remarkable-linux/drivers/staging/greybus/spilib.c
Greg Kroah-Hartman 148e0b8f48 staging: greybus: spi: remove KERNEL_VERSION checks
No need to support older kernel versions in the Greybus SPI and spilib
driver, so remove the checks as needed, we can now rely on all of the
correct SPI core apis being present.

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2016-09-19 16:43:27 +02:00

566 lines
14 KiB
C

/*
* Greybus SPI library
*
* Copyright 2014-2016 Google Inc.
* Copyright 2014-2016 Linaro Ltd.
*
* Released under the GPLv2 only.
*/
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include "greybus.h"
#include "spilib.h"
struct gb_spilib {
struct gb_connection *connection;
struct device *parent;
struct spi_transfer *first_xfer;
struct spi_transfer *last_xfer;
struct spilib_ops *ops;
u32 rx_xfer_offset;
u32 tx_xfer_offset;
u32 last_xfer_size;
unsigned int op_timeout;
u16 mode;
u16 flags;
u32 bits_per_word_mask;
u8 num_chipselect;
u32 min_speed_hz;
u32 max_speed_hz;
};
#define GB_SPI_STATE_MSG_DONE ((void *)0)
#define GB_SPI_STATE_MSG_IDLE ((void *)1)
#define GB_SPI_STATE_MSG_RUNNING ((void *)2)
#define GB_SPI_STATE_OP_READY ((void *)3)
#define GB_SPI_STATE_OP_DONE ((void *)4)
#define GB_SPI_STATE_MSG_ERROR ((void *)-1)
#define XFER_TIMEOUT_TOLERANCE 200
static struct spi_master *get_master_from_spi(struct gb_spilib *spi)
{
return gb_connection_get_data(spi->connection);
}
static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max)
{
size_t headers_size;
data_max -= sizeof(struct gb_spi_transfer_request);
headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
return tx_size + headers_size > data_max ? 0 : 1;
}
static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len,
size_t data_max)
{
size_t rx_xfer_size;
data_max -= sizeof(struct gb_spi_transfer_response);
if (rx_size + len > data_max)
rx_xfer_size = data_max - rx_size;
else
rx_xfer_size = len;
/* if this is a write_read, for symmetry read the same as write */
if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size)
rx_xfer_size = *tx_xfer_size;
if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size)
*tx_xfer_size = rx_xfer_size;
return rx_xfer_size;
}
static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len,
size_t data_max)
{
size_t headers_size;
data_max -= sizeof(struct gb_spi_transfer_request);
headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
if (tx_size + headers_size + len > data_max)
return data_max - (tx_size + sizeof(struct gb_spi_transfer));
return len;
}
static void clean_xfer_state(struct gb_spilib *spi)
{
spi->first_xfer = NULL;
spi->last_xfer = NULL;
spi->rx_xfer_offset = 0;
spi->tx_xfer_offset = 0;
spi->last_xfer_size = 0;
spi->op_timeout = 0;
}
static bool is_last_xfer_done(struct gb_spilib *spi)
{
struct spi_transfer *last_xfer = spi->last_xfer;
if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) ||
(spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len))
return true;
return false;
}
static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg)
{
struct spi_transfer *last_xfer = spi->last_xfer;
if (msg->state != GB_SPI_STATE_OP_DONE)
return 0;
/*
* if we transferred all content of the last transfer, reset values and
* check if this was the last transfer in the message
*/
if (is_last_xfer_done(spi)) {
spi->tx_xfer_offset = 0;
spi->rx_xfer_offset = 0;
spi->op_timeout = 0;
if (last_xfer == list_last_entry(&msg->transfers,
struct spi_transfer,
transfer_list))
msg->state = GB_SPI_STATE_MSG_DONE;
else
spi->first_xfer = list_next_entry(last_xfer,
transfer_list);
return 0;
}
spi->first_xfer = last_xfer;
if (last_xfer->tx_buf)
spi->tx_xfer_offset += spi->last_xfer_size;
if (last_xfer->rx_buf)
spi->rx_xfer_offset += spi->last_xfer_size;
return 0;
}
static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer,
struct spi_message *msg)
{
if (xfer == list_last_entry(&msg->transfers, struct spi_transfer,
transfer_list))
return NULL;
return list_next_entry(xfer, transfer_list);
}
/* Routines to transfer data */
static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi,
struct gb_connection *connection, struct spi_message *msg)
{
struct gb_spi_transfer_request *request;
struct spi_device *dev = msg->spi;
struct spi_transfer *xfer;
struct gb_spi_transfer *gb_xfer;
struct gb_operation *operation;
u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size;
u32 tx_xfer_size = 0, rx_xfer_size = 0, len;
u32 total_len = 0;
unsigned int xfer_timeout;
size_t data_max;
void *tx_data;
data_max = gb_operation_get_payload_size_max(connection);
xfer = spi->first_xfer;
/* Find number of transfers queued and tx/rx length in the message */
while (msg->state != GB_SPI_STATE_OP_READY) {
msg->state = GB_SPI_STATE_MSG_RUNNING;
spi->last_xfer = xfer;
if (!xfer->tx_buf && !xfer->rx_buf) {
dev_err(spi->parent,
"bufferless transfer, length %u\n", xfer->len);
msg->state = GB_SPI_STATE_MSG_ERROR;
return NULL;
}
tx_xfer_size = 0;
rx_xfer_size = 0;
if (xfer->tx_buf) {
len = xfer->len - spi->tx_xfer_offset;
if (!tx_header_fit_operation(tx_size, count, data_max))
break;
tx_xfer_size = calc_tx_xfer_size(tx_size, count,
len, data_max);
spi->last_xfer_size = tx_xfer_size;
}
if (xfer->rx_buf) {
len = xfer->len - spi->rx_xfer_offset;
rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size,
len, data_max);
spi->last_xfer_size = rx_xfer_size;
}
tx_size += tx_xfer_size;
rx_size += rx_xfer_size;
total_len += spi->last_xfer_size;
count++;
xfer = get_next_xfer(xfer, msg);
if (!xfer || total_len >= data_max)
msg->state = GB_SPI_STATE_OP_READY;
}
/*
* In addition to space for all message descriptors we need
* to have enough to hold all tx data.
