remarkable-linux/drivers/iio/magnetometer/hid-sensor-magn-3d.c
Ooi, Joyce 6f771d0b33 iio: magnetometer: separate the values of attributes based on their usage type for HID compass sensor
There are 2 usage types (Magnetic Flux and Heading data field) for HID
compass sensor, thus the values of offset, scale, and sensitivity should
be separated according to their respective usage type. The changes made
are as below:
1. Hysteresis: A struct hid_sensor_common rot_attributes is created in
struct magn_3d_state to contain the sensitivity for IIO_ROT.
2. Scale: scale_pre_decml and scale_post_decml are separated for IIO_MAGN
and IIO_ROT.
3. Offset: Same as scale, value_offset is separated for IIO_MAGN and
IIO_ROT.

For sensitivity, HID_USAGE_SENSOR_ORIENT_MAGN_FLUX and
HID_USAGE_SENSOR_ORIENT_MAGN_HEADING are used for sensivitity fields based
on the HID Sensor Usages specifications. Hence, these changes are added on
the sensitivity field.

Signed-off-by: Ooi, Joyce <joyce.ooi@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2016-11-24 20:41:30 +00:00

613 lines
17 KiB
C

/*
* HID Sensors Driver
* Copyright (c) 2012, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hid-sensor-hub.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "../common/hid-sensors/hid-sensor-trigger.h"
enum magn_3d_channel {
CHANNEL_SCAN_INDEX_X,
CHANNEL_SCAN_INDEX_Y,
CHANNEL_SCAN_INDEX_Z,
CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP,
CHANNEL_SCAN_INDEX_NORTH_TRUE_TILT_COMP,
CHANNEL_SCAN_INDEX_NORTH_MAGN,
CHANNEL_SCAN_INDEX_NORTH_TRUE,
MAGN_3D_CHANNEL_MAX,
};
struct common_attributes {
int scale_pre_decml;
int scale_post_decml;
int scale_precision;
int value_offset;
};
struct magn_3d_state {
struct hid_sensor_hub_callbacks callbacks;
struct hid_sensor_common magn_flux_attributes;
struct hid_sensor_common rot_attributes;
struct hid_sensor_hub_attribute_info magn[MAGN_3D_CHANNEL_MAX];
/* dynamically sized array to hold sensor values */
u32 *iio_vals;
/* array of pointers to sensor value */
u32 *magn_val_addr[MAGN_3D_CHANNEL_MAX];
struct common_attributes magn_flux_attr;
struct common_attributes rot_attr;
};
static const u32 magn_3d_addresses[MAGN_3D_CHANNEL_MAX] = {
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS,
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS,
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS,
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH,
HID_USAGE_SENSOR_ORIENT_MAGN_NORTH,
HID_USAGE_SENSOR_ORIENT_TRUE_NORTH,
};
/* Channel definitions */
static const struct iio_chan_spec magn_3d_channels[] = {
{
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_X,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_Y,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_Z,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_MAGN_TILT_COMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_TRUE_TILT_COMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_MAGN,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_TRUE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}
};
/* Adjust channel real bits based on report descriptor */
static void magn_3d_adjust_channel_bit_mask(struct iio_chan_spec *channels,
int channel, int size)
{
channels[channel].scan_type.sign = 's';
/* Real storage bits will change based on the report desc. */
channels[channel].scan_type.realbits = size * 8;
/* Maximum size of a sample to capture is u32 */
channels[channel].scan_type.storagebits = sizeof(u32) * 8;
}
/* Channel read_raw handler */
static int magn_3d_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2,
long mask)
{
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int report_id = -1;
u32 address;
int ret_type;
*val = 0;
*val2 = 0;
switch (mask) {
case 0:
hid_sensor_power_state(&magn_state->magn_flux_attributes, true);
report_id =
magn_state->magn[chan->address].report_id;
address = magn_3d_addresses[chan->address];
if (report_id >= 0)
*val = sensor_hub_input_attr_get_raw_value(
magn_state->magn_flux_attributes.hsdev,
HID_USAGE_SENSOR_COMPASS_3D, address,
report_id,
SENSOR_HUB_SYNC);
else {
*val = 0;
hid_sensor_power_state(
&magn_state->magn_flux_attributes,
false);
return -EINVAL;
}
hid_sensor_power_state(&magn_state->magn_flux_attributes,
false);
ret_type = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.scale_pre_decml;
*val2 = magn_state->magn_flux_attr.scale_post_decml;
ret_type = magn_state->magn_flux_attr.scale_precision;
break;
case IIO_ROT:
*val = magn_state->rot_attr.scale_pre_decml;
*val2 = magn_state->rot_attr.scale_post_decml;
ret_type = magn_state->rot_attr.scale_precision;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
