remarkable-linux/kernel/rcutree.c
Paul E. McKenney e59fb3120b rcu: Decrease memory-barrier usage based on semi-formal proof
Commit d09b62d fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00

1943 lines
57 KiB
C

/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2008
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
* Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/nmi.h>
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
#include "rcutree.h"
/* Data structures. */
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
#define RCU_STATE_INITIALIZER(structname) { \
.level = { &structname.node[0] }, \
.levelcnt = { \
NUM_RCU_LVL_0, /* root of hierarchy. */ \
NUM_RCU_LVL_1, \
NUM_RCU_LVL_2, \
NUM_RCU_LVL_3, \
NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
}, \
.signaled = RCU_GP_IDLE, \
.gpnum = -300, \
.completed = -300, \
.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
.n_force_qs = 0, \
.n_force_qs_ngp = 0, \
.name = #structname, \
}
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
/*
* Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
* permit this function to be invoked without holding the root rcu_node
* structure's ->lock, but of course results can be subject to change.
*/
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}
/*
* Note a quiescent state. Because we do not need to know
* how many quiescent states passed, just if there was at least
* one since the start of the grace period, this just sets a flag.
*/
void rcu_sched_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
}
void rcu_bh_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
}
/*
* Note a context switch. This is a quiescent state for RCU-sched,
* and requires special handling for preemptible RCU.
*/
void rcu_note_context_switch(int cpu)
{
rcu_sched_qs(cpu);
rcu_preempt_note_context_switch(cpu);
}
#ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = 1,
.dynticks = ATOMIC_INIT(1),
};
#endif /* #ifdef CONFIG_NO_HZ */
static int blimit = 10; /* Maximum callbacks per softirq. */
static int qhimark = 10000; /* If this many pending, ignore blimit. */
static int qlowmark = 100; /* Once only this many pending, use blimit. */
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);
int rcu_cpu_stall_suppress __read_mostly;
module_param(rcu_cpu_stall_suppress, int, 0644);
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
static int rcu_pending(int cpu);
/*
* Return the number of RCU-sched batches processed thus far for debug & stats.
*/
long rcu_batches_completed_sched(void)
{
return rcu_sched_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
/*
* Return the number of RCU BH batches processed thus far for debug & stats.
*/
long rcu_batches_completed_bh(void)
{
return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
/*
* Force a quiescent state for RCU BH.
*/
void rcu_bh_force_quiescent_state(void)
{
force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
/*
* Force a quiescent state for RCU-sched.
*/
void rcu_sched_force_quiescent_state(void)
{
force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
/*
* Does the CPU have callbacks ready to be invoked?
*/
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}
/*
* Does the current CPU require a yet-as-unscheduled grace period?
*/
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
}
/*
* Return the root node of the specified rcu_state structure.
*/
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
return &rsp->node[0];
}
#ifdef CONFIG_SMP
/*
* If the specified CPU is offline, tell the caller that it is in
* a quiescent state. Otherwise, whack it with a reschedule IPI.
* Grace periods can end up waiting on an offline CPU when that
* CPU is in the process of coming online -- it will be added to the
* rcu_node bitmasks before it actually makes it online. The same thing
* can happen while a CPU is in the process of coming online. Because this
* race is quite rare, we check for it after detecting that the grace
* period has been delayed rather than checking each and every CPU
* each and every time we start a new grace period.
*/
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
/*
* If the CPU is offline, it is in a quiescent state. We can
* trust its state not to change because interrupts are disabled.
*/
if (cpu_is_offline(rdp->cpu)) {
rdp->offline_fqs++;
return 1;
}
/* If preemptable RCU, no point in sending reschedule IPI. */
if (rdp->preemptable)
return 0;
/* The CPU is online, so send it a reschedule IPI. */
if (rdp->cpu != smp_processor_id())
smp_send_reschedule(rdp->cpu);
else
set_need_resched();
rdp->resched_ipi++;
return 0;
}
#endif /* #ifdef CONFIG_SMP */
#ifdef CONFIG_NO_HZ
/**
* rcu_enter_nohz - inform RCU that current CPU is entering nohz
*
* Enter nohz mode, in other words, -leave- the mode in which RCU
* read-side critical sections can occur. (Though RCU read-side
* critical sections can occur in irq handlers in nohz mode, a possibility
* handled by rcu_irq_enter() and rcu_irq_exit()).
*/
void rcu_enter_nohz(void)
{
unsigned long flags;
struct rcu_dynticks *rdtp;
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
if (--rdtp->dynticks_nesting) {
local_irq_restore(flags);
return;
}
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
local_irq_restore(flags);
/* If the interrupt queued a callback, get out of dyntick mode. */
if (in_irq() &&
(__get_cpu_var(rcu_sched_data).nxtlist ||
__get_cpu_var(rcu_bh_data).nxtlist ||
rcu_preempt_needs_cpu(smp_processor_id())))
set_need_resched();
}
/*
* rcu_exit_nohz - inform RCU that current CPU is leaving nohz
*
* Exit nohz mode, in other words, -enter- the mode in which RCU
* read-side critical sections normally occur.
*/
void rcu_exit_nohz(void)
{
unsigned long flags;
struct rcu_dynticks *rdtp;
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks_nesting++) {
local_irq_restore(flags);
return;
}
smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
local_irq_restore(flags);
}
/**
* rcu_nmi_enter - inform RCU of entry to NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is active.