*/
request_size = sizeof(*request);
request_size += count * sizeof(*gb_xfer);
request_size += tx_size;
/* Response consists only of incoming data */
operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER,
request_size, rx_size, GFP_KERNEL);
if (!operation)
return NULL;
request = operation->request->payload;
request->count = cpu_to_le16(count);
request->mode = dev->mode;
request->chip_select = dev->chip_select;
gb_xfer = &request->transfers[0];
tx_data = gb_xfer + count; /* place tx data after last gb_xfer */
/* Fill in the transfers array */
xfer = spi->first_xfer;
while (msg->state != GB_SPI_STATE_OP_DONE) {
if (xfer == spi->last_xfer)
xfer_len = spi->last_xfer_size;
else
xfer_len = xfer->len;
/* make sure we do not timeout in a slow transfer */
xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz;
xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT;
if (xfer_timeout > spi->op_timeout)
spi->op_timeout = xfer_timeout;
gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz);
gb_xfer->len = cpu_to_le32(xfer_len);
gb_xfer->delay_usecs = cpu_to_le16(xfer->delay_usecs);
gb_xfer->cs_change = xfer->cs_change;
gb_xfer->bits_per_word = xfer->bits_per_word;
/* Copy tx data */
if (xfer->tx_buf) {
gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE;
memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset,
xfer_len);
tx_data += xfer_len;
}
if (xfer->rx_buf)
gb_xfer->xfer_flags |= GB_SPI_XFER_READ;
if (xfer == spi->last_xfer) {
if (!is_last_xfer_done(spi))
gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS;
msg->state = GB_SPI_STATE_OP_DONE;
continue;
}
gb_xfer++;
xfer = get_next_xfer(xfer, msg);
}
msg->actual_length += total_len;
return operation;
}
static void gb_spi_decode_response(struct gb_spilib *spi,
struct spi_message *msg,
struct gb_spi_transfer_response *response)
{
struct spi_transfer *xfer = spi->first_xfer;
void *rx_data = response->data;
u32 xfer_len;
while (xfer) {
/* Copy rx data */
if (xfer->rx_buf) {
if (xfer == spi->first_xfer)
xfer_len = xfer->len - spi->rx_xfer_offset;
else if (xfer == spi->last_xfer)
xfer_len = spi->last_xfer_size;
else
xfer_len = xfer->len;
memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data,
xfer_len);
rx_data += xfer_len;
}
if (xfer == spi->last_xfer)
break;
xfer = list_next_entry(xfer, transfer_list);
}
}
static int gb_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
struct gb_connection *connection = spi->connection;
struct gb_spi_transfer_response *response;
struct gb_operation *operation;
int ret = 0;
spi->first_xfer = list_first_entry_or_null(&msg->transfers,
struct spi_transfer,
transfer_list);
if (!spi->first_xfer) {
ret = -ENOMEM;
goto out;
}
msg->state = GB_SPI_STATE_MSG_IDLE;
while (msg->state != GB_SPI_STATE_MSG_DONE &&
msg->state != GB_SPI_STATE_MSG_ERROR) {
operation = gb_spi_operation_create(spi, connection, msg);
if (!operation) {
msg->state = GB_SPI_STATE_MSG_ERROR;
ret = -EINVAL;
continue;
}
ret = gb_operation_request_send_sync_timeout(operation,
spi->op_timeout);
if (!ret) {
response = operation->response->payload;
if (response)
gb_spi_decode_response(spi, msg, response);
} else {
dev_err(spi->parent,
"transfer operation failed: %d\n", ret);
msg->state = GB_SPI_STATE_MSG_ERROR;
}
gb_operation_put(operation);
setup_next_xfer(spi, msg);
}
out:
msg->status = ret;
clean_xfer_state(spi);
spi_finalize_current_message(master);
return ret;
}
static int gb_spi_prepare_transfer_hardware(struct spi_master *master)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
return spi->ops->prepare_transfer_hardware(spi->parent);
}
static int gb_spi_unprepare_transfer_hardware(struct spi_master *master)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
spi->ops->unprepare_transfer_hardware(spi->parent);
return 0;
}
static int gb_spi_setup(struct spi_device *spi)
{
/* Nothing to do for now */
return 0;
}
static void gb_spi_cleanup(struct spi_device *spi)
{
/* Nothing to do for now */
}
/* Routines to get controller information */
/*
* Map Greybus spi mode bits/flags/bpw into Linux ones.
