remarkable-linux/drivers/media/dvb-frontends/stv6110.c
Mauro Carvalho Chehab 8393796dfa [media] dvb-frontends: Don't use dynamic static allocation
Dynamic static allocation is evil, as Kernel stack is too low, and
compilation complains about it on some archs:
	drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default]
Instead, let's enforce a limit for the buffer. Considering that I2C
transfers are generally limited, and that devices used on USB has a
max data length of 64 bytes for the control URBs.
So, it seem safe to use 64 bytes as the hard limit for all those devices.
 On most cases, the limit is a way lower than that, but this limit
is small enough to not affect the Kernel stack, and it is a no brain
limit, as using smaller ones would require to either carefully each
driver or to take a look on each datasheet.

Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-08 09:45:38 -02:00

462 lines
11 KiB
C

/*
* stv6110.c
*
* Driver for ST STV6110 satellite tuner IC.
*
* Copyright (C) 2009 NetUP Inc.
* Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/dvb/frontend.h>
#include <linux/types.h>
#include "stv6110.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
static int debug;
struct stv6110_priv {
int i2c_address;
struct i2c_adapter *i2c;
u32 mclk;
u8 clk_div;
u8 gain;
u8 regs[8];
};
#define dprintk(args...) \
do { \
if (debug) \
printk(KERN_DEBUG args); \
} while (0)
static s32 abssub(s32 a, s32 b)
{
if (a > b)
return a - b;
else
return b - a;
};
static int stv6110_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int stv6110_write_regs(struct dvb_frontend *fe, u8 buf[],
int start, int len)
{
struct stv6110_priv *priv = fe->tuner_priv;
int rc;
u8 cmdbuf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = priv->i2c_address,
.flags = 0,
.buf = cmdbuf,
.len = len + 1
};
dprintk("%s\n", __func__);
if (1 + len > sizeof(cmdbuf)) {
printk(KERN_WARNING
"%s: i2c wr: len=%d is too big!\n",
KBUILD_MODNAME, len);
return -EINVAL;
}
if (start + len > 8)
return -EINVAL;
memcpy(&cmdbuf[1], buf, len);
cmdbuf[0] = start;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
rc = i2c_transfer(priv->i2c, &msg, 1);
if (rc != 1)
dprintk("%s: i2c error\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
static int stv6110_read_regs(struct dvb_frontend *fe, u8 regs[],
int start, int len)
{
struct stv6110_priv *priv = fe->tuner_priv;
int rc;
u8 reg[] = { start };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = reg,
.len = 1,
}, {
.addr = priv->i2c_address,
.flags = I2C_M_RD,
.buf = regs,
.len = len,
},
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
rc = i2c_transfer(priv->i2c, msg, 2);
if (rc != 2)
dprintk("%s: i2c error\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
memcpy(&priv->regs[start], regs, len);
return 0;
}
static int stv6110_read_reg(struct dvb_frontend *fe, int start)
{
u8 buf[] = { 0 };
stv6110_read_regs(fe, buf, start, 1);
return buf[0];
}
static int stv6110_sleep(struct dvb_frontend *fe)
{
u8 reg[] = { 0 };
stv6110_write_regs(fe, reg, 0, 1);
return 0;
}
static u32 carrier_width(u32 symbol_rate, fe_rolloff_t rolloff)
{
u32 rlf;
switch (rolloff) {
case ROLLOFF_20:
rlf = 20;
break;
case ROLLOFF_25:
rlf = 25;
break;
default:
rlf = 35;
break;
}
return symbol_rate + ((symbol_rate * rlf) / 100);
}
static int stv6110_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
{
struct stv6110_priv *priv = fe->tuner_priv;
u8 r8, ret = 0x04;
int i;