*/
void rcu_nmi_enter(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks_nmi_nesting == 0 &&
(atomic_read(&rdtp->dynticks) & 0x1))
return;
rdtp->dynticks_nmi_nesting++;
smp_mb__before_atomic_inc(); /* Force delay from prior write. */
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
}
/**
* rcu_nmi_exit - inform RCU of exit from NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is no longer active.
*/
void rcu_nmi_exit(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks_nmi_nesting == 0 ||
--rdtp->dynticks_nmi_nesting != 0)
return;
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force delay to next write. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
}
/**
* rcu_irq_enter - inform RCU of entry to hard irq context
*
* If the CPU was idle with dynamic ticks active, this updates the
* rdtp->dynticks to let the RCU handling know that the CPU is active.
*/
void rcu_irq_enter(void)
{
rcu_exit_nohz();
}
/**
* rcu_irq_exit - inform RCU of exit from hard irq context
*
* If the CPU was idle with dynamic ticks active, update the rdp->dynticks
* to put let the RCU handling be aware that the CPU is going back to idle
* with no ticks.
*/
void rcu_irq_exit(void)
{
rcu_enter_nohz();
}
#ifdef CONFIG_SMP
/*
* Snapshot the specified CPU's dynticks counter so that we can later
* credit them with an implicit quiescent state. Return 1 if this CPU
* is in dynticks idle mode, which is an extended quiescent state.
*/
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
return 0;
}
/*
* Return true if the specified CPU has passed through a quiescent
* state by virtue of being in or having passed through an dynticks
* idle state since the last call to dyntick_save_progress_counter()
* for this same CPU.
*/
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
unsigned long curr;
unsigned long snap;
curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
snap = (unsigned long)rdp->dynticks_snap;
/*
* If the CPU passed through or entered a dynticks idle phase with
* no active irq/NMI handlers, then we can safely pretend that the CPU
* already acknowledged the request to pass through a quiescent
* state. Either way, that CPU cannot possibly be in an RCU
* read-side critical section that started before the beginning
* of the current RCU grace period.
*/
if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
rdp->dynticks_fqs++;
return 1;
}
/* Go check for the CPU being offline. */
return rcu_implicit_offline_qs(rdp);
}
#endif /* #ifdef CONFIG_SMP */
#else /* #ifdef CONFIG_NO_HZ */
#ifdef CONFIG_SMP
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
return 0;
}
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
return rcu_implicit_offline_qs(rdp);
}
#endif /* #ifdef CONFIG_SMP */
#endif /* #else #ifdef CONFIG_NO_HZ */
int rcu_cpu_stall_suppress __read_mostly;
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
rsp->gp_start = jiffies;
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}
static void print_other_cpu_stall(struct rcu_state *rsp)
{
int cpu;
long delta;
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
/* Only let one CPU complain about others per time interval. */
raw_spin_lock_irqsave(&rnp->lock, flags);
delta = jiffies - rsp->jiffies_stall;
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
/*
* Now rat on any tasks that got kicked up to the root rcu_node
* due to CPU offlining.
*/
rcu_print_task_stall(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/*
* OK, time to rat on our buddy...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
rsp->name);
rcu_for_each_leaf_node(rsp, rnp) {
raw_spin_lock_irqsave(&rnp->lock, flags);
rcu_print_task_stall(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
if (rnp->qsmask == 0)
continue;
for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
if (rnp->qsmask & (1UL << cpu))
printk(" %d", rnp->grplo + cpu);
}
printk("} (detected by %d, t=%ld jiffies)\n",
smp_processor_id(), (long)(jiffies - rsp->gp_start));
trigger_all_cpu_backtrace();
/* If so configured, complain about tasks blocking the grace period. */
rcu_print_detail_task_stall(rsp);
force_quiescent_state(rsp, 0); /* Kick them all. */
}
static void print_cpu_stall(struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
/*
* OK, time to rat on ourselves...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
trigger_all_cpu_backtrace();
raw_spin_lock_irqsave(&rnp->lock, flags);
if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
rsp->jiffies_stall =
jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
set_need_resched(); /* kick ourselves to get things going. */
}
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
long delta;
struct rcu_node *rnp;
if (rcu_cpu_stall_suppress)
return;
delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
rnp = rdp->mynode;
if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
/* We haven't checked in, so go dump stack. */
print_cpu_stall(rsp);
} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
/* They had two time units to dump stack, so complain. */
print_other_cpu_stall(rsp);
}
}
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
rcu_cpu_stall_suppress = 1;
return NOTIFY_DONE;
}
/**
* rcu_cpu_stall_reset - prevent further stall warnings in current grace period
*
* Set the stall-warning timeout way off into the future, thus preventing
* any RCU CPU stall-warning messages from appearing in the current set of
* RCU grace periods.
*
* The caller must disable hard irqs.
*/
void rcu_cpu_stall_reset(void)
{
rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
rcu_preempt_stall_reset();
}
static struct notifier_block rcu_panic_block = {
.notifier_call = rcu_panic,
};
static void __init check_cpu_stall_init(void)
{
atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}
/*
* Update CPU-local rcu_data state to record the newly noticed grace period.
* This is used both when we started the grace period and when we notice
* that someone else started the grace period. The caller must hold the
* ->lock of the leaf rcu_node structure corresponding to the current CPU,
* and must have irqs disabled.