* All bits are same for now and so these macro's return same values.
*/
#define gb_spi_mode_map(mode) mode
#define gb_spi_flags_map(flags) flags
static int gb_spi_get_master_config(struct gb_spilib *spi)
{
struct gb_spi_master_config_response response;
u16 mode, flags;
int ret;
ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG,
NULL, 0, &response, sizeof(response));
if (ret < 0)
return ret;
mode = le16_to_cpu(response.mode);
spi->mode = gb_spi_mode_map(mode);
flags = le16_to_cpu(response.flags);
spi->flags = gb_spi_flags_map(flags);
spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask);
spi->num_chipselect = response.num_chipselect;
spi->min_speed_hz = le32_to_cpu(response.min_speed_hz);
spi->max_speed_hz = le32_to_cpu(response.max_speed_hz);
return 0;
}
static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
{
struct spi_master *master = get_master_from_spi(spi);
struct gb_spi_device_config_request request;
struct gb_spi_device_config_response response;
struct spi_board_info spi_board = { {0} };
struct spi_device *spidev;
int ret;
u8 dev_type;
request.chip_select = cs;
ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG,
&request, sizeof(request),
&response, sizeof(response));
if (ret < 0)
return ret;
dev_type = response.device_type;
if (dev_type == GB_SPI_SPI_DEV)
strlcpy(spi_board.modalias, "spidev",
sizeof(spi_board.modalias));
else if (dev_type == GB_SPI_SPI_NOR)
strlcpy(spi_board.modalias, "spi-nor",
sizeof(spi_board.modalias));
else if (dev_type == GB_SPI_SPI_MODALIAS)
memcpy(spi_board.modalias, response.name,
sizeof(spi_board.modalias));
else
return -EINVAL;
spi_board.mode = le16_to_cpu(response.mode);
spi_board.bus_num = master->bus_num;
spi_board.chip_select = cs;
spi_board.max_speed_hz = le32_to_cpu(response.max_speed_hz);
spidev = spi_new_device(master, &spi_board);
if (!spidev)
return -EINVAL;
return 0;
}
int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
struct spilib_ops *ops)
{
struct gb_spilib *spi;
struct spi_master *master;
int ret;
u8 i;
/* Allocate master with space for data */
master = spi_alloc_master(dev, sizeof(*spi));
if (!master) {
dev_err(dev, "cannot alloc SPI master\n");
return -ENOMEM;
}
spi = spi_master_get_devdata(master);
spi->connection = connection;
gb_connection_set_data(connection, master);
spi->parent = dev;
spi->ops = ops;
/* get master configuration */
ret = gb_spi_get_master_config(spi);
if (ret)
goto exit_spi_put;
master->bus_num = -1; /* Allow spi-core to allocate it dynamically */
master->num_chipselect = spi->num_chipselect;
master->mode_bits = spi->mode;
master->flags = spi->flags;
master->bits_per_word_mask = spi->bits_per_word_mask;
/* Attach methods */
master->cleanup = gb_spi_cleanup;
master->setup = gb_spi_setup;
master->transfer_one_message = gb_spi_transfer_one_message;
if (ops && ops->prepare_transfer_hardware) {
master->prepare_transfer_hardware =
gb_spi_prepare_transfer_hardware;
}
if (ops && ops->unprepare_transfer_hardware) {
master->unprepare_transfer_hardware =
gb_spi_unprepare_transfer_hardware;
}
master->auto_runtime_pm = true;
ret = spi_register_master(master);
if (ret < 0)
goto exit_spi_put;
/* now, fetch the devices configuration */
for (i = 0; i < spi->num_chipselect; i++) {
ret = gb_spi_setup_device(spi, i);
if (ret < 0) {
dev_err(dev, "failed to allocate spi device %d: %d\n",
i, ret);
goto exit_spi_unregister;
}
}
return 0;
exit_spi_unregister:
spi_unregister_master(master);
exit_spi_put:
spi_master_put(master);
return ret;
}
EXPORT_SYMBOL_GPL(gb_spilib_master_init);
void gb_spilib_master_exit(struct gb_connection *connection)
{
struct spi_master *master = gb_connection_get_data(connection);
spi_unregister_master(master);
spi_master_put(master);
}
EXPORT_SYMBOL_GPL(gb_spilib_master_exit);
MODULE_LICENSE("GPL v2");