remarkable-linux/drivers/staging/spectra/ffsport.c
Greg Kroah-Hartman ea3398a1ae Staging: Merge 2.6.37-rc5 into staging-next
This was done to handle a number of conflicts in the batman-adv
and winbond drivers properly.  It also now allows us to fix up the sysfs
attributes properly that were not in the .37 release due to them being
only in this tree at the time.

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-07 10:47:56 -08:00

842 lines
22 KiB
C

/*
* NAND Flash Controller Device Driver
* Copyright (c) 2009, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include "ffsport.h"
#include "flash.h"
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/async.h>
/**** Helper functions used for Div, Remainder operation on u64 ****/
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_Calc_Used_Bits
* Inputs: Power of 2 number
* Outputs: Number of Used Bits
* 0, if the argument is 0
* Description: Calculate the number of bits used by a given power of 2 number
* Number can be upto 32 bit
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_Calc_Used_Bits(u32 n)
{
int tot_bits = 0;
if (n >= 1 << 16) {
n >>= 16;
tot_bits += 16;
}
if (n >= 1 << 8) {
n >>= 8;
tot_bits += 8;
}
if (n >= 1 << 4) {
n >>= 4;
tot_bits += 4;
}
if (n >= 1 << 2) {
n >>= 2;
tot_bits += 2;
}
if (n >= 1 << 1)
tot_bits += 1;
return ((n == 0) ? (0) : tot_bits);
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_u64_Div
* Inputs: Number of u64
* A power of 2 number as Division
* Outputs: Quotient of the Divisor operation
* Description: It divides the address by divisor by using bit shift operation
* (essentially without explicitely using "/").
* Divisor is a power of 2 number and Divided is of u64
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
u64 GLOB_u64_Div(u64 addr, u32 divisor)
{
return (u64)(addr >> GLOB_Calc_Used_Bits(divisor));
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_u64_Remainder
* Inputs: Number of u64
* Divisor Type (1 -PageAddress, 2- BlockAddress)
* Outputs: Remainder of the Division operation
* Description: It calculates the remainder of a number (of u64) by
* divisor(power of 2 number ) by using bit shifting and multiply
* operation(essentially without explicitely using "/").
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
u64 GLOB_u64_Remainder(u64 addr, u32 divisor_type)
{
u64 result = 0;
if (divisor_type == 1) { /* Remainder -- Page */
result = (addr >> DeviceInfo.nBitsInPageDataSize);
result = result * DeviceInfo.wPageDataSize;
} else if (divisor_type == 2) { /* Remainder -- Block */
result = (addr >> DeviceInfo.nBitsInBlockDataSize);
result = result * DeviceInfo.wBlockDataSize;
}
result = addr - result;
return result;
}
#define NUM_DEVICES 1
#define PARTITIONS 8
#define GLOB_SBD_NAME "nd"
#define GLOB_SBD_IRQ_NUM (29)
#define GLOB_SBD_IOCTL_GC (0x7701)
#define GLOB_SBD_IOCTL_WL (0x7702)
#define GLOB_SBD_IOCTL_FORMAT (0x7703)
#define GLOB_SBD_IOCTL_ERASE_FLASH (0x7704)
#define GLOB_SBD_IOCTL_FLUSH_CACHE (0x7705)
#define GLOB_SBD_IOCTL_COPY_BLK_TABLE (0x7706)
#define GLOB_SBD_IOCTL_COPY_WEAR_LEVELING_TABLE (0x7707)
#define GLOB_SBD_IOCTL_GET_NAND_INFO (0x7708)
#define GLOB_SBD_IOCTL_WRITE_DATA (0x7709)
#define GLOB_SBD_IOCTL_READ_DATA (0x770A)
static int reserved_mb = 0;
module_param(reserved_mb, int, 0);
MODULE_PARM_DESC(reserved_mb, "Reserved space for OS image, in MiB (default 25 MiB)");
int nand_debug_level;
module_param(nand_debug_level, int, 0644);
MODULE_PARM_DESC(nand_debug_level, "debug level value: 1-3");
MODULE_LICENSE("GPL");
struct spectra_nand_dev {
struct pci_dev *dev;
u64 size;
u16 users;
spinlock_t qlock;
void __iomem *ioaddr; /* Mapped address */
struct request_queue *queue;
struct task_struct *thread;
struct gendisk *gd;
u8 *tmp_buf;
};
static int GLOB_SBD_majornum;
static char *GLOB_version = GLOB_VERSION;