*/
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
if (rdp->gpnum != rnp->gpnum) {
/*
* If the current grace period is waiting for this CPU,
* set up to detect a quiescent state, otherwise don't
* go looking for one.
*/
rdp->gpnum = rnp->gpnum;
if (rnp->qsmask & rdp->grpmask) {
rdp->qs_pending = 1;
rdp->passed_quiesc = 0;
} else
rdp->qs_pending = 0;
}
}
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
struct rcu_node *rnp;
local_irq_save(flags);
rnp = rdp->mynode;
if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
!raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
local_irq_restore(flags);
return;
}
__note_new_gpnum(rsp, rnp, rdp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Did someone else start a new RCU grace period start since we last
* checked? Update local state appropriately if so. Must be called
* on the CPU corresponding to rdp.
*/
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
int ret = 0;
local_irq_save(flags);
if (rdp->gpnum != rsp->gpnum) {
note_new_gpnum(rsp, rdp);
ret = 1;
}
local_irq_restore(flags);
return ret;
}
/*
* Advance this CPU's callbacks, but only if the current grace period
* has ended. This may be called only from the CPU to whom the rdp
* belongs. In addition, the corresponding leaf rcu_node structure's
* ->lock must be held by the caller, with irqs disabled.
*/
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
/* Did another grace period end? */
if (rdp->completed != rnp->completed) {
/* Advance callbacks. No harm if list empty. */
rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
/* Remember that we saw this grace-period completion. */
rdp->completed = rnp->completed;
/*
* If we were in an extended quiescent state, we may have
* missed some grace periods that others CPUs handled on
* our behalf. Catch up with this state to avoid noting
* spurious new grace periods. If another grace period
* has started, then rnp->gpnum will have advanced, so
* we will detect this later on.
*/
if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
rdp->gpnum = rdp->completed;
/*
* If RCU does not need a quiescent state from this CPU,
* then make sure that this CPU doesn't go looking for one.
*/
if ((rnp->qsmask & rdp->grpmask) == 0)
rdp->qs_pending = 0;
}
}
/*
* Advance this CPU's callbacks, but only if the current grace period
* has ended. This may be called only from the CPU to whom the rdp
* belongs.
*/
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
struct rcu_node *rnp;
local_irq_save(flags);
rnp = rdp->mynode;
if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
!raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
local_irq_restore(flags);
return;
}
__rcu_process_gp_end(rsp, rnp, rdp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Do per-CPU grace-period initialization for running CPU. The caller
* must hold the lock of the leaf rcu_node structure corresponding to
* this CPU.
*/
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
/* Prior grace period ended, so advance callbacks for current CPU. */
__rcu_process_gp_end(rsp, rnp, rdp);
/*
* Because this CPU just now started the new grace period, we know
* that all of its callbacks will be covered by this upcoming grace
* period, even the ones that were registered arbitrarily recently.
* Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
*
* Other CPUs cannot be sure exactly when the grace period started.
* Therefore, their recently registered callbacks must pass through
* an additional RCU_NEXT_READY stage, so that they will be handled
* by the next RCU grace period.
*/
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
/* Set state so that this CPU will detect the next quiescent state. */
__note_new_gpnum(rsp, rnp, rdp);
}
/*
* Start a new RCU grace period if warranted, re-initializing the hierarchy
* in preparation for detecting the next grace period. The caller must hold
* the root node's ->lock, which is released before return. Hard irqs must
* be disabled.
*/
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
{
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
struct rcu_node *rnp = rcu_get_root(rsp);
if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
if (cpu_needs_another_gp(rsp, rdp))
rsp->fqs_need_gp = 1;
if (rnp->completed == rsp->completed) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
/*
* Propagate new ->completed value to rcu_node structures
* so that other CPUs don't have to wait until the start
* of the next grace period to process their callbacks.
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->completed = rsp->completed;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
local_irq_restore(flags);
return;
}
/* Advance to a new grace period and initialize state. */
rsp->gpnum++;
WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
record_gp_stall_check_time(rsp);
/* Special-case the common single-level case. */
if (NUM_RCU_NODES == 1) {
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
rnp->completed = rsp->completed;
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
rcu_start_gp_per_cpu(rsp, rnp, rdp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
/* Exclude any concurrent CPU-hotplug operations. */
raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
/*
* Set the quiescent-state-needed bits in all the rcu_node
* structures for all currently online CPUs in breadth-first
* order, starting from the root rcu_node structure. This
* operation relies on the layout of the hierarchy within the
* rsp->node[] array. Note that other CPUs will access only
* the leaves of the hierarchy, which still indicate that no
* grace period is in progress, at least until the corresponding
* leaf node has been initialized. In addition, we have excluded
* CPU-hotplug operations.
*
* Note that the grace period cannot complete until we finish
* the initialization process, as there will be at least one
* qsmask bit set in the root node until that time, namely the
* one corresponding to this CPU, due to the fact that we have
* irqs disabled.
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
rnp->completed = rsp->completed;
if (rnp == rdp->mynode)
rcu_start_gp_per_cpu(rsp, rnp, rdp);
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
rnp = rcu_get_root(rsp);
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
}
/*
* Report a full set of quiescent states to the specified rcu_state
* data structure. This involves cleaning up after the prior grace
* period and letting rcu_start_gp() start up the next grace period
* if one is needed. Note that the caller must hold rnp->lock, as
* required by rcu_start_gp(), which will release it.