if ((bandwidth / 2) > 36000000) /*BW/2 max=31+5=36 mhz for r8=31*/
r8 = 31;
else if ((bandwidth / 2) < 5000000) /* BW/2 min=5Mhz for F=0 */
r8 = 0;
else /*if 5 < BW/2 < 36*/
r8 = (bandwidth / 2) / 1000000 - 5;
/* ctrl3, RCCLKOFF = 0 Activate the calibration Clock */
/* ctrl3, CF = r8 Set the LPF value */
priv->regs[RSTV6110_CTRL3] &= ~((1 << 6) | 0x1f);
priv->regs[RSTV6110_CTRL3] |= (r8 & 0x1f);
stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL3], RSTV6110_CTRL3, 1);
/* stat1, CALRCSTRT = 1 Start LPF auto calibration*/
priv->regs[RSTV6110_STAT1] |= 0x02;
stv6110_write_regs(fe, &priv->regs[RSTV6110_STAT1], RSTV6110_STAT1, 1);
i = 0;
/* Wait for CALRCSTRT == 0 */
while ((i < 10) && (ret != 0)) {
ret = ((stv6110_read_reg(fe, RSTV6110_STAT1)) & 0x02);
mdelay(1); /* wait for LPF auto calibration */
i++;
}
/* RCCLKOFF = 1 calibration done, desactivate the calibration Clock */
priv->regs[RSTV6110_CTRL3] |= (1 << 6);
stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL3], RSTV6110_CTRL3, 1);
return 0;
}
static int stv6110_init(struct dvb_frontend *fe)
{
struct stv6110_priv *priv = fe->tuner_priv;
u8 buf0[] = { 0x07, 0x11, 0xdc, 0x85, 0x17, 0x01, 0xe6, 0x1e };
memcpy(priv->regs, buf0, 8);
/* K = (Reference / 1000000) - 16 */
priv->regs[RSTV6110_CTRL1] &= ~(0x1f << 3);
priv->regs[RSTV6110_CTRL1] |=
((((priv->mclk / 1000000) - 16) & 0x1f) << 3);
/* divisor value for the output clock */
priv->regs[RSTV6110_CTRL2] &= ~0xc0;
priv->regs[RSTV6110_CTRL2] |= (priv->clk_div << 6);
stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL1], RSTV6110_CTRL1, 8);
msleep(1);
stv6110_set_bandwidth(fe, 72000000);
return 0;
}
static int stv6110_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct stv6110_priv *priv = fe->tuner_priv;
u32 nbsteps, divider, psd2, freq;
u8 regs[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
stv6110_read_regs(fe, regs, 0, 8);
/*N*/
divider = (priv->regs[RSTV6110_TUNING2] & 0x0f) << 8;
divider += priv->regs[RSTV6110_TUNING1];
/*R*/
nbsteps = (priv->regs[RSTV6110_TUNING2] >> 6) & 3;
/*p*/
psd2 = (priv->regs[RSTV6110_TUNING2] >> 4) & 1;
freq = divider * (priv->mclk / 1000);
freq /= (1 << (nbsteps + psd2));
freq /= 4;
*frequency = freq;
return 0;
}
static int stv6110_set_frequency(struct dvb_frontend *fe, u32 frequency)
{
struct stv6110_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u8 ret = 0x04;
u32 divider, ref, p, presc, i, result_freq, vco_freq;
s32 p_calc, p_calc_opt = 1000, r_div, r_div_opt = 0, p_val;
s32 srate;
dprintk("%s, freq=%d kHz, mclk=%d Hz\n", __func__,
frequency, priv->mclk);
/* K = (Reference / 1000000) - 16 */
priv->regs[RSTV6110_CTRL1] &= ~(0x1f << 3);
priv->regs[RSTV6110_CTRL1] |=
((((priv->mclk / 1000000) - 16) & 0x1f) << 3);
/* BB_GAIN = db/2 */
if (fe->ops.set_property && fe->ops.get_property) {
srate = c->symbol_rate;
dprintk("%s: Get Frontend parameters: srate=%d\n",
__func__, srate);
} else
srate = 15000000;
priv->regs[RSTV6110_CTRL2] &= ~0x0f;
priv->regs[RSTV6110_CTRL2] |= (priv->gain & 0x0f);
if (frequency <= 1023000) {
p = 1;
presc = 0;
} else if (frequency <= 1300000) {
p = 1;
presc = 1;
} else if (frequency <= 2046000) {
p = 0;
presc = 0;
} else {
p = 0;
presc = 1;
}
/* DIV4SEL = p*/
priv->regs[RSTV6110_TUNING2] &= ~(1 << 4);
priv->regs[RSTV6110_TUNING2] |= (p << 4);
/* PRESC32ON = presc */
priv->regs[RSTV6110_TUNING2] &= ~(1 << 5);
priv->regs[RSTV6110_TUNING2] |= (presc << 5);
p_val = (int)(1 << (p + 1)) * 10;/* P = 2 or P = 4 */
for (r_div = 0; r_div <= 3; r_div++) {