static struct spectra_nand_dev nand_device[NUM_DEVICES];
static struct mutex spectra_lock;
static int res_blks_os = 1;
struct spectra_indentfy_dev_tag IdentifyDeviceData;
static int force_flush_cache(void)
{
nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (ERR == GLOB_FTL_Flush_Cache()) {
printk(KERN_ERR "Fail to Flush FTL Cache!\n");
return -EFAULT;
}
#if CMD_DMA
if (glob_ftl_execute_cmds())
return -EIO;
else
return 0;
#endif
return 0;
}
struct ioctl_rw_page_info {
u8 *data;
unsigned int page;
};
static int ioctl_read_page_data(unsigned long arg)
{
u8 *buf;
struct ioctl_rw_page_info info;
int result = PASS;
if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
return -EFAULT;
buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
if (!buf) {
printk(KERN_ERR "ioctl_read_page_data: "
"failed to allocate memory\n");
return -ENOMEM;
}
mutex_lock(&spectra_lock);
result = GLOB_FTL_Page_Read(buf,
(u64)info.page * IdentifyDeviceData.PageDataSize);
mutex_unlock(&spectra_lock);
if (copy_to_user((void __user *)info.data, buf,
IdentifyDeviceData.PageDataSize)) {
printk(KERN_ERR "ioctl_read_page_data: "
"failed to copy user data\n");
kfree(buf);
return -EFAULT;
}
kfree(buf);
return result;
}
static int ioctl_write_page_data(unsigned long arg)
{
u8 *buf;
struct ioctl_rw_page_info info;
int result = PASS;
if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
return -EFAULT;
buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
if (!buf) {
printk(KERN_ERR "ioctl_write_page_data: "
"failed to allocate memory\n");
return -ENOMEM;
}
if (copy_from_user(buf, (void __user *)info.data,
IdentifyDeviceData.PageDataSize)) {
printk(KERN_ERR "ioctl_write_page_data: "
"failed to copy user data\n");
kfree(buf);
return -EFAULT;
}
mutex_lock(&spectra_lock);
result = GLOB_FTL_Page_Write(buf,
(u64)info.page * IdentifyDeviceData.PageDataSize);
mutex_unlock(&spectra_lock);
kfree(buf);
return result;
}
/* Return how many blocks should be reserved for bad block replacement */
static int get_res_blk_num_bad_blk(void)
{
return IdentifyDeviceData.wDataBlockNum / 10;
}
/* Return how many blocks should be reserved for OS image */
static int get_res_blk_num_os(void)
{
u32 res_blks, blk_size;
blk_size = IdentifyDeviceData.PageDataSize *
IdentifyDeviceData.PagesPerBlock;
res_blks = (reserved_mb * 1024 * 1024) / blk_size;
if ((res_blks < 1) || (res_blks >= IdentifyDeviceData.wDataBlockNum))
res_blks = 1; /* Reserved 1 block for block table */
return res_blks;
}
/* Transfer a full request. */
static int do_transfer(struct spectra_nand_dev *tr, struct request *req)
{
u64 start_addr, addr;
u32 logical_start_sect, hd_start_sect;
u32 nsect, hd_sects;
u32 rsect, tsect = 0;
char *buf;
u32 ratio = IdentifyDeviceData.PageDataSize >> 9;
start_addr = (u64)(blk_rq_pos(req)) << 9;
/* Add a big enough offset to prevent the OS Image from
* being accessed or damaged by file system */
start_addr += IdentifyDeviceData.PageDataSize *
IdentifyDeviceData.PagesPerBlock *
res_blks_os;
if (req->cmd_type & REQ_FLUSH) {
if (force_flush_cache()) /* Fail to flush cache */
return -EIO;
else
return 0;
}
if (req->cmd_type != REQ_TYPE_FS)
return -EIO;
if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > get_capacity(tr->gd)) {
printk(KERN_ERR "Spectra error: request over the NAND "
"capacity!sector %d, current_nr_sectors %d, "
"while capacity is %d\n",
(int)blk_rq_pos(req),
blk_rq_cur_sectors(req),
(int)get_capacity(tr->gd));
return -EIO;
}
logical_start_sect = start_addr >> 9;
hd_start_sect = logical_start_sect / ratio;
rsect = logical_start_sect - hd_start_sect * ratio;
addr = (u64)hd_start_sect * ratio * 512;
buf = req->buffer;
nsect = blk_rq_cur_sectors(req);
if (rsect)
tsect = (ratio - rsect) < nsect ? (ratio - rsect) : nsect;
switch (rq_data_dir(req)) {
case READ:
/* Read the first NAND page */