*/
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
{
WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
/*
* Ensure that all grace-period and pre-grace-period activity
* is seen before the assignment to rsp->completed.
*/
smp_mb(); /* See above block comment. */
rsp->completed = rsp->gpnum;
rsp->signaled = RCU_GP_IDLE;
rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
}
/*
* Similar to rcu_report_qs_rdp(), for which it is a helper function.
* Allows quiescent states for a group of CPUs to be reported at one go
* to the specified rcu_node structure, though all the CPUs in the group
* must be represented by the same rcu_node structure (which need not be
* a leaf rcu_node structure, though it often will be). That structure's
* lock must be held upon entry, and it is released before return.
*/
static void
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
struct rcu_node *rnp_c;
/* Walk up the rcu_node hierarchy. */
for (;;) {
if (!(rnp->qsmask & mask)) {
/* Our bit has already been cleared, so done. */
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
rnp->qsmask &= ~mask;
if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
/* Other bits still set at this level, so done. */
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
mask = rnp->grpmask;
if (rnp->parent == NULL) {
/* No more levels. Exit loop holding root lock. */
break;
}
raw_spin_unlock_irqrestore(&rnp->lock, flags);
rnp_c = rnp;
rnp = rnp->parent;
raw_spin_lock_irqsave(&rnp->lock, flags);
WARN_ON_ONCE(rnp_c->qsmask);
}
/*
* Get here if we are the last CPU to pass through a quiescent
* state for this grace period. Invoke rcu_report_qs_rsp()
* to clean up and start the next grace period if one is needed.
*/
rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
}
/*
* Record a quiescent state for the specified CPU to that CPU's rcu_data
* structure. This must be either called from the specified CPU, or
* called when the specified CPU is known to be offline (and when it is
* also known that no other CPU is concurrently trying to help the offline
* CPU). The lastcomp argument is used to make sure we are still in the
* grace period of interest. We don't want to end the current grace period
* based on quiescent states detected in an earlier grace period!
*/
static void
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
{
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp;
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
if (lastcomp != rnp->completed) {
/*
* Someone beat us to it for this grace period, so leave.
* The race with GP start is resolved by the fact that we
* hold the leaf rcu_node lock, so that the per-CPU bits
* cannot yet be initialized -- so we would simply find our
* CPU's bit already cleared in rcu_report_qs_rnp() if this
* race occurred.
*/
rdp->passed_quiesc = 0; /* try again later! */
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
mask = rdp->grpmask;
if ((rnp->qsmask & mask) == 0) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
} else {
rdp->qs_pending = 0;
/*
* This GP can't end until cpu checks in, so all of our
* callbacks can be processed during the next GP.
*/
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
}
}
/*
* Check to see if there is a new grace period of which this CPU
* is not yet aware, and if so, set up local rcu_data state for it.
* Otherwise, see if this CPU has just passed through its first
* quiescent state for this grace period, and record that fact if so.
*/
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
/* If there is now a new grace period, record and return. */
if (check_for_new_grace_period(rsp, rdp))
return;
/*
* Does this CPU still need to do its part for current grace period?
* If no, return and let the other CPUs do their part as well.
*/
if (!rdp->qs_pending)
return;
/*
* Was there a quiescent state since the beginning of the grace
* period? If no, then exit and wait for the next call.
*/
if (!rdp->passed_quiesc)
return;
/*
* Tell RCU we are done (but rcu_report_qs_rdp() will be the
* judge of that).
*/
rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Move a dying CPU's RCU callbacks to online CPU's callback list.
* Synchronization is not required because this function executes
* in stop_machine() context.
*/
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
{
int i;
/* current DYING CPU is cleared in the cpu_online_mask */
int receive_cpu = cpumask_any(cpu_online_mask);
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
if (rdp->nxtlist == NULL)
return; /* irqs disabled, so comparison is stable. */
*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
receive_rdp->qlen += rdp->qlen;
receive_rdp->n_cbs_adopted += rdp->qlen;
rdp->n_cbs_orphaned += rdp->qlen;
rdp->nxtlist = NULL;
for (i = 0; i < RCU_NEXT_SIZE; i++)
rdp->nxttail[i] = &rdp->nxtlist;
rdp->qlen = 0;
}
/*
* Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
* and move all callbacks from the outgoing CPU to the current one.
*/
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
unsigned long mask;
int need_report = 0;
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp;
/* Exclude any attempts to start a new grace period. */
raw_spin_lock_irqsave(&rsp->onofflock, flags);
/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
mask = rdp->grpmask; /* rnp->grplo is constant. */
do {
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->qsmaskinit &= ~mask;
if (rnp->qsmaskinit != 0) {
if (rnp != rdp->mynode)
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
break;
}
if (rnp == rdp->mynode)
need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
else
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
mask = rnp->grpmask;
rnp = rnp->parent;
} while (rnp != NULL);
/*
* We still hold the leaf rcu_node structure lock here, and
* irqs are still disabled. The reason for this subterfuge is
* because invoking rcu_report_unblock_qs_rnp() with ->onofflock
* held leads to deadlock.
