remarkable-linux/net/core/utils.c
Hannes Frederic Sowa 3d4405226d net: avoid dependency of net_get_random_once on nop patching
net_get_random_once depends on the static keys infrastructure to patch up
the branch to the slow path during boot. This was realized by abusing the
static keys api and defining a new initializer to not enable the call
site while still indicating that the branch point should get patched
up. This was needed to have the fast path considered likely by gcc.

The static key initialization during boot up normally walks through all
the registered keys and either patches in ideal nops or enables the jump
site but omitted that step on x86 if ideal nops where already placed at
static_key branch points. Thus net_get_random_once branches not always
became active.

This patch switches net_get_random_once to the ordinary static_key
api and thus places the kernel fast path in the - by gcc considered -
unlikely path.  Microbenchmarks on Intel and AMD x86-64 showed that
the unlikely path actually beats the likely path in terms of cycle cost
and that different nop patterns did not make much difference, thus this
switch should not be noticeable.

Fixes: a48e42920f ("net: introduce new macro net_get_random_once")
Reported-by: Tuomas Räsänen <tuomasjjrasanen@tjjr.fi>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 00:37:34 -04:00

390 lines
8.8 KiB
C

/*
* Generic address resultion entity
*
* Authors:
* net_random Alan Cox
* net_ratelimit Andi Kleen
* in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
*
* Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/ctype.h>
#include <linux/inet.h>
#include <linux/mm.h>
#include <linux/net.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/ratelimit.h>
#include <net/sock.h>
#include <net/net_ratelimit.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
int net_msg_warn __read_mostly = 1;
EXPORT_SYMBOL(net_msg_warn);
DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
/*
* All net warning printk()s should be guarded by this function.
*/
int net_ratelimit(void)
{
return __ratelimit(&net_ratelimit_state);
}
EXPORT_SYMBOL(net_ratelimit);
/*
* Convert an ASCII string to binary IP.
* This is outside of net/ipv4/ because various code that uses IP addresses
* is otherwise not dependent on the TCP/IP stack.
*/
__be32 in_aton(const char *str)
{
unsigned long l;
unsigned int val;
int i;
l = 0;
for (i = 0; i < 4; i++) {
l <<= 8;
if (*str != '\0') {
val = 0;
while (*str != '\0' && *str != '.' && *str != '\n') {
val *= 10;
val += *str - '0';
str++;
}
l |= val;
if (*str != '\0')
str++;
}
}
return htonl(l);
}
EXPORT_SYMBOL(in_aton);
#define IN6PTON_XDIGIT 0x00010000
#define IN6PTON_DIGIT 0x00020000
#define IN6PTON_COLON_MASK 0x00700000
#define IN6PTON_COLON_1 0x00100000 /* single : requested */
#define IN6PTON_COLON_2 0x00200000 /* second : requested */
#define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
#define IN6PTON_DOT 0x00800000 /* . */
#define IN6PTON_DELIM 0x10000000
#define IN6PTON_NULL 0x20000000 /* first/tail */
#define IN6PTON_UNKNOWN 0x40000000
static inline int xdigit2bin(char c, int delim)
{
int val;
if (c == delim || c == '\0')
return IN6PTON_DELIM;
if (c == ':')
return IN6PTON_COLON_MASK;
if (c == '.')
return IN6PTON_DOT;
val = hex_to_bin(c);
if (val >= 0)
return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
if (delim == -1)
return IN6PTON_DELIM;
return IN6PTON_UNKNOWN;
}
/**
* in4_pton - convert an IPv4 address from literal to binary representation
* @src: the start of the IPv4 address string
* @srclen: the length of the string, -1 means strlen(src)
* @dst: the binary (u8[4] array) representation of the IPv4 address
* @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
* @end: A pointer to the end of the parsed string will be placed here
*
* Return one on success, return zero when any error occurs
* and @end will point to the end of the parsed string.
*
*/
int in4_pton(const char *src, int srclen,
u8 *dst,
int delim, const char **end)
{
const char *s;
u8 *d;
u8 dbuf[4];
int ret = 0;
int i;
int w = 0;
if (srclen < 0)
srclen = strlen(src);
s = src;
d = dbuf;
i = 0;
while(1) {
int c;
c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
goto out;
}
if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
if (w == 0)
goto out;
*d++ = w & 0xff;
w = 0;
i++;
if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
if (i != 4)
goto out;
break;
}
goto cont;
}
w = (w * 10) + c;
if ((w & 0xffff) > 255) {
goto out;
}
cont:
if (i >= 4)
goto out;
s++;
srclen--;
}
ret = 1;
memcpy(dst, dbuf, sizeof(dbuf));
out:
if (end)
*end = s;
return ret;
}