if (rsect) {
if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
memcpy(buf, tr->tmp_buf + (rsect << 9), tsect << 9);
addr += IdentifyDeviceData.PageDataSize;
buf += tsect << 9;
nsect -= tsect;
}
/* Read the other NAND pages */
for (hd_sects = nsect / ratio; hd_sects > 0; hd_sects--) {
if (GLOB_FTL_Page_Read(buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
addr += IdentifyDeviceData.PageDataSize;
buf += IdentifyDeviceData.PageDataSize;
}
/* Read the last NAND pages */
if (nsect % ratio) {
if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
memcpy(buf, tr->tmp_buf, (nsect % ratio) << 9);
}
#if CMD_DMA
if (glob_ftl_execute_cmds())
return -EIO;
else
return 0;
#endif
return 0;
case WRITE:
/* Write the first NAND page */
if (rsect) {
if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
memcpy(tr->tmp_buf + (rsect << 9), buf, tsect << 9);
if (GLOB_FTL_Page_Write(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
addr += IdentifyDeviceData.PageDataSize;
buf += tsect << 9;
nsect -= tsect;
}
/* Write the other NAND pages */
for (hd_sects = nsect / ratio; hd_sects > 0; hd_sects--) {
if (GLOB_FTL_Page_Write(buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
addr += IdentifyDeviceData.PageDataSize;
buf += IdentifyDeviceData.PageDataSize;
}
/* Write the last NAND pages */
if (nsect % ratio) {
if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
memcpy(tr->tmp_buf, buf, (nsect % ratio) << 9);
if (GLOB_FTL_Page_Write(tr->tmp_buf, addr)) {
printk(KERN_ERR "Error in %s, Line %d\n",
__FILE__, __LINE__);
return -EIO;
}
}
#if CMD_DMA
if (glob_ftl_execute_cmds())
return -EIO;
else
return 0;
#endif
return 0;
default:
printk(KERN_NOTICE "Unknown request %u\n", rq_data_dir(req));
return -EIO;
}
}
/* This function is copied from drivers/mtd/mtd_blkdevs.c */
static int spectra_trans_thread(void *arg)
{
struct spectra_nand_dev *tr = arg;
struct request_queue *rq = tr->queue;
struct request *req = NULL;
/* we might get involved when memory gets low, so use PF_MEMALLOC */
current->flags |= PF_MEMALLOC;
spin_lock_irq(rq->queue_lock);
while (!kthread_should_stop()) {
int res;
if (!req) {
req = blk_fetch_request(rq);
if (!req) {
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irq(rq->queue_lock);
schedule();
spin_lock_irq(rq->queue_lock);
continue;
}
}
spin_unlock_irq(rq->queue_lock);
mutex_lock(&spectra_lock);
res = do_transfer(tr, req);
mutex_unlock(&spectra_lock);
spin_lock_irq(rq->queue_lock);
if (!__blk_end_request_cur(req, res))
req = NULL;
}
if (req)
__blk_end_request_all(req, -EIO);
spin_unlock_irq(rq->queue_lock);
return 0;
}
/* Request function that "handles clustering". */
static void GLOB_SBD_request(struct request_queue *rq)
{
struct spectra_nand_dev *pdev = rq->queuedata;
wake_up_process(pdev->thread);
}
static int GLOB_SBD_open(struct block_device *bdev, fmode_t mode)
{
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
return 0;
}
static int GLOB_SBD_release(struct gendisk *disk, fmode_t mode)
{
int ret;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
mutex_lock(&spectra_lock);
ret = force_flush_cache();
mutex_unlock(&spectra_lock);
return 0;
}
static int GLOB_SBD_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
geo->heads = 4;
geo->sectors = 16;
geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
nand_dbg_print(NAND_DBG_DEBUG,
"heads: %d, sectors: %d, cylinders: %d\n",
geo->heads, geo->sectors, geo->cylinders);
return 0;
}
int GLOB_SBD_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int ret;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
switch (cmd) {
case GLOB_SBD_IOCTL_GC:
nand_dbg_print(NAND_DBG_DEBUG,
"Spectra IOCTL: Garbage Collection "
"being performed\n");
if (PASS != GLOB_FTL_Garbage_Collection())
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_WL:
nand_dbg_print(NAND_DBG_DEBUG,
