remarkable-linux/include/linux/wait.h
Luis R. Rodriguez 8ada92799e wait: add wait_event_killable_timeout()
These are the few pending fixes I have queued up for v4.13-final.  One
is a a generic regression fix for recursive loops on kmod and the other
one is a trivial print out correction.

During the v4.13 development we assumed that recursive kmod loops were
no longer possible.  Clearly that is not true.  The regression fix makes
use of a new killable wait.  We use a killable wait to be paranoid in
how signals might be sent to modprobe and only accept a proper SIGKILL.
The signal will only be available to userspace to issue *iff* a thread
has already entered a wait state, and that happens only if we've already
throttled after 50 kmod threads have been hit.

Note that although it may seem excessive to trigger a failure afer 5
seconds if all kmod thread remain busy, prior to the series of changes
that went into v4.13 we would actually *always* fatally fail any request
which came in if the limit was already reached.  The new waiting
implemented in v4.13 actually gives us *more* breathing room -- the wait
for 5 seconds is a wait for *any* kmod thread to finish.  We give up and
fail *iff* no kmod thread has finished and they're *all* running
straight for 5 consecutive seconds.  If 50 kmod threads are running
consecutively for 5 seconds something else must be really bad.

Recursive loops with kmod are bad but they're also hard to implement
properly as a selftest without currently fooling current userspace tools
like kmod [1].  For instance kmod will complain when you run depmod if
it finds a recursive loop with symbol dependency between modules as such
this type of recursive loop cannot go upstream as the modules_install
target will fail after running depmod.

These tests already exist on userspace kmod upstream though (refer to
the testsuite/module-playground/mod-loop-*.c files).  The same is not
true if request_module() is used though, or worst if aliases are used.

Likewise the issue with 64-bit kernels booting 32-bit userspace without
a binfmt handler built-in is also currently not detected and proactively
avoided by userspace kmod tools, or kconfig for all architectures.
Although we could complain in the kernel when some of these individual
recursive issues creep up, proactively avoiding these situations in
userspace at build time is what we should keep striving for.

Lastly, since recursive loops could happen with kmod it may mean
recursive loops may also be possible with other kernel usermode helpers,
this should be investigated and long term if we can come up with a more
sensible generic solution even better!

[0] https://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux.git/log/?h=20170809-kmod-for-v4.13-final
[1] https://git.kernel.org/pub/scm/utils/kernel/kmod/kmod.git

This patch (of 3):

This wait is similar to wait_event_interruptible_timeout() but only
accepts SIGKILL interrupt signal.  Other signals are ignored.

Link: http://lkml.kernel.org/r/20170809234635.13443-2-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Jessica Yu <jeyu@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Michal Marek <mmarek@suse.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Daniel Mentz <danielmentz@google.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Matt Redfearn <matt.redfearn@imgetc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18 15:32:01 -07:00