p_calc = (priv->mclk / 100000);
p_calc /= (1 << (r_div + 1));
if ((abssub(p_calc, p_val)) < (abssub(p_calc_opt, p_val)))
r_div_opt = r_div;
p_calc_opt = (priv->mclk / 100000);
p_calc_opt /= (1 << (r_div_opt + 1));
}
ref = priv->mclk / ((1 << (r_div_opt + 1)) * (1 << (p + 1)));
divider = (((frequency * 1000) + (ref >> 1)) / ref);
/* RDIV = r_div_opt */
priv->regs[RSTV6110_TUNING2] &= ~(3 << 6);
priv->regs[RSTV6110_TUNING2] |= (((r_div_opt) & 3) << 6);
/* NDIV_MSB = MSB(divider) */
priv->regs[RSTV6110_TUNING2] &= ~0x0f;
priv->regs[RSTV6110_TUNING2] |= (((divider) >> 8) & 0x0f);
/* NDIV_LSB, LSB(divider) */
priv->regs[RSTV6110_TUNING1] = (divider & 0xff);
/* CALVCOSTRT = 1 VCO Auto Calibration */
priv->regs[RSTV6110_STAT1] |= 0x04;
stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL1],
RSTV6110_CTRL1, 8);
i = 0;
/* Wait for CALVCOSTRT == 0 */
while ((i < 10) && (ret != 0)) {
ret = ((stv6110_read_reg(fe, RSTV6110_STAT1)) & 0x04);
msleep(1); /* wait for VCO auto calibration */
i++;
}
ret = stv6110_read_reg(fe, RSTV6110_STAT1);
stv6110_get_frequency(fe, &result_freq);
vco_freq = divider * ((priv->mclk / 1000) / ((1 << (r_div_opt + 1))));
dprintk("%s, stat1=%x, lo_freq=%d kHz, vco_frec=%d kHz\n", __func__,
ret, result_freq, vco_freq);
return 0;
}
static int stv6110_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u32 bandwidth = carrier_width(c->symbol_rate, c->rolloff);
stv6110_set_frequency(fe, c->frequency);
stv6110_set_bandwidth(fe, bandwidth);
return 0;
}
static int stv6110_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct stv6110_priv *priv = fe->tuner_priv;
u8 r8 = 0;
u8 regs[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
stv6110_read_regs(fe, regs, 0, 8);
/* CF */
r8 = priv->regs[RSTV6110_CTRL3] & 0x1f;
*bandwidth = (r8 + 5) * 2000000;/* x2 for ZIF tuner BW/2 = F+5 Mhz */
return 0;
}
static struct dvb_tuner_ops stv6110_tuner_ops = {
.info = {
.name = "ST STV6110",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 1000,
},
.init = stv6110_init,
.release = stv6110_release,
.sleep = stv6110_sleep,
.set_params = stv6110_set_params,
.get_frequency = stv6110_get_frequency,
.set_frequency = stv6110_set_frequency,
.get_bandwidth = stv6110_get_bandwidth,
.set_bandwidth = stv6110_set_bandwidth,
};
struct dvb_frontend *stv6110_attach(struct dvb_frontend *fe,
const struct stv6110_config *config,
struct i2c_adapter *i2c)
{
struct stv6110_priv *priv = NULL;
u8 reg0[] = { 0x00, 0x07, 0x11, 0xdc, 0x85, 0x17, 0x01, 0xe6, 0x1e };
struct i2c_msg msg[] = {
{
.addr = config->i2c_address,
.flags = 0,
.buf = reg0,
.len = 9
}
};
int ret;
/* divisor value for the output clock */
reg0[2] &= ~0xc0;
reg0[2] |= (config->clk_div << 6);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(i2c, msg, 1);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (ret != 1)
return NULL;
priv = kzalloc(sizeof(struct stv6110_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->i2c_address = config->i2c_address;
priv->i2c = i2c;
priv->mclk = config->mclk;
priv->clk_div = config->clk_div;
priv->gain = config->gain;
memcpy(&priv->regs, &reg0[1], 8);
memcpy(&fe->ops.tuner_ops, &stv6110_tuner_ops,
sizeof(struct dvb_tuner_ops));
fe->tuner_priv = priv;
printk(KERN_INFO "STV6110 attached on addr=%x!\n", priv->i2c_address);
return fe;
}
EXPORT_SYMBOL(stv6110_attach);
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("ST STV6110 driver");
MODULE_AUTHOR("Igor M. Liplianin");
MODULE_LICENSE("GPL");