EXPORT_SYMBOL(in4_pton);
/**
* in6_pton - convert an IPv6 address from literal to binary representation
* @src: the start of the IPv6 address string
* @srclen: the length of the string, -1 means strlen(src)
* @dst: the binary (u8[16] array) representation of the IPv6 address
* @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
* @end: A pointer to the end of the parsed string will be placed here
*
* Return one on success, return zero when any error occurs
* and @end will point to the end of the parsed string.
*
*/
int in6_pton(const char *src, int srclen,
u8 *dst,
int delim, const char **end)
{
const char *s, *tok = NULL;
u8 *d, *dc = NULL;
u8 dbuf[16];
int ret = 0;
int i;
int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
int w = 0;
memset(dbuf, 0, sizeof(dbuf));
s = src;
d = dbuf;
if (srclen < 0)
srclen = strlen(src);
while (1) {
int c;
c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
if (!(c & state))
goto out;
if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
/* process one 16-bit word */
if (!(state & IN6PTON_NULL)) {
*d++ = (w >> 8) & 0xff;
*d++ = w & 0xff;
}
w = 0;
if (c & IN6PTON_DELIM) {
/* We've processed last word */
break;
}
/*
* COLON_1 => XDIGIT
* COLON_2 => XDIGIT|DELIM
* COLON_1_2 => COLON_2
*/
switch (state & IN6PTON_COLON_MASK) {
case IN6PTON_COLON_2:
dc = d;
state = IN6PTON_XDIGIT | IN6PTON_DELIM;
if (dc - dbuf >= sizeof(dbuf))
state |= IN6PTON_NULL;
break;
case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
break;
case IN6PTON_COLON_1:
state = IN6PTON_XDIGIT;
break;
case IN6PTON_COLON_1_2:
state = IN6PTON_COLON_2;
break;
default:
state = 0;
}
tok = s + 1;
goto cont;
}
if (c & IN6PTON_DOT) {
ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
if (ret > 0) {
d += 4;
break;
}
goto out;
}
w = (w << 4) | (0xff & c);
state = IN6PTON_COLON_1 | IN6PTON_DELIM;
if (!(w & 0xf000)) {
state |= IN6PTON_XDIGIT;
}
if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
state |= IN6PTON_COLON_1_2;
state &= ~IN6PTON_DELIM;
}
if (d + 2 >= dbuf + sizeof(dbuf)) {
state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
}
cont:
if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
d + 4 == dbuf + sizeof(dbuf)) {
state |= IN6PTON_DOT;
}
if (d >= dbuf + sizeof(dbuf)) {
state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
}
s++;
srclen--;
}
i = 15; d--;
if (dc) {
while(d >= dc)
dst[i--] = *d--;
while(i >= dc - dbuf)
dst[i--] = 0;
while(i >= 0)
dst[i--] = *d--;
} else
memcpy(dst, dbuf, sizeof(dbuf));
ret = 1;
out:
if (end)
*end = s;
return ret;
}
EXPORT_SYMBOL(in6_pton);
void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
__be32 from, __be32 to, int pseudohdr)
{
__be32 diff[] = { ~from, to };
if (skb->ip_summed != CHECKSUM_PARTIAL) {
*sum = csum_fold(csum_partial(diff, sizeof(diff),
~csum_unfold(*sum)));
if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
skb->csum = ~csum_partial(diff, sizeof(diff),
~skb->csum);
} else if (pseudohdr)
*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
csum_unfold(*sum)));
}
EXPORT_SYMBOL(inet_proto_csum_replace4);
void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
const __be32 *from, const __be32 *to,
int pseudohdr)
{
__be32 diff[] = {
~from[0], ~from[1], ~from[2], ~from[3],
to[0], to[1], to[2], to[3],
};
if (skb->ip_summed != CHECKSUM_PARTIAL) {
*sum = csum_fold(csum_partial(diff, sizeof(diff),
~csum_unfold(*sum)));
if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
skb->csum = ~csum_partial(diff, sizeof(diff),
~skb->csum);
} else if (pseudohdr)
*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
csum_unfold(*sum)));
}
EXPORT_SYMBOL(inet_proto_csum_replace16);
struct __net_random_once_work {
struct work_struct work;
struct static_key *key;
};
static void __net_random_once_deferred(struct work_struct *w)
{
struct __net_random_once_work *work =
container_of(w, struct __net_random_once_work, work);
BUG_ON(!static_key_enabled(work->key));
static_key_slow_dec(work->key);
kfree(work);
}
static void __net_random_once_disable_jump(struct static_key *key)
{
struct __net_random_once_work *w;
w = kmalloc(sizeof(*w), GFP_ATOMIC);
if (!w)
return;
INIT_WORK(&w->work, __net_random_once_deferred);
w->key = key;
schedule_work(&w->work);
}
bool __net_get_random_once(void *buf, int nbytes, bool *done,
struct static_key *once_key)
{
static DEFINE_SPINLOCK(lock);
unsigned long flags;
spin_lock_irqsave(&lock, flags);
if (*done) {
spin_unlock_irqrestore(&lock, flags);
return false;
}
get_random_bytes(buf, nbytes);
*done = true;
spin_unlock_irqrestore(&lock, flags);
__net_random_once_disable_jump(once_key);
return true;
}
EXPORT_SYMBOL(__net_get_random_once);