case IIO_ROT:
*val = magn_state->rot_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret_type = hid_sensor_read_samp_freq_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_MAGN:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret_type = -EINVAL;
}
break;
default:
ret_type = -EINVAL;
break;
}
return ret_type;
}
/* Channel write_raw handler */
static int magn_3d_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int ret = 0;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
ret = hid_sensor_write_samp_freq_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_MAGN:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret = -EINVAL;
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct iio_info magn_3d_info = {
.driver_module = THIS_MODULE,
.read_raw = &magn_3d_read_raw,
.write_raw = &magn_3d_write_raw,
};
/* Function to push data to buffer */
static void hid_sensor_push_data(struct iio_dev *indio_dev, const void *data)
{
dev_dbg(&indio_dev->dev, "hid_sensor_push_data\n");
iio_push_to_buffers(indio_dev, data);
}
/* Callback handler to send event after all samples are received and captured */
static int magn_3d_proc_event(struct hid_sensor_hub_device *hsdev,
unsigned usage_id,
void *priv)
{
struct iio_dev *indio_dev = platform_get_drvdata(priv);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
dev_dbg(&indio_dev->dev, "magn_3d_proc_event\n");
if (atomic_read(&magn_state->magn_flux_attributes.data_ready))
hid_sensor_push_data(indio_dev, magn_state->iio_vals);
return 0;
}
/* Capture samples in local storage */
static int magn_3d_capture_sample(struct hid_sensor_hub_device *hsdev,
unsigned usage_id,
size_t raw_len, char *raw_data,
void *priv)
{
struct iio_dev *indio_dev = platform_get_drvdata(priv);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int offset;
int ret = 0;
u32 *iio_val = NULL;
switch (usage_id) {
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS:
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS:
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS:
offset = (usage_id - HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS)
+ CHANNEL_SCAN_INDEX_X;
break;
case HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH:
case HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH:
case HID_USAGE_SENSOR_ORIENT_MAGN_NORTH:
case HID_USAGE_SENSOR_ORIENT_TRUE_NORTH:
offset = (usage_id - HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH)
+ CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP;
break;
default:
return -EINVAL;
}
iio_val = magn_state->magn_val_addr[offset];
if (iio_val != NULL)
*iio_val = *((u32 *)raw_data);
else
ret = -EINVAL;
return ret;
}
/* Parse report which is specific to an usage id*/
static int magn_3d_parse_report(struct platform_device *pdev,
struct hid_sensor_hub_device *hsdev,
struct iio_chan_spec **channels,
int *chan_count,
unsigned usage_id,
struct magn_3d_state *st)
{
int i;
int attr_count = 0;
struct iio_chan_spec *_channels;
/* Scan for each usage attribute supported */
for (i = 0; i < MAGN_3D_CHANNEL_MAX; i++) {
int status;
u32 address = magn_3d_addresses[i];
/* Check if usage attribute exists in the sensor hub device */
status = sensor_hub_input_get_attribute_info(hsdev,
HID_INPUT_REPORT,
usage_id,
address,
&(st->magn[i]));
if (!status)
attr_count++;
}
if (attr_count <= 0) {
dev_err(&pdev->dev,
"failed to find any supported usage attributes in report\n");
return -EINVAL;
}
dev_dbg(&pdev->dev, "magn_3d Found %d usage attributes\n",
attr_count);
dev_dbg(&pdev->dev, "magn_3d X: %x:%x Y: %x:%x Z: %x:%x\n",
st->magn[0].index,
st->magn[0].report_id,
st->magn[1].index, st->magn[1].report_id,
st->magn[2].index, st->magn[2].report_id);
/* Setup IIO channel array */
_channels = devm_kcalloc(&pdev->dev, attr_count,
sizeof(struct iio_chan_spec),
GFP_KERNEL);
if (!_channels) {
dev_err(&pdev->dev,
"failed to allocate space for iio channels\n");
return -ENOMEM;
}
st->iio_vals = devm_kcalloc(&pdev->dev, attr_count,
sizeof(u32),
GFP_KERNEL);
if (!st->iio_vals) {
dev_err(&pdev->dev,
"failed to allocate space for iio values array\n");
return -ENOMEM;
}
for (i = 0, *chan_count = 0;
i < MAGN_3D_CHANNEL_MAX && *chan_count < attr_count;
i++){
if (st->magn[i].index >= 0) {
/* Setup IIO channel struct */
(_channels[*chan_count]) = magn_3d_channels[i];
(_channels[*chan_count]).scan_index = *chan_count;
(_channels[*chan_count]).address = i;
/* Set magn_val_addr to iio value address */
st->magn_val_addr[i] = &(st->iio_vals[*chan_count]);
magn_3d_adjust_channel_bit_mask(_channels,
*chan_count,
st->magn[i].size);
(*chan_count)++;
}
}