"Spectra IOCTL: Static Wear Leveling "
"being performed\n");
if (PASS != GLOB_FTL_Wear_Leveling())
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_FORMAT:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: Flash format "
"being performed\n");
if (PASS != GLOB_FTL_Flash_Format())
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_FLUSH_CACHE:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: Cache flush "
"being performed\n");
mutex_lock(&spectra_lock);
ret = force_flush_cache();
mutex_unlock(&spectra_lock);
return ret;
case GLOB_SBD_IOCTL_COPY_BLK_TABLE:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
"Copy block table\n");
if (copy_to_user((void __user *)arg,
get_blk_table_start_addr(),
get_blk_table_len()))
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_COPY_WEAR_LEVELING_TABLE:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
"Copy wear leveling table\n");
if (copy_to_user((void __user *)arg,
get_wear_leveling_table_start_addr(),
get_wear_leveling_table_len()))
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_GET_NAND_INFO:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
"Get NAND info\n");
if (copy_to_user((void __user *)arg, &IdentifyDeviceData,
sizeof(IdentifyDeviceData)))
return -EFAULT;
return 0;
case GLOB_SBD_IOCTL_WRITE_DATA:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
"Write one page data\n");
return ioctl_write_page_data(arg);
case GLOB_SBD_IOCTL_READ_DATA:
nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
"Read one page data\n");
return ioctl_read_page_data(arg);
}
return -ENOTTY;
}
static DEFINE_MUTEX(ffsport_mutex);
int GLOB_SBD_unlocked_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int ret;
mutex_lock(&ffsport_mutex);
ret = GLOB_SBD_ioctl(bdev, mode, cmd, arg);
mutex_unlock(&ffsport_mutex);
return ret;
}
static struct block_device_operations GLOB_SBD_ops = {
.owner = THIS_MODULE,
.open = GLOB_SBD_open,
.release = GLOB_SBD_release,
.ioctl = GLOB_SBD_unlocked_ioctl,
.getgeo = GLOB_SBD_getgeo,
};
static int SBD_setup_device(struct spectra_nand_dev *dev, int which)
{
int res_blks;
u32 sects;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
memset(dev, 0, sizeof(struct spectra_nand_dev));
nand_dbg_print(NAND_DBG_WARN, "Reserved %d blocks "
"for OS image, %d blocks for bad block replacement.\n",
get_res_blk_num_os(),
get_res_blk_num_bad_blk());
res_blks = get_res_blk_num_bad_blk() + get_res_blk_num_os();
dev->size = (u64)IdentifyDeviceData.PageDataSize *
IdentifyDeviceData.PagesPerBlock *
(IdentifyDeviceData.wDataBlockNum - res_blks);
res_blks_os = get_res_blk_num_os();
spin_lock_init(&dev->qlock);
dev->tmp_buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
if (!dev->tmp_buf) {
printk(KERN_ERR "Failed to kmalloc memory in %s Line %d, exit.\n",
__FILE__, __LINE__);
goto out_vfree;
}
dev->queue = blk_init_queue(GLOB_SBD_request, &dev->qlock);
if (dev->queue == NULL) {
printk(KERN_ERR
"Spectra: Request queue could not be initialized."
" Aborting\n ");
goto out_vfree;
}
dev->queue->queuedata = dev;
/* As Linux block layer doens't support >4KB hardware sector, */
/* Here we force report 512 byte hardware sector size to Kernel */
blk_queue_logical_block_size(dev->queue, 512);
blk_queue_flush(dev->queue, REQ_FLUSH);
dev->thread = kthread_run(spectra_trans_thread, dev, "nand_thd");
if (IS_ERR(dev->thread)) {
blk_cleanup_queue(dev->queue);
unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);
return PTR_ERR(dev->thread);
}
dev->gd = alloc_disk(PARTITIONS);
if (!dev->gd) {
printk(KERN_ERR
"Spectra: Could not allocate disk. Aborting \n ");
goto out_vfree;
}
dev->gd->major = GLOB_SBD_majornum;
dev->gd->first_minor = which * PARTITIONS;
dev->gd->fops = &GLOB_SBD_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
snprintf(dev->gd->disk_name, 32, "%s%c", GLOB_SBD_NAME, which + 'a');
