1
0
Fork 0

x86: quark: Add utility codes needed for MRC

Add various utility codes needed for Quark MRC.

Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
utp
Bin Meng 2015-02-05 23:42:23 +08:00 committed by Simon Glass
parent 0a391b1c79
commit 38ad43e436
4 changed files with 2068 additions and 0 deletions

View File

@ -0,0 +1,396 @@
/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*
* SPDX-License-Identifier: Intel
*/
#include <common.h>
#include <asm/arch/mrc.h>
#include <asm/arch/msg_port.h>
#include "mrc_util.h"
#include "hte.h"
/**
* Enable HTE to detect all possible errors for the given training parameters
* (per-bit or full byte lane).
*/
static void hte_enable_all_errors(void)
{
msg_port_write(HTE, 0x000200A2, 0xFFFFFFFF);
msg_port_write(HTE, 0x000200A3, 0x000000FF);
msg_port_write(HTE, 0x000200A4, 0x00000000);
}
/**
* Go and read the HTE register in order to find any error
*
* @return: The errors detected in the HTE status register
*/
static u32 hte_check_errors(void)
{
return msg_port_read(HTE, 0x000200A7);
}
/**
* Wait until HTE finishes
*/
static void hte_wait_for_complete(void)
{
u32 tmp;
ENTERFN();
do {} while ((msg_port_read(HTE, 0x00020012) & BIT30) != 0);
tmp = msg_port_read(HTE, 0x00020011);
tmp |= BIT9;
tmp &= ~(BIT12 | BIT13);
msg_port_write(HTE, 0x00020011, tmp);
LEAVEFN();
}
/**
* Clear registers related with errors in the HTE
*/
static void hte_clear_error_regs(void)
{
u32 tmp;
/*
* Clear all HTE errors and enable error checking
* for burst and chunk.
*/
tmp = msg_port_read(HTE, 0x000200A1);
tmp |= BIT8;
msg_port_write(HTE, 0x000200A1, tmp);
}
/**
* Execute a basic single-cache-line memory write/read/verify test using simple
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
*
* See hte_basic_write_read() which is the external visible wrapper.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
u8 first_run, u8 mode)
{
u32 pattern;
u32 offset;
if (first_run) {
msg_port_write(HTE, 0x00020020, 0x01B10021);
msg_port_write(HTE, 0x00020021, 0x06000000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x00800015);
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
msg_port_write(HTE, 0x00020061, 0x00030008);
if (mode == WRITE_TRAIN)
pattern = 0xC33C0000;
else /* READ_TRAIN */
pattern = 0xAA5555AA;
for (offset = 0x80; offset <= 0x8F; offset++)
msg_port_write(HTE, offset, pattern);
}
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
msg_port_write(HTE, 0x00020011, 0x00011000);
msg_port_write(HTE, 0x00020011, 0x00011100);
hte_wait_for_complete();
/*
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
* any bytelane errors.
*/
return (hte_check_errors() >> 8) & 0xFF;
}
/**
* Examine a single-cache-line memory with write/read/verify test using multiple
* data patterns (victim-aggressor algorithm).
*
* See hte_write_stress_bit_lanes() which is the external visible wrapper.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @loop_cnt: number of test iterations
* @seed_victim: victim data pattern seed
* @seed_aggressor: aggressor data pattern seed
* @victim_bit: should be 0 as auto-rotate feature is in use
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
u8 victim_bit, u8 first_run)
{
u32 offset;
u32 tmp;
if (first_run) {
msg_port_write(HTE, 0x00020020, 0x00910024);
msg_port_write(HTE, 0x00020023, 0x00810024);
msg_port_write(HTE, 0x00020021, 0x06070000);
msg_port_write(HTE, 0x00020024, 0x06070000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020025, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x0000002A);
msg_port_write(HTE, 0x00020063, seed_victim);
msg_port_write(HTE, 0x00020064, seed_aggressor);
msg_port_write(HTE, 0x00020065, seed_victim);
/*
* Write the pattern buffers to select the victim bit
*
* Start with bit0
*/
for (offset = 0x80; offset <= 0x8F; offset++) {
if ((offset % 8) == victim_bit)
msg_port_write(HTE, offset, 0x55555555);
else
msg_port_write(HTE, offset, 0xCCCCCCCC);
}
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020066, 0x03440000);
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
}
tmp = 0x10001000 | (loop_cnt << 16);
msg_port_write(HTE, 0x00020011, tmp);
msg_port_write(HTE, 0x00020011, tmp | BIT8);
hte_wait_for_complete();
/*
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
* any bytelane errors.
*/
return (hte_check_errors() >> 8) & 0xFF;
}
/**
* Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
* If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
* initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
* pattern to all memory locations on the RankMask and then read it back.
* Then it sends an A55AA55A pattern to all memory locations on the RankMask