if (*chan_count <= 0) {
dev_err(&pdev->dev,
"failed to find any magnetic channels setup\n");
return -EINVAL;
}
*channels = _channels;
dev_dbg(&pdev->dev, "magn_3d Setup %d IIO channels\n",
*chan_count);
st->magn_flux_attr.scale_precision = hid_sensor_format_scale(
HID_USAGE_SENSOR_COMPASS_3D,
&st->magn[CHANNEL_SCAN_INDEX_X],
&st->magn_flux_attr.scale_pre_decml,
&st->magn_flux_attr.scale_post_decml);
st->rot_attr.scale_precision
= hid_sensor_format_scale(
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->magn[CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP],
&st->rot_attr.scale_pre_decml,
&st->rot_attr.scale_post_decml);
/* Set Sensitivity field ids, when there is no individual modifier */
if (st->magn_flux_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_DATA_ORIENTATION,
&st->magn_flux_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->magn_flux_attributes.sensitivity.index,
st->magn_flux_attributes.sensitivity.report_id);
}
if (st->magn_flux_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX,
&st->magn_flux_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->magn_flux_attributes.sensitivity.index,
st->magn_flux_attributes.sensitivity.report_id);
}
if (st->rot_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->rot_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->rot_attributes.sensitivity.index,
st->rot_attributes.sensitivity.report_id);
}
return 0;
}
/* Function to initialize the processing for usage id */
static int hid_magn_3d_probe(struct platform_device *pdev)
{
int ret = 0;
static char *name = "magn_3d";
struct iio_dev *indio_dev;
struct magn_3d_state *magn_state;
struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
struct iio_chan_spec *channels;
int chan_count = 0;
indio_dev = devm_iio_device_alloc(&pdev->dev,
sizeof(struct magn_3d_state));
if (indio_dev == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
magn_state = iio_priv(indio_dev);
magn_state->magn_flux_attributes.hsdev = hsdev;
magn_state->magn_flux_attributes.pdev = pdev;
ret = hid_sensor_parse_common_attributes(hsdev,
HID_USAGE_SENSOR_COMPASS_3D,
&magn_state->magn_flux_attributes);
if (ret) {
dev_err(&pdev->dev, "failed to setup common attributes\n");
return ret;
}
magn_state->rot_attributes = magn_state->magn_flux_attributes;
ret = magn_3d_parse_report(pdev, hsdev,
&channels, &chan_count,
HID_USAGE_SENSOR_COMPASS_3D, magn_state);
if (ret) {
dev_err(&pdev->dev, "failed to parse report\n");
return ret;
}
indio_dev->channels = channels;
indio_dev->num_channels = chan_count;
indio_dev->dev.parent = &pdev->dev;
indio_dev->info = &magn_3d_info;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
NULL, NULL);
if (ret) {
dev_err(&pdev->dev, "failed to initialize trigger buffer\n");
return ret;
}
atomic_set(&magn_state->magn_flux_attributes.data_ready, 0);
ret = hid_sensor_setup_trigger(indio_dev, name,
&magn_state->magn_flux_attributes);
if (ret < 0) {
dev_err(&pdev->dev, "trigger setup failed\n");
goto error_unreg_buffer_funcs;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "device register failed\n");
goto error_remove_trigger;
}
magn_state->callbacks.send_event = magn_3d_proc_event;
magn_state->callbacks.capture_sample = magn_3d_capture_sample;
magn_state->callbacks.pdev = pdev;
ret = sensor_hub_register_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D,
&magn_state->callbacks);
if (ret < 0) {
dev_err(&pdev->dev, "callback reg failed\n");
goto error_iio_unreg;
}
return ret;
error_iio_unreg:
iio_device_unregister(indio_dev);
error_remove_trigger:
hid_sensor_remove_trigger(&magn_state->magn_flux_attributes);
error_unreg_buffer_funcs:
iio_triggered_buffer_cleanup(indio_dev);
return ret;
}
/* Function to deinitialize the processing for usage id */
static int hid_magn_3d_remove(struct platform_device *pdev)
{
struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D);
iio_device_unregister(indio_dev);
hid_sensor_remove_trigger(&magn_state->magn_flux_attributes);
iio_triggered_buffer_cleanup(indio_dev);
return 0;
}
static const struct platform_device_id hid_magn_3d_ids[] = {
{
/* Format: HID-SENSOR-usage_id_in_hex_lowercase */
.name = "HID-SENSOR-200083",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, hid_magn_3d_ids);
static struct platform_driver hid_magn_3d_platform_driver = {
.id_table = hid_magn_3d_ids,
.driver = {
.name = KBUILD_MODNAME,
.pm = &hid_sensor_pm_ops,
},
.probe = hid_magn_3d_probe,
.remove = hid_magn_3d_remove,
};
module_platform_driver(hid_magn_3d_platform_driver);
MODULE_DESCRIPTION("HID Sensor Magnetometer 3D");
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
MODULE_LICENSE("GPL");