*/
raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
rnp = rdp->mynode;
if (need_report & RCU_OFL_TASKS_NORM_GP)
rcu_report_unblock_qs_rnp(rnp, flags);
else
raw_spin_unlock_irqrestore(&rnp->lock, flags);
if (need_report & RCU_OFL_TASKS_EXP_GP)
rcu_report_exp_rnp(rsp, rnp);
}
/*
* Remove the specified CPU from the RCU hierarchy and move any pending
* callbacks that it might have to the current CPU. This code assumes
* that at least one CPU in the system will remain running at all times.
* Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
*/
static void rcu_offline_cpu(int cpu)
{
__rcu_offline_cpu(cpu, &rcu_sched_state);
__rcu_offline_cpu(cpu, &rcu_bh_state);
rcu_preempt_offline_cpu(cpu);
}
#else /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
{
}
static void rcu_offline_cpu(int cpu)
{
}
#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
/*
* Invoke any RCU callbacks that have made it to the end of their grace
* period. Thottle as specified by rdp->blimit.
*/
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
struct rcu_head *next, *list, **tail;
int count;
/* If no callbacks are ready, just return.*/
if (!cpu_has_callbacks_ready_to_invoke(rdp))
return;
/*
* Extract the list of ready callbacks, disabling to prevent
* races with call_rcu() from interrupt handlers.
*/
local_irq_save(flags);
list = rdp->nxtlist;
rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
*rdp->nxttail[RCU_DONE_TAIL] = NULL;
tail = rdp->nxttail[RCU_DONE_TAIL];
for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
rdp->nxttail[count] = &rdp->nxtlist;
local_irq_restore(flags);
/* Invoke callbacks. */
count = 0;
while (list) {
next = list->next;
prefetch(next);
debug_rcu_head_unqueue(list);
list->func(list);
list = next;
if (++count >= rdp->blimit)
break;
}
local_irq_save(flags);
/* Update count, and requeue any remaining callbacks. */
rdp->qlen -= count;
rdp->n_cbs_invoked += count;
if (list != NULL) {
*tail = rdp->nxtlist;
rdp->nxtlist = list;
for (count = 0; count < RCU_NEXT_SIZE; count++)
if (&rdp->nxtlist == rdp->nxttail[count])
rdp->nxttail[count] = tail;
else
break;
}
/* Reinstate batch limit if we have worked down the excess. */
if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
rdp->blimit = blimit;
/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
rdp->qlen_last_fqs_check = 0;
rdp->n_force_qs_snap = rsp->n_force_qs;
} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
rdp->qlen_last_fqs_check = rdp->qlen;
local_irq_restore(flags);
/* Re-raise the RCU softirq if there are callbacks remaining. */
if (cpu_has_callbacks_ready_to_invoke(rdp))
raise_softirq(RCU_SOFTIRQ);
}
/*
* Check to see if this CPU is in a non-context-switch quiescent state
* (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
* Also schedule the RCU softirq handler.
*
* This function must be called with hardirqs disabled. It is normally
* invoked from the scheduling-clock interrupt. If rcu_pending returns
* false, there is no point in invoking rcu_check_callbacks().
*/
void rcu_check_callbacks(int cpu, int user)
{
if (user ||
(idle_cpu(cpu) && rcu_scheduler_active &&
!in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
/*
* Get here if this CPU took its interrupt from user
* mode or from the idle loop, and if this is not a
* nested interrupt. In this case, the CPU is in
* a quiescent state, so note it.
*
* No memory barrier is required here because both
* rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
* variables that other CPUs neither access nor modify,
* at least not while the corresponding CPU is online.
*/
rcu_sched_qs(cpu);
rcu_bh_qs(cpu);
} else if (!in_softirq()) {
/*
* Get here if this CPU did not take its interrupt from
* softirq, in other words, if it is not interrupting
* a rcu_bh read-side critical section. This is an _bh
* critical section, so note it.
*/
rcu_bh_qs(cpu);
}
rcu_preempt_check_callbacks(cpu);
if (rcu_pending(cpu))
raise_softirq(RCU_SOFTIRQ);
}
#ifdef CONFIG_SMP
/*
* Scan the leaf rcu_node structures, processing dyntick state for any that
* have not yet encountered a quiescent state, using the function specified.
* The caller must have suppressed start of new grace periods.
*/
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
{
unsigned long bit;
int cpu;
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp;
rcu_for_each_leaf_node(rsp, rnp) {
mask = 0;
raw_spin_lock_irqsave(&rnp->lock, flags);
if (!rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
if (rnp->qsmask == 0) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
continue;
}
cpu = rnp->grplo;
bit = 1;
for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
if ((rnp->qsmask & bit) != 0 &&
f(per_cpu_ptr(rsp->rda, cpu)))
mask |= bit;
}
if (mask != 0) {
/* rcu_report_qs_rnp() releases rnp->lock. */
rcu_report_qs_rnp(mask, rsp, rnp, flags);
continue;
}
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
}
/*
* Force quiescent states on reluctant CPUs, and also detect which
* CPUs are in dyntick-idle mode.