sects = dev->size >> 9;
nand_dbg_print(NAND_DBG_WARN, "Capacity sects: %d\n", sects);
set_capacity(dev->gd, sects);
add_disk(dev->gd);
return 0;
out_vfree:
return -ENOMEM;
}
/*
static ssize_t show_nand_block_num(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
(int)IdentifyDeviceData.wDataBlockNum);
}
static ssize_t show_nand_pages_per_block(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
(int)IdentifyDeviceData.PagesPerBlock);
}
static ssize_t show_nand_page_size(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
(int)IdentifyDeviceData.PageDataSize);
}
static DEVICE_ATTR(nand_block_num, 0444, show_nand_block_num, NULL);
static DEVICE_ATTR(nand_pages_per_block, 0444, show_nand_pages_per_block, NULL);
static DEVICE_ATTR(nand_page_size, 0444, show_nand_page_size, NULL);
static void create_sysfs_entry(struct device *dev)
{
if (device_create_file(dev, &dev_attr_nand_block_num))
printk(KERN_ERR "Spectra: "
"failed to create sysfs entry nand_block_num.\n");
if (device_create_file(dev, &dev_attr_nand_pages_per_block))
printk(KERN_ERR "Spectra: "
"failed to create sysfs entry nand_pages_per_block.\n");
if (device_create_file(dev, &dev_attr_nand_page_size))
printk(KERN_ERR "Spectra: "
"failed to create sysfs entry nand_page_size.\n");
}
*/
static void register_spectra_ftl_async(void *unused, async_cookie_t cookie)
{
int i;
/* create_sysfs_entry(&dev->dev); */
if (PASS != GLOB_FTL_IdentifyDevice(&IdentifyDeviceData)) {
printk(KERN_ERR "Spectra: Unable to Read Flash Device. "
"Aborting\n");
return;
} else {
nand_dbg_print(NAND_DBG_WARN, "In GLOB_SBD_init: "
"Num blocks=%d, pagesperblock=%d, "
"pagedatasize=%d, ECCBytesPerSector=%d\n",
(int)IdentifyDeviceData.NumBlocks,
(int)IdentifyDeviceData.PagesPerBlock,
(int)IdentifyDeviceData.PageDataSize,
(int)IdentifyDeviceData.wECCBytesPerSector);
}
printk(KERN_ALERT "Spectra: searching block table, please wait ...\n");
if (GLOB_FTL_Init() != PASS) {
printk(KERN_ERR "Spectra: Unable to Initialize FTL Layer. "
"Aborting\n");
goto out_ftl_flash_register;
}
printk(KERN_ALERT "Spectra: block table has been found.\n");
GLOB_SBD_majornum = register_blkdev(0, GLOB_SBD_NAME);
if (GLOB_SBD_majornum <= 0) {
printk(KERN_ERR "Unable to get the major %d for Spectra",
GLOB_SBD_majornum);
goto out_ftl_flash_register;
}
for (i = 0; i < NUM_DEVICES; i++)
if (SBD_setup_device(&nand_device[i], i) == -ENOMEM)
goto out_blk_register;
nand_dbg_print(NAND_DBG_DEBUG,
"Spectra: module loaded with major number %d\n",
GLOB_SBD_majornum);
return;
out_blk_register:
unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);
out_ftl_flash_register:
GLOB_FTL_Cache_Release();
printk(KERN_ERR "Spectra: Module load failed.\n");
}
int register_spectra_ftl()
{
async_schedule(register_spectra_ftl_async, NULL);
return 0;
}
EXPORT_SYMBOL_GPL(register_spectra_ftl);
static int GLOB_SBD_init(void)
{
/* Set debug output level (0~3) here. 3 is most verbose */
printk(KERN_ALERT "Spectra: %s\n", GLOB_version);
mutex_init(&spectra_lock);
if (PASS != GLOB_FTL_Flash_Init()) {
printk(KERN_ERR "Spectra: Unable to Initialize Flash Device. "
"Aborting\n");
return -ENODEV;
}
return 0;
}
static void __exit GLOB_SBD_exit(void)
{
int i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < NUM_DEVICES; i++) {
struct spectra_nand_dev *dev = &nand_device[i];
if (dev->gd) {
del_gendisk(dev->gd);
put_disk(dev->gd);
}
if (dev->queue)
blk_cleanup_queue(dev->queue);
kfree(dev->tmp_buf);
}
unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);
mutex_lock(&spectra_lock);
force_flush_cache();
mutex_unlock(&spectra_lock);
GLOB_FTL_Cache_Release();
GLOB_FTL_Flash_Release();
nand_dbg_print(NAND_DBG_DEBUG,
"Spectra FTL module (major number %d) unloaded.\n",
GLOB_SBD_majornum);
}
module_init(GLOB_SBD_init);
module_exit(GLOB_SBD_exit);