thread cull timer expiration
*/
static void slow_work_cull_timeout(unsigned long data)
{
slow_work_cull = true;
wake_up(&slow_work_thread_wq);
}
/*
* Get a reference on slow work thread starter
*/
static int slow_work_new_thread_get_ref(struct slow_work *work)
{
return 0;
}
/*
* Drop a reference on slow work thread starter
*/
static void slow_work_new_thread_put_ref(struct slow_work *work)
{
}
/*
* Start a new slow work thread
*/
static void slow_work_new_thread_execute(struct slow_work *work)
{
struct task_struct *p;
if (slow_work_threads_should_exit)
return;
if (atomic_read(&slow_work_thread_count) >= slow_work_max_threads)
return;
if (!mutex_trylock(&slow_work_user_lock))
return;
slow_work_may_not_start_new_thread = true;
atomic_inc(&slow_work_thread_count);
p = kthread_run(slow_work_thread, NULL, "kslowd");
if (IS_ERR(p)) {
printk(KERN_DEBUG "Slow work thread pool: OOM\n");
if (atomic_dec_and_test(&slow_work_thread_count))
BUG(); /* we're running on a slow work thread... */
mod_timer(&slow_work_oom_timer,
round_jiffies(jiffies + SLOW_WORK_OOM_TIMEOUT));
} else {
/* ratelimit the starting of new threads */
mod_timer(&slow_work_oom_timer, jiffies + 1);
}
mutex_unlock(&slow_work_user_lock);
}
static const struct slow_work_ops slow_work_new_thread_ops = {
.get_ref = slow_work_new_thread_get_ref,
.put_ref = slow_work_new_thread_put_ref,
.execute = slow_work_new_thread_execute,
};
/*
* post-OOM new thread start suppression expiration
*/
static void slow_work_oom_timeout(unsigned long data)
{
slow_work_may_not_start_new_thread = false;
}
#ifdef CONFIG_SYSCTL
/*
* Handle adjustment of the minimum number of threads
*/
static int slow_work_min_threads_sysctl(struct ctl_table *table, int write,
struct file *filp, void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
int n;
if (ret == 0) {
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count > 0) {
/* see if we need to start or stop threads */
n = atomic_read(&slow_work_thread_count) -
slow_work_min_threads;
if (n < 0 && !slow_work_may_not_start_new_thread)
slow_work_enqueue(&slow_work_new_thread);
else if (n > 0)
slow_work_schedule_cull();
}
mutex_unlock(&slow_work_user_lock);
}
return ret;
}
/*
* Handle adjustment of the maximum number of threads
*/
static int slow_work_max_threads_sysctl(struct ctl_table *table, int write,
struct file *filp, void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
int n;
if (ret == 0) {
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count > 0) {
/* see if we need to stop threads */
n = slow_work_max_threads -
atomic_read(&slow_work_thread_count);
if (n < 0)
slow_work_schedule_cull();
}
mutex_unlock(&slow_work_user_lock);
}
return ret;
}
#endif /* CONFIG_SYSCTL */
/**
* slow_work_register_user - Register a user of the facility
*
* Register a user of the facility, starting up the initial threads if there
* aren't any other users at this point. This will return 0 if successful, or
* an error if not.
*/
int slow_work_register_user(void)
{
struct task_struct *p;
int loop;
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count == 0) {
printk(KERN_NOTICE "Slow work thread pool: Starting up\n");
init_completion(&slow_work_last_thread_exited);
slow_work_threads_should_exit = false;
slow_work_init(&slow_work_new_thread,
&slow_work_new_thread_ops);
slow_work_may_not_start_new_thread = false;
slow_work_cull = false;
/* start the minimum number of threads */
for (loop = 0; loop < slow_work_min_threads; loop++) {
atomic_inc(&slow_work_thread_count);
p = kthread_run(slow_work_thread, NULL, "kslowd");
if (IS_ERR(p))
goto error;
}
printk(KERN_NOTICE "Slow work thread pool: Ready\n");
}
slow_work_user_count++;
mutex_unlock(&slow_work_user_lock);
return 0;
error:
if (atomic_dec_and_test(&slow_work_thread_count))
complete(&slow_work_last_thread_exited);
if (loop > 0) {
printk(KERN_ERR "Slow work thread pool:"
" Aborting startup on ENOMEM\n");
slow_work_threads_should_exit = true;
wake_up_all(&slow_work_thread_wq);
wait_for_completion(&slow_work_last_thread_exited);
printk(KERN_ERR "Slow work thread pool: Aborted\n");
}
mutex_unlock(&slow_work_user_lock);
return PTR_ERR(p);
}
EXPORT_SYMBOL(slow_work_register_user);
/**
* slow_work_unregister_user - Unregister a user of the facility
*
* Unregister a user of the facility, killing all the threads if this was the
* last one.
*/
void slow_work_unregister_user(void)
{
mutex_lock(&slow_work_user_lock);
BUG_ON(slow_work_user_count <= 0);
slow_work_user_count--;
if (slow_work_user_count == 0) {
printk(KERN_NOTICE "Slow work thread pool: Shutting down\n");
slow_work_threads_should_exit = true;
del_timer_sync(&slow_work_cull_timer);
del_timer_sync(&slow_work_oom_timer);
wake_up_all(&slow_work_thread_wq);
wait_for_completion(&slow_work_last_thread_exited);
printk(KERN_NOTICE "Slow work thread pool:"
" Shut down complete\n");
}
mutex_unlock(&slow_work_user_lock);
}
EXPORT_SYMBOL(slow_work_unregister_user);
/*
* Initialise the slow work facility
*/
static int __init init_slow_work(void)
{
unsigned nr_cpus = num_possible_cpus();
if (slow_work_max_threads < nr_cpus)
slow_work_max_threads = nr_cpus;
#ifdef CONFIG_SYSCTL
if (slow_work_max_max_threads < nr_cpus * 2)
slow_work_max_max_threads = nr_cpus * 2;
#endif
return 0;
}
subsys_initcall(init_slow_work);