1006 lines
35 KiB
C

#ifndef _LINUX_WAIT_H
#define _LINUX_WAIT_H
/*
* Linux wait queue related types and methods
*/
#include <linux/list.h>
#include <linux/stddef.h>
#include <linux/spinlock.h>
#include <asm/current.h>
#include <uapi/linux/wait.h>
typedef struct wait_queue_entry wait_queue_entry_t;
typedef int (*wait_queue_func_t)(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key);
int default_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key);
/* wait_queue_entry::flags */
#define WQ_FLAG_EXCLUSIVE 0x01
#define WQ_FLAG_WOKEN 0x02
/*
* A single wait-queue entry structure:
*/
struct wait_queue_entry {
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head entry;
};
struct wait_queue_head {
spinlock_t lock;
struct list_head head;
};
typedef struct wait_queue_head wait_queue_head_t;
struct task_struct;
/*
* Macros for declaration and initialisaton of the datatypes
*/
#define __WAITQUEUE_INITIALIZER(name, tsk) { \
.private = tsk, \
.func = default_wake_function, \
.entry = { NULL, NULL } }
#define DECLARE_WAITQUEUE(name, tsk) \
struct wait_queue_entry name = __WAITQUEUE_INITIALIZER(name, tsk)
#define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \
.lock = __SPIN_LOCK_UNLOCKED(name.lock), \
.head = { &(name).head, &(name).head } }
#define DECLARE_WAIT_QUEUE_HEAD(name) \
struct wait_queue_head name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
extern void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *);
#define init_waitqueue_head(wq_head) \
do { \
static struct lock_class_key __key; \
\
__init_waitqueue_head((wq_head), #wq_head, &__key); \
} while (0)
#ifdef CONFIG_LOCKDEP
# define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
({ init_waitqueue_head(&name); name; })
# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
struct wait_queue_head name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
#else
# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
#endif
static inline void init_waitqueue_entry(struct wait_queue_entry *wq_entry, struct task_struct *p)
{
wq_entry->flags = 0;
wq_entry->private = p;
wq_entry->func = default_wake_function;
}
static inline void
init_waitqueue_func_entry(struct wait_queue_entry *wq_entry, wait_queue_func_t func)
{
wq_entry->flags = 0;
wq_entry->private = NULL;
wq_entry->func = func;
}
/**
* waitqueue_active -- locklessly test for waiters on the queue
* @wq_head: the waitqueue to test for waiters
*
* returns true if the wait list is not empty
*
* NOTE: this function is lockless and requires care, incorrect usage _will_
* lead to sporadic and non-obvious failure.
*
* Use either while holding wait_queue_head::lock or when used for wakeups
* with an extra smp_mb() like:
*
* CPU0 - waker CPU1 - waiter
*
* for (;;) {
* @cond = true; prepare_to_wait(&wq_head, &wait, state);
* smp_mb(); // smp_mb() from set_current_state()
* if (waitqueue_active(wq_head)) if (@cond)
* wake_up(wq_head); break;
* schedule();
* }
* finish_wait(&wq_head, &wait);
*
* Because without the explicit smp_mb() it's possible for the
* waitqueue_active() load to get hoisted over the @cond store such that we'll
* observe an empty wait list while the waiter might not observe @cond.
*
* Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
* which (when the lock is uncontended) are of roughly equal cost.
*/
static inline int waitqueue_active(struct wait_queue_head *wq_head)
{
return !list_empty(&wq_head->head);
}
/**
* wq_has_sleeper - check if there are any waiting processes
* @wq_head: wait queue head
*
* Returns true if wq_head has waiting processes
*
* Please refer to the comment for waitqueue_active.
*/
static inline bool wq_has_sleeper(struct wait_queue_head *wq_head)
{
/*
* We need to be sure we are in sync with the
* add_wait_queue modifications to the wait queue.
*
* This memory barrier should be paired with one on the
* waiting side.
*/
smp_mb();
return waitqueue_active(wq_head);
}
extern void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
extern void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
extern void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
static inline void __add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
list_add(&wq_entry->entry, &wq_head->head);
}
/*
* Used for wake-one threads:
*/
static inline void
__add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue(wq_head, wq_entry);
}
static inline void __add_wait_queue_entry_tail(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
list_add_tail(&wq_entry->entry, &wq_head->head);
}
static inline void
__add_wait_queue_entry_tail_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_entry_tail(wq_head, wq_entry);
}
static inline void
__remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
list_del(&wq_entry->entry);
}
void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr, void *key);
void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key);
void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, int nr, void *key);
void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr);