*/
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
if (!rcu_gp_in_progress(rsp))
return; /* No grace period in progress, nothing to force. */
if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
return; /* Someone else is already on the job. */
}
if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
goto unlock_fqs_ret; /* no emergency and done recently. */
rsp->n_force_qs++;
raw_spin_lock(&rnp->lock); /* irqs already disabled */
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
if(!rcu_gp_in_progress(rsp)) {
rsp->n_force_qs_ngp++;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
goto unlock_fqs_ret; /* no GP in progress, time updated. */
}
rsp->fqs_active = 1;
switch (rsp->signaled) {
case RCU_GP_IDLE:
case RCU_GP_INIT:
break; /* grace period idle or initializing, ignore. */
case RCU_SAVE_DYNTICK:
if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
break; /* So gcc recognizes the dead code. */
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
/* Record dyntick-idle state. */
force_qs_rnp(rsp, dyntick_save_progress_counter);
raw_spin_lock(&rnp->lock); /* irqs already disabled */
if (rcu_gp_in_progress(rsp))
rsp->signaled = RCU_FORCE_QS;
break;
case RCU_FORCE_QS:
/* Check dyntick-idle state, send IPI to laggarts. */
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
/* Leave state in case more forcing is required. */
raw_spin_lock(&rnp->lock); /* irqs already disabled */
break;
}
rsp->fqs_active = 0;
if (rsp->fqs_need_gp) {
raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
rsp->fqs_need_gp = 0;
rcu_start_gp(rsp, flags); /* releases rnp->lock */
return;
}
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
unlock_fqs_ret:
raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
}
#else /* #ifdef CONFIG_SMP */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
set_need_resched();
}
#endif /* #else #ifdef CONFIG_SMP */
/*
* This does the RCU processing work from softirq context for the
* specified rcu_state and rcu_data structures. This may be called
* only from the CPU to whom the rdp belongs.
*/
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
WARN_ON_ONCE(rdp->beenonline == 0);
/*
* If an RCU GP has gone long enough, go check for dyntick
* idle CPUs and, if needed, send resched IPIs.
*/
if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
force_quiescent_state(rsp, 1);
/*
* Advance callbacks in response to end of earlier grace
* period that some other CPU ended.
*/
rcu_process_gp_end(rsp, rdp);
/* Update RCU state based on any recent quiescent states. */
rcu_check_quiescent_state(rsp, rdp);
/* Does this CPU require a not-yet-started grace period? */
if (cpu_needs_another_gp(rsp, rdp)) {
raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
rcu_start_gp(rsp, flags); /* releases above lock */
}
/* If there are callbacks ready, invoke them. */
rcu_do_batch(rsp, rdp);
}
/*
* Do softirq processing for the current CPU.
*/
static void rcu_process_callbacks(struct softirq_action *unused)
{
__rcu_process_callbacks(&rcu_sched_state,
&__get_cpu_var(rcu_sched_data));
__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
rcu_preempt_process_callbacks();
/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
rcu_needs_cpu_flush();
}
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_data *rdp;
debug_rcu_head_queue(head);
head->func = func;
head->next = NULL;
smp_mb(); /* Ensure RCU update seen before callback registry. */
/*
* Opportunistically note grace-period endings and beginnings.
* Note that we might see a beginning right after we see an
* end, but never vice versa, since this CPU has to pass through
* a quiescent state betweentimes.
*/
local_irq_save(flags);
rdp = this_cpu_ptr(rsp->rda);
/* Add the callback to our list. */
*rdp->nxttail[RCU_NEXT_TAIL] = head;
rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
/*
* Force the grace period if too many callbacks or too long waiting.
* Enforce hysteresis, and don't invoke force_quiescent_state()
* if some other CPU has recently done so. Also, don't bother
* invoking force_quiescent_state() if the newly enqueued callback
* is the only one waiting for a grace period to complete.
*/
if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
/* Are we ignoring a completed grace period? */
rcu_process_gp_end(rsp, rdp);
check_for_new_grace_period(rsp, rdp);
/* Start a new grace period if one not already started. */
if (!rcu_gp_in_progress(rsp)) {
unsigned long nestflag;
struct rcu_node *rnp_root = rcu_get_root(rsp);
raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
} else {
/* Give the grace period a kick. */
rdp->blimit = LONG_MAX;
if (rsp->n_force_qs == rdp->n_force_qs_snap &&
*rdp->nxttail[RCU_DONE_TAIL] != head)
force_quiescent_state(rsp, 0);
rdp->n_force_qs_snap = rsp->n_force_qs;
rdp->qlen_last_fqs_check = rdp->qlen;
}
} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
force_quiescent_state(rsp, 1);
local_irq_restore(flags);
}
/*
* Queue an RCU-sched callback for invocation after a grace period.
*/
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_sched_state);
}
EXPORT_SYMBOL_GPL(call_rcu_sched);
/*
* Queue an RCU for invocation after a quicker grace period.
*/
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);
/**
* synchronize_sched - wait until an rcu-sched grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-sched
* grace period has elapsed, in other words after all currently executing
* rcu-sched read-side critical sections have completed. These read-side
* critical sections are delimited by rcu_read_lock_sched() and
* rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
* local_irq_disable(), and so on may be used in place of
* rcu_read_lock_sched().
*
* This means that all preempt_disable code sequences, including NMI and
* hardware-interrupt handlers, in progress on entry will have completed
* before this primitive returns. However, this does not guarantee that
* softirq handlers will have completed, since in some kernels, these
* handlers can run in process context, and can block.
*
* This primitive provides the guarantees made by the (now removed)
* synchronize_kernel() API. In contrast, synchronize_rcu() only
* guarantees that rcu_read_lock() sections will have completed.
* In "classic RCU", these two guarantees happen to be one and
* the same, but can differ in realtime RCU implementations.
