remarkable-linux/net/netfilter/nft_byteorder.c
Patrick McHardy 49499c3e6e netfilter: nf_tables: switch registers to 32 bit addressing
Switch the nf_tables registers from 128 bit addressing to 32 bit
addressing to support so called concatenations, where multiple values
can be concatenated over multiple registers for O(1) exact matches of
multiple dimensions using sets.

The old register values are mapped to areas of 128 bits for compatibility.
When dumping register numbers, values are expressed using the old values
if they refer to the beginning of a 128 bit area for compatibility.

To support concatenations, register loads of less than a full 32 bit
value need to be padded. This mainly affects the payload and exthdr
expressions, which both unconditionally zero the last word before
copying the data.

Userspace fully passes the testsuite using both old and new register
addressing.

Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2015-04-13 17:17:29 +02:00

166 lines
4.3 KiB
C

/*
* Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Development of this code funded by Astaro AG (http://www.astaro.com/)
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netlink.h>
#include <linux/netfilter.h>
#include <linux/netfilter/nf_tables.h>
#include <net/netfilter/nf_tables_core.h>
#include <net/netfilter/nf_tables.h>
struct nft_byteorder {
enum nft_registers sreg:8;
enum nft_registers dreg:8;
enum nft_byteorder_ops op:8;
u8 len;
u8 size;
};
static void nft_byteorder_eval(const struct nft_expr *expr,
struct nft_regs *regs,
const struct nft_pktinfo *pkt)
{
const struct nft_byteorder *priv = nft_expr_priv(expr);
u32 *src = &regs->data[priv->sreg];
u32 *dst = &regs->data[priv->dreg];
union { u32 u32; u16 u16; } *s, *d;
unsigned int i;
s = (void *)src;
d = (void *)dst;
switch (priv->size) {
case 4:
switch (priv->op) {
case NFT_BYTEORDER_NTOH:
for (i = 0; i < priv->len / 4; i++)
d[i].u32 = ntohl((__force __be32)s[i].u32);
break;
case NFT_BYTEORDER_HTON:
for (i = 0; i < priv->len / 4; i++)
d[i].u32 = (__force __u32)htonl(s[i].u32);
break;
}
break;
case 2:
switch (priv->op) {
case NFT_BYTEORDER_NTOH:
for (i = 0; i < priv->len / 2; i++)
d[i].u16 = ntohs((__force __be16)s[i].u16);
break;
case NFT_BYTEORDER_HTON:
for (i = 0; i < priv->len / 2; i++)
d[i].u16 = (__force __u16)htons(s[i].u16);
break;
}
break;
}
}
static const struct nla_policy nft_byteorder_policy[NFTA_BYTEORDER_MAX + 1] = {
[NFTA_BYTEORDER_SREG] = { .type = NLA_U32 },
[NFTA_BYTEORDER_DREG] = { .type = NLA_U32 },
[NFTA_BYTEORDER_OP] = { .type = NLA_U32 },
[NFTA_BYTEORDER_LEN] = { .type = NLA_U32 },
[NFTA_BYTEORDER_SIZE] = { .type = NLA_U32 },
};
static int nft_byteorder_init(const struct nft_ctx *ctx,
const struct nft_expr *expr,
const struct nlattr * const tb[])
{
struct nft_byteorder *priv = nft_expr_priv(expr);
int err;
if (tb[NFTA_BYTEORDER_SREG] == NULL ||
tb[NFTA_BYTEORDER_DREG] == NULL ||
tb[NFTA_BYTEORDER_LEN] == NULL ||
tb[NFTA_BYTEORDER_SIZE] == NULL ||
tb[NFTA_BYTEORDER_OP] == NULL)
return -EINVAL;
priv->op = ntohl(nla_get_be32(tb[NFTA_BYTEORDER_OP]));
switch (priv->op) {
case NFT_BYTEORDER_NTOH:
case NFT_BYTEORDER_HTON:
break;
default:
return -EINVAL;
}
priv->size = ntohl(nla_get_be32(tb[NFTA_BYTEORDER_SIZE]));
switch (priv->size) {
case 2:
case 4:
break;
default:
return -EINVAL;
}
priv->sreg = nft_parse_register(tb[NFTA_BYTEORDER_SREG]);
priv->len = ntohl(nla_get_be32(tb[NFTA_BYTEORDER_LEN]));
err = nft_validate_register_load(priv->sreg, priv->len);
if (err < 0)
return err;
priv->dreg = nft_parse_register(tb[NFTA_BYTEORDER_DREG]);
return nft_validate_register_store(ctx, priv->dreg, NULL,
NFT_DATA_VALUE, priv->len);
}
static int nft_byteorder_dump(struct sk_buff *skb, const struct nft_expr *expr)
{
const struct nft_byteorder *priv = nft_expr_priv(expr);
if (nft_dump_register(skb, NFTA_BYTEORDER_SREG, priv->sreg))
goto nla_put_failure;
if (nft_dump_register(skb, NFTA_BYTEORDER_DREG, priv->dreg))
goto nla_put_failure;
if (nla_put_be32(skb, NFTA_BYTEORDER_OP, htonl(priv->op)))
goto nla_put_failure;
if (nla_put_be32(skb, NFTA_BYTEORDER_LEN, htonl(priv->len)))
goto nla_put_failure;
if (nla_put_be32(skb, NFTA_BYTEORDER_SIZE, htonl(priv->size)))
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static struct nft_expr_type nft_byteorder_type;
static const struct nft_expr_ops nft_byteorder_ops = {
.type = &nft_byteorder_type,
.size = NFT_EXPR_SIZE(sizeof(struct nft_byteorder)),
.eval = nft_byteorder_eval,
.init = nft_byteorder_init,
.dump = nft_byteorder_dump,
};
static struct nft_expr_type nft_byteorder_type __read_mostly = {
.name = "byteorder",
.ops = &nft_byteorder_ops,
.policy = nft_byteorder_policy,
.maxattr = NFTA_BYTEORDER_MAX,
.owner = THIS_MODULE,
};
int __init nft_byteorder_module_init(void)
{
return nft_register_expr(&nft_byteorder_type);
}
void nft_byteorder_module_exit(void)
{
nft_unregister_expr(&nft_byteorder_type);
}