void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr);
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
#define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
#define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
/*
* Wakeup macros to be used to report events to the targets.
*/
#define wake_up_poll(x, m) \
__wake_up(x, TASK_NORMAL, 1, (void *) (m))
#define wake_up_locked_poll(x, m) \
__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
#define wake_up_interruptible_poll(x, m) \
__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
#define wake_up_interruptible_sync_poll(x, m) \
__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
#define ___wait_cond_timeout(condition) \
({ \
bool __cond = (condition); \
if (__cond && !__ret) \
__ret = 1; \
__cond || !__ret; \
})
#define ___wait_is_interruptible(state) \
(!__builtin_constant_p(state) || \
state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE) \
extern void init_wait_entry(struct wait_queue_entry *wq_entry, int flags);
/*
* The below macro ___wait_event() has an explicit shadow of the __ret
* variable when used from the wait_event_*() macros.
*
* This is so that both can use the ___wait_cond_timeout() construct
* to wrap the condition.
*
* The type inconsistency of the wait_event_*() __ret variable is also
* on purpose; we use long where we can return timeout values and int
* otherwise.
*/
#define ___wait_event(wq_head, condition, state, exclusive, ret, cmd) \
({ \
__label__ __out; \
struct wait_queue_entry __wq_entry; \
long __ret = ret; /* explicit shadow */ \
\
init_wait_entry(&__wq_entry, exclusive ? WQ_FLAG_EXCLUSIVE : 0); \
for (;;) { \
long __int = prepare_to_wait_event(&wq_head, &__wq_entry, state);\
\
if (condition) \
break; \
\
if (___wait_is_interruptible(state) && __int) { \
__ret = __int; \
goto __out; \
} \
\
cmd; \
} \
finish_wait(&wq_head, &__wq_entry); \
__out: __ret; \
})
#define __wait_event(wq_head, condition) \
(void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
schedule())
/**
* wait_event - sleep until a condition gets true
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*/
#define wait_event(wq_head, condition) \
do { \
might_sleep(); \
if (condition) \
break; \
__wait_event(wq_head, condition); \
} while (0)
#define __io_wait_event(wq_head, condition) \
(void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
io_schedule())
/*
* io_wait_event() -- like wait_event() but with io_schedule()
*/
#define io_wait_event(wq_head, condition) \
do { \
might_sleep(); \
if (condition) \
break; \
__io_wait_event(wq_head, condition); \
} while (0)
#define __wait_event_freezable(wq_head, condition) \
___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \
schedule(); try_to_freeze())
/**
* wait_event_freezable - sleep (or freeze) until a condition gets true
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
* to system load) until the @condition evaluates to true. The
* @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*/
#define wait_event_freezable(wq_head, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_freezable(wq_head, condition); \
__ret; \
})
#define __wait_event_timeout(wq_head, condition, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_UNINTERRUPTIBLE, 0, timeout, \
__ret = schedule_timeout(__ret))
/**
* wait_event_timeout - sleep until a condition gets true or a timeout elapses
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @timeout: timeout, in jiffies
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* Returns:
* 0 if the @condition evaluated to %false after the @timeout elapsed,
* 1 if the @condition evaluated to %true after the @timeout elapsed,
* or the remaining jiffies (at least 1) if the @condition evaluated
* to %true before the @timeout elapsed.
*/
#define wait_event_timeout(wq_head, condition, timeout) \
({ \
long __ret = timeout; \
might_sleep(); \
if (!___wait_cond_timeout(condition)) \
__ret = __wait_event_timeout(wq_head, condition, timeout); \
__ret; \
})
#define __wait_event_freezable_timeout(wq_head, condition, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_INTERRUPTIBLE, 0, timeout, \
__ret = schedule_timeout(__ret); try_to_freeze())
/*
* like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
* increasing load and is freezable.
*/
#define wait_event_freezable_timeout(wq_head, condition, timeout) \
({ \
long __ret = timeout; \
might_sleep(); \
if (!___wait_cond_timeout(condition)) \
__ret = __wait_event_freezable_timeout(wq_head, condition, timeout); \
__ret; \
})
#define __wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \
(void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 1, 0, \
cmd1; schedule(); cmd2)
/*
* Just like wait_event_cmd(), except it sets exclusive flag
*/
#define wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \
do { \
if (condition) \
break; \
__wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2); \
} while (0)
#define __wait_event_cmd(wq_head, condition, cmd1, cmd2) \
(void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