*/
void synchronize_sched(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(synchronize_sched);
/**
* synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
*
* Control will return to the caller some time after a full rcu_bh grace
* period has elapsed, in other words after all currently executing rcu_bh
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
* and may be nested.
*/
void synchronize_rcu_bh(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_bh(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
/*
* Check to see if there is any immediate RCU-related work to be done
* by the current CPU, for the specified type of RCU, returning 1 if so.
* The checks are in order of increasing expense: checks that can be
* carried out against CPU-local state are performed first. However,
* we must check for CPU stalls first, else we might not get a chance.
*/
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
struct rcu_node *rnp = rdp->mynode;
rdp->n_rcu_pending++;
/* Check for CPU stalls, if enabled. */
check_cpu_stall(rsp, rdp);
/* Is the RCU core waiting for a quiescent state from this CPU? */
if (rdp->qs_pending && !rdp->passed_quiesc) {
/*
* If force_quiescent_state() coming soon and this CPU
* needs a quiescent state, and this is either RCU-sched
* or RCU-bh, force a local reschedule.
*/
rdp->n_rp_qs_pending++;
if (!rdp->preemptable &&
ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
jiffies))
set_need_resched();
} else if (rdp->qs_pending && rdp->passed_quiesc) {
rdp->n_rp_report_qs++;
return 1;
}
/* Does this CPU have callbacks ready to invoke? */
if (cpu_has_callbacks_ready_to_invoke(rdp)) {
rdp->n_rp_cb_ready++;
return 1;
}
/* Has RCU gone idle with this CPU needing another grace period? */
if (cpu_needs_another_gp(rsp, rdp)) {
rdp->n_rp_cpu_needs_gp++;
return 1;
}
/* Has another RCU grace period completed? */
if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
rdp->n_rp_gp_completed++;
return 1;
}
/* Has a new RCU grace period started? */
if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
rdp->n_rp_gp_started++;
return 1;
}
/* Has an RCU GP gone long enough to send resched IPIs &c? */
if (rcu_gp_in_progress(rsp) &&
ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
rdp->n_rp_need_fqs++;
return 1;
}
/* nothing to do */
rdp->n_rp_need_nothing++;
return 0;
}
/*
* Check to see if there is any immediate RCU-related work to be done
* by the current CPU, returning 1 if so. This function is part of the
* RCU implementation; it is -not- an exported member of the RCU API.
*/
static int rcu_pending(int cpu)
{
return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
__rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
rcu_preempt_pending(cpu);
}
/*
* Check to see if any future RCU-related work will need to be done
* by the current CPU, even if none need be done immediately, returning
* 1 if so.
*/
static int rcu_needs_cpu_quick_check(int cpu)
{
/* RCU callbacks either ready or pending? */
return per_cpu(rcu_sched_data, cpu).nxtlist ||
per_cpu(rcu_bh_data, cpu).nxtlist ||
rcu_preempt_needs_cpu(cpu);
}
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;
static void rcu_barrier_callback(struct rcu_head *notused)
{
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
}
/*
* Called with preemption disabled, and from cross-cpu IRQ context.
*/
static void rcu_barrier_func(void *type)
{
int cpu = smp_processor_id();
struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
void (*call_rcu_func)(struct rcu_head *head,
void (*func)(struct rcu_head *head));
atomic_inc(&rcu_barrier_cpu_count);
call_rcu_func = type;
call_rcu_func(head, rcu_barrier_callback);
}
/*
* Orchestrate the specified type of RCU barrier, waiting for all
* RCU callbacks of the specified type to complete.
*/
static void _rcu_barrier(struct rcu_state *rsp,
void (*call_rcu_func)(struct rcu_head *head,
void (*func)(struct rcu_head *head)))
{
BUG_ON(in_interrupt());
/* Take mutex to serialize concurrent rcu_barrier() requests. */
mutex_lock(&rcu_barrier_mutex);
init_completion(&rcu_barrier_completion);
/*
* Initialize rcu_barrier_cpu_count to 1, then invoke
* rcu_barrier_func() on each CPU, so that each CPU also has
* incremented rcu_barrier_cpu_count. Only then is it safe to
* decrement rcu_barrier_cpu_count -- otherwise the first CPU
* might complete its grace period before all of the other CPUs
* did their increment, causing this function to return too
* early. Note that on_each_cpu() disables irqs, which prevents
* any CPUs from coming online or going offline until each online
* CPU has queued its RCU-barrier callback.
*/
atomic_set(&rcu_barrier_cpu_count, 1);
on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
wait_for_completion(&rcu_barrier_completion);
mutex_unlock(&rcu_barrier_mutex);
}
/**
* rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
*/
void rcu_barrier_bh(void)
{
_rcu_barrier(&rcu_bh_state, call_rcu_bh);
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
/**
* rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
*/
void rcu_barrier_sched(void)
{
_rcu_barrier(&rcu_sched_state, call_rcu_sched);
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
/*
* Do boot-time initialization of a CPU's per-CPU RCU data.
*/
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
int i;
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
raw_spin_lock_irqsave(&rnp->lock, flags);
rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
rdp->nxtlist = NULL;
for (i = 0; i < RCU_NEXT_SIZE; i++)
rdp->nxttail[i] = &rdp->nxtlist;
rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
rdp->cpu = cpu;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Initialize a CPU's per-CPU RCU data. Note that only one online or
* offline event can be happening at a given time. Note also that we
* can accept some slop in the rsp->completed access due to the fact
* that this CPU cannot possibly have any RCU callbacks in flight yet.