cmd1; schedule(); cmd2)
/**
* wait_event_cmd - sleep until a condition gets true
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @cmd1: the command will be executed before sleep
* @cmd2: the command will be executed after sleep
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*/
#define wait_event_cmd(wq_head, condition, cmd1, cmd2) \
do { \
if (condition) \
break; \
__wait_event_cmd(wq_head, condition, cmd1, cmd2); \
} while (0)
#define __wait_event_interruptible(wq_head, condition) \
___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \
schedule())
/**
* wait_event_interruptible - sleep until a condition gets true
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible(wq_head, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_interruptible(wq_head, condition); \
__ret; \
})
#define __wait_event_interruptible_timeout(wq_head, condition, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_INTERRUPTIBLE, 0, timeout, \
__ret = schedule_timeout(__ret))
/**
* wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @timeout: timeout, in jiffies
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* Returns:
* 0 if the @condition evaluated to %false after the @timeout elapsed,
* 1 if the @condition evaluated to %true after the @timeout elapsed,
* the remaining jiffies (at least 1) if the @condition evaluated
* to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
* interrupted by a signal.
*/
#define wait_event_interruptible_timeout(wq_head, condition, timeout) \
({ \
long __ret = timeout; \
might_sleep(); \
if (!___wait_cond_timeout(condition)) \
__ret = __wait_event_interruptible_timeout(wq_head, \
condition, timeout); \
__ret; \
})
#define __wait_event_hrtimeout(wq_head, condition, timeout, state) \
({ \
int __ret = 0; \
struct hrtimer_sleeper __t; \
\
hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); \
hrtimer_init_sleeper(&__t, current); \
if ((timeout) != KTIME_MAX) \
hrtimer_start_range_ns(&__t.timer, timeout, \
current->timer_slack_ns, \
HRTIMER_MODE_REL); \
\
__ret = ___wait_event(wq_head, condition, state, 0, 0, \
if (!__t.task) { \
__ret = -ETIME; \
break; \
} \
schedule()); \
\
hrtimer_cancel(&__t.timer); \
destroy_hrtimer_on_stack(&__t.timer); \
__ret; \
})
/**
* wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @timeout: timeout, as a ktime_t
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function returns 0 if @condition became true, or -ETIME if the timeout
* elapsed.
*/
#define wait_event_hrtimeout(wq_head, condition, timeout) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_hrtimeout(wq_head, condition, timeout, \
TASK_UNINTERRUPTIBLE); \
__ret; \
})
/**
* wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @timeout: timeout, as a ktime_t
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function returns 0 if @condition became true, -ERESTARTSYS if it was
* interrupted by a signal, or -ETIME if the timeout elapsed.
*/
#define wait_event_interruptible_hrtimeout(wq, condition, timeout) \
({ \
long __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_hrtimeout(wq, condition, timeout, \
TASK_INTERRUPTIBLE); \
__ret; \
})
#define __wait_event_interruptible_exclusive(wq, condition) \
___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
schedule())
#define wait_event_interruptible_exclusive(wq, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_interruptible_exclusive(wq, condition); \
__ret; \
})
#define __wait_event_killable_exclusive(wq, condition) \
___wait_event(wq, condition, TASK_KILLABLE, 1, 0, \
schedule())
#define wait_event_killable_exclusive(wq, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_killable_exclusive(wq, condition); \
__ret; \
})
#define __wait_event_freezable_exclusive(wq, condition) \
___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
schedule(); try_to_freeze())
#define wait_event_freezable_exclusive(wq, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_freezable_exclusive(wq, condition); \
__ret; \
})
extern int do_wait_intr(wait_queue_head_t *, wait_queue_entry_t *);
extern int do_wait_intr_irq(wait_queue_head_t *, wait_queue_entry_t *);
#define __wait_event_interruptible_locked(wq, condition, exclusive, fn) \
({ \
int __ret; \
DEFINE_WAIT(__wait); \
if (exclusive) \
__wait.flags |= WQ_FLAG_EXCLUSIVE; \
do { \
__ret = fn(&(wq), &__wait); \
if (__ret) \
break; \
} while (!(condition)); \
__remove_wait_queue(&(wq), &__wait); \
__set_current_state(TASK_RUNNING); \
__ret; \
})
/**
* wait_event_interruptible_locked - sleep until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq is woken up.
*
* It must be called with wq.lock being held. This spinlock is
* unlocked while sleeping but @condition testing is done while lock
* is held and when this macro exits the lock is held.
*
* The lock is locked/unlocked using spin_lock()/spin_unlock()
* functions which must match the way they are locked/unlocked outside
* of this macro.
*
* wake_up_locked() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_locked(wq, condition) \
((condition) \
? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr))
/**
* wait_event_interruptible_locked_irq - sleep until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq is woken up.
*
* It must be called with wq.lock being held. This spinlock is
* unlocked while sleeping but @condition testing is done while lock
* is held and when this macro exits the lock is held.
*
* The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
* functions which must match the way they are locked/unlocked outside
* of this macro.
*
* wake_up_locked() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_locked_irq(wq, condition) \
((condition) \
? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr_irq))
/**
* wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq is woken up.
*
* It must be called with wq.lock being held. This spinlock is
* unlocked while sleeping but @condition testing is done while lock
* is held and when this macro exits the lock is held.
*
* The lock is locked/unlocked using spin_lock()/spin_unlock()
* functions which must match the way they are locked/unlocked outside
* of this macro.
*
* The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
* set thus when other process waits process on the list if this
* process is awaken further processes are not considered.
*
* wake_up_locked() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_exclusive_locked(wq, condition) \
((condition) \
? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr))
/**
* wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq is woken up.
*
* It must be called with wq.lock being held. This spinlock is
* unlocked while sleeping but @condition testing is done while lock
* is held and when this macro exits the lock is held.
*
* The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
* functions which must match the way they are locked/unlocked outside
* of this macro.
*
* The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
* set thus when other process waits process on the list if this
* process is awaken further processes are not considered.
*
* wake_up_locked() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_exclusive_locked_irq(wq, condition) \
((condition) \
? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr_irq))
#define __wait_event_killable(wq, condition) \
___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
/**
* wait_event_killable - sleep until a condition gets true
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_KILLABLE) until the
* @condition evaluates to true or a signal is received.
* The @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* The function will return -ERESTARTSYS if it was interrupted by a
* signal and 0 if @condition evaluated to true.
*/
#define wait_event_killable(wq_head, condition) \
({ \
int __ret = 0; \
might_sleep(); \
if (!(condition)) \
__ret = __wait_event_killable(wq_head, condition); \
__ret; \
})
#define __wait_event_killable_timeout(wq_head, condition, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_KILLABLE, 0, timeout, \
__ret = schedule_timeout(__ret))
/**
* wait_event_killable_timeout - sleep until a condition gets true or a timeout elapses
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @timeout: timeout, in jiffies
*
* The process is put to sleep (TASK_KILLABLE) until the
* @condition evaluates to true or a kill signal is received.
* The @condition is checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* Returns:
* 0 if the @condition evaluated to %false after the @timeout elapsed,
* 1 if the @condition evaluated to %true after the @timeout elapsed,
* the remaining jiffies (at least 1) if the @condition evaluated
* to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
* interrupted by a kill signal.
*
* Only kill signals interrupt this process.
*/
#define wait_event_killable_timeout(wq_head, condition, timeout) \
({ \
long __ret = timeout; \
might_sleep(); \
if (!___wait_cond_timeout(condition)) \
__ret = __wait_event_killable_timeout(wq_head, \
condition, timeout); \
__ret; \
})
#define __wait_event_lock_irq(wq_head, condition, lock, cmd) \
(void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
spin_unlock_irq(&lock); \
cmd; \
schedule(); \
spin_lock_irq(&lock))
/**
* wait_event_lock_irq_cmd - sleep until a condition gets true. The
* condition is checked under the lock. This
* is expected to be called with the lock
* taken.
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @lock: a locked spinlock_t, which will be released before cmd
* and schedule() and reacquired afterwards.
* @cmd: a command which is invoked outside the critical section before
* sleep
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* This is supposed to be called while holding the lock. The lock is
* dropped before invoking the cmd and going to sleep and is reacquired
* afterwards.
*/
#define wait_event_lock_irq_cmd(wq_head, condition, lock, cmd) \
do { \
if (condition) \
break; \
__wait_event_lock_irq(wq_head, condition, lock, cmd); \
} while (0)
/**
* wait_event_lock_irq - sleep until a condition gets true. The
* condition is checked under the lock. This
* is expected to be called with the lock
* taken.
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @lock: a locked spinlock_t, which will be released before schedule()
* and reacquired afterwards.
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* This is supposed to be called while holding the lock. The lock is
* dropped before going to sleep and is reacquired afterwards.
*/
#define wait_event_lock_irq(wq_head, condition, lock) \
do { \
if (condition) \
break; \
__wait_event_lock_irq(wq_head, condition, lock, ); \
} while (0)
#define __wait_event_interruptible_lock_irq(wq_head, condition, lock, cmd) \
___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \
spin_unlock_irq(&lock); \
cmd; \
schedule(); \
spin_lock_irq(&lock))
/**
* wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
* The condition is checked under the lock. This is expected to
* be called with the lock taken.
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @lock: a locked spinlock_t, which will be released before cmd and
* schedule() and reacquired afterwards.
* @cmd: a command which is invoked outside the critical section before
* sleep
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or a signal is received. The @condition is
* checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* This is supposed to be called while holding the lock. The lock is
* dropped before invoking the cmd and going to sleep and is reacquired
* afterwards.
*
* The macro will return -ERESTARTSYS if it was interrupted by a signal
* and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_lock_irq_cmd(wq_head, condition, lock, cmd) \
({ \
int __ret = 0; \
if (!(condition)) \
__ret = __wait_event_interruptible_lock_irq(wq_head, \
condition, lock, cmd); \
__ret; \
})
/**
* wait_event_interruptible_lock_irq - sleep until a condition gets true.
* The condition is checked under the lock. This is expected
* to be called with the lock taken.
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @lock: a locked spinlock_t, which will be released before schedule()
* and reacquired afterwards.
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or signal is received. The @condition is
* checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* This is supposed to be called while holding the lock. The lock is
* dropped before going to sleep and is reacquired afterwards.
*
* The macro will return -ERESTARTSYS if it was interrupted by a signal
* and 0 if @condition evaluated to true.
*/
#define wait_event_interruptible_lock_irq(wq_head, condition, lock) \
({ \
int __ret = 0; \
if (!(condition)) \
__ret = __wait_event_interruptible_lock_irq(wq_head, \
condition, lock,); \
__ret; \
})
#define __wait_event_interruptible_lock_irq_timeout(wq_head, condition, \
lock, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_INTERRUPTIBLE, 0, timeout, \
spin_unlock_irq(&lock); \
__ret = schedule_timeout(__ret); \
spin_lock_irq(&lock));
/**
* wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
* true or a timeout elapses. The condition is checked under
* the lock. This is expected to be called with the lock taken.
* @wq_head: the waitqueue to wait on
* @condition: a C expression for the event to wait for
* @lock: a locked spinlock_t, which will be released before schedule()
* and reacquired afterwards.
* @timeout: timeout, in jiffies
*
* The process is put to sleep (TASK_INTERRUPTIBLE) until the
* @condition evaluates to true or signal is received. The @condition is
* checked each time the waitqueue @wq_head is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*
* This is supposed to be called while holding the lock. The lock is
* dropped before going to sleep and is reacquired afterwards.
*
* The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
* was interrupted by a signal, and the remaining jiffies otherwise
* if the condition evaluated to true before the timeout elapsed.
*/
#define wait_event_interruptible_lock_irq_timeout(wq_head, condition, lock, \
timeout) \
({ \
long __ret = timeout; \
if (!___wait_cond_timeout(condition)) \
__ret = __wait_event_interruptible_lock_irq_timeout( \
wq_head, condition, lock, timeout); \
__ret; \
})
/*
* Waitqueues which are removed from the waitqueue_head at wakeup time
*/
void prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state);
void prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state);
long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state);
void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout);
int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
#define DEFINE_WAIT_FUNC(name, function) \
struct wait_queue_entry name = { \
.private = current, \
.func = function, \
.entry = LIST_HEAD_INIT((name).entry), \
}
#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
#define init_wait(wait) \
do { \
(wait)->private = current; \
(wait)->func = autoremove_wake_function; \
INIT_LIST_HEAD(&(wait)->entry); \
(wait)->flags = 0; \
} while (0)
#endif /* _LINUX_WAIT_H */