*/
static void __cpuinit
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
{
unsigned long flags;
unsigned long mask;
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
raw_spin_lock_irqsave(&rnp->lock, flags);
rdp->passed_quiesc = 0; /* We could be racing with new GP, */
rdp->qs_pending = 1; /* so set up to respond to current GP. */
rdp->beenonline = 1; /* We have now been online. */
rdp->preemptable = preemptable;
rdp->qlen_last_fqs_check = 0;
rdp->n_force_qs_snap = rsp->n_force_qs;
rdp->blimit = blimit;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
/*
* A new grace period might start here. If so, we won't be part
* of it, but that is OK, as we are currently in a quiescent state.
*/
/* Exclude any attempts to start a new GP on large systems. */
raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
/* Add CPU to rcu_node bitmasks. */
rnp = rdp->mynode;
mask = rdp->grpmask;
do {
/* Exclude any attempts to start a new GP on small systems. */
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->qsmaskinit |= mask;
mask = rnp->grpmask;
if (rnp == rdp->mynode) {
rdp->gpnum = rnp->completed; /* if GP in progress... */
rdp->completed = rnp->completed;
rdp->passed_quiesc_completed = rnp->completed - 1;
}
raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
rnp = rnp->parent;
} while (rnp != NULL && !(rnp->qsmaskinit & mask));
raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
}
static void __cpuinit rcu_online_cpu(int cpu)
{
rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
rcu_preempt_init_percpu_data(cpu);
}
/*
* Handle CPU online/offline notification events.
*/
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
rcu_online_cpu(cpu);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
/*
* The whole machine is "stopped" except this CPU, so we can
* touch any data without introducing corruption. We send the
* dying CPU's callbacks to an arbitrarily chosen online CPU.
*/
rcu_send_cbs_to_online(&rcu_bh_state);
rcu_send_cbs_to_online(&rcu_sched_state);
rcu_preempt_send_cbs_to_online();
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
rcu_offline_cpu(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
/*
* This function is invoked towards the end of the scheduler's initialization
* process. Before this is called, the idle task might contain
* RCU read-side critical sections (during which time, this idle
* task is booting the system). After this function is called, the
* idle tasks are prohibited from containing RCU read-side critical
* sections. This function also enables RCU lockdep checking.
*/
void rcu_scheduler_starting(void)
{
WARN_ON(num_online_cpus() != 1);
WARN_ON(nr_context_switches() > 0);
rcu_scheduler_active = 1;
}
/*
* Compute the per-level fanout, either using the exact fanout specified
* or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
*/
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int i;
for (i = NUM_RCU_LVLS - 1; i > 0; i--)
rsp->levelspread[i] = CONFIG_RCU_FANOUT;
rsp->levelspread[0] = RCU_FANOUT_LEAF;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int ccur;
int cprv;
int i;
cprv = NR_CPUS;
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
ccur = rsp->levelcnt[i];
rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
cprv = ccur;
}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
/*
* Helper function for rcu_init() that initializes one rcu_state structure.
*/
static void __init rcu_init_one(struct rcu_state *rsp,
struct rcu_data __percpu *rda)
{
static char *buf[] = { "rcu_node_level_0",
"rcu_node_level_1",
"rcu_node_level_2",
"rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
int cpustride = 1;
int i;
int j;
struct rcu_node *rnp;
BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
/* Initialize the level-tracking arrays. */
for (i = 1; i < NUM_RCU_LVLS; i++)
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
rcu_init_levelspread(rsp);
/* Initialize the elements themselves, starting from the leaves. */
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
cpustride *= rsp->levelspread[i];
rnp = rsp->level[i];
for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
raw_spin_lock_init(&rnp->lock);
lockdep_set_class_and_name(&rnp->lock,
&rcu_node_class[i], buf[i]);
rnp->gpnum = 0;
rnp->qsmask = 0;
rnp->qsmaskinit = 0;
rnp->grplo = j * cpustride;
rnp->grphi = (j + 1) * cpustride - 1;
if (rnp->grphi >= NR_CPUS)
rnp->grphi = NR_CPUS - 1;
if (i == 0) {
rnp->grpnum = 0;
rnp->grpmask = 0;
rnp->parent = NULL;
} else {
rnp->grpnum = j % rsp->levelspread[i - 1];
rnp->grpmask = 1UL << rnp->grpnum;
rnp->parent = rsp->level[i - 1] +
j / rsp->levelspread[i - 1];
}
rnp->level = i;
INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
}
}
rsp->rda = rda;
rnp = rsp->level[NUM_RCU_LVLS - 1];
for_each_possible_cpu(i) {
while (i > rnp->grphi)
rnp++;
per_cpu_ptr(rsp->rda, i)->mynode = rnp;
rcu_boot_init_percpu_data(i, rsp);
}
}
void __init rcu_init(void)
{
int cpu;
rcu_bootup_announce();
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
rcu_init_one(&rcu_bh_state, &rcu_bh_data);
__rcu_init_preempt();
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
/*
* We don't need protection against CPU-hotplug here because
* this is called early in boot, before either interrupts
* or the scheduler are operational.
*/
cpu_notifier(rcu_cpu_notify, 0);
for_each_online_cpu(cpu)
rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
check_cpu_stall_init();
}
#include "rcutree_plugin.h"