* and reads it back.
*
* @mrc_params: host structure for all MRC global data
* @flag: MRC_MEM_INIT or MRC_MEM_TEST
*
* @return: errors register showing HTE failures. Also prints out which rank
* failed the HTE test if failure occurs. For rank detection to work,
* the address map must be left in its default state. If MRC changes
* the address map, this function must be modified to change it back
* to default at the beginning, then restore it at the end.
*/
u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
{
u32 offset;
int test_num;
int i;
/*
* Clear out the error registers at the start of each memory
* init or memory test run.
*/
hte_clear_error_regs();
msg_port_write(HTE, 0x00020062, 0x00000015);
for (offset = 0x80; offset <= 0x8F; offset++)
msg_port_write(HTE, offset, ((offset & 1) ? 0xA55A : 0x5AA5));
msg_port_write(HTE, 0x00020021, 0x00000000);
msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
msg_port_write(HTE, 0x00020066, 0x03000000);
switch (flag) {
case MRC_MEM_INIT:
/*
* Only 1 write pass through memory is needed
* to initialize ECC
*/
test_num = 1;
break;
case MRC_MEM_TEST:
/* Write/read then write/read with inverted pattern */
test_num = 4;
break;
default:
DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
return 0xFFFFFFFF;
}
DPF(D_INFO, "hte_mem_init");
for (i = 0; i < test_num; i++) {
DPF(D_INFO, ".");
if (i == 0) {
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020020, 0x00110010);
} else if (i == 1) {
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020020, 0x00010010);
} else if (i == 2) {
msg_port_write(HTE, 0x00020061, 0x00010100);
msg_port_write(HTE, 0x00020020, 0x00110010);
} else {
msg_port_write(HTE, 0x00020061, 0x00010100);
msg_port_write(HTE, 0x00020020, 0x00010010);
}
msg_port_write(HTE, 0x00020011, 0x00111000);
msg_port_write(HTE, 0x00020011, 0x00111100);
hte_wait_for_complete();
/* If this is a READ pass, check for errors at the end */
if ((i % 2) == 1) {
/* Return immediately if error */
if (hte_check_errors())
break;
}
}
DPF(D_INFO, "done\n");
return hte_check_errors();
}
/**
* Execute a basic single-cache-line memory write/read/verify test using simple
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
u8 first_run, u8 mode)
{
u16 errors;
ENTERFN();
/* Enable all error reporting in preparation for HTE test */
hte_enable_all_errors();
hte_clear_error_regs();
errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
LEAVEFN();
return errors;
}
/**
* Examine a single-cache-line memory with write/read/verify test using multiple
* data patterns (victim-aggressor algorithm).
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
u32 addr, u8 first_run)
{
u16 errors;
u8 victim_bit = 0;
ENTERFN();
/* Enable all error reporting in preparation for HTE test */
hte_enable_all_errors();
hte_clear_error_regs();
/*
* Loop through each bit in the bytelane.
*
* Each pass creates a victim bit while keeping all other bits the same
* as aggressors. AVN HTE adds an auto-rotate feature which allows us
* to program the entire victim/aggressor sequence in 1 step.
*
* The victim bit rotates on each pass so no need to have software
* implement a victim bit loop like on VLV.
*/
errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
victim_bit, first_run);
LEAVEFN();
return errors;
}
/**
* Execute a basic single-cache-line memory write or read.
* This is just for receive enable / fine write-levelling purpose.
*
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @is_write: when non-zero memory write operation executed, otherwise read
*/
void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
{
u32 offset;
u32 tmp;
hte_enable_all_errors();
hte_clear_error_regs();
if (first_run) {
tmp = is_write ? 0x01110021 : 0x01010021;
msg_port_write(HTE, 0x00020020, tmp);
msg_port_write(HTE, 0x00020021, 0x06000000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x00800015);
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
msg_port_write(HTE, 0x00020061, 0x00030008);
for (offset = 0x80; offset <= 0x8F; offset++)
msg_port_write(HTE, offset, 0xC33C0000);
}
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
msg_port_write(HTE, 0x00020011, 0x00011000);
msg_port_write(HTE, 0x00020011, 0x00011100);
hte_wait_for_complete();
}

View File

@ -0,0 +1,44 @@
/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*
* SPDX-License-Identifier: Intel
*/
#ifndef _HTE_H_
#define _HTE_H_
enum {
MRC_MEM_INIT,
MRC_MEM_TEST
};
enum {
READ_TRAIN,
WRITE_TRAIN
};
/*
* EXP_LOOP_CNT field of HTE_CMD_CTL
*
* This CANNOT be less than 4!
*/
#define HTE_LOOP_CNT 5
/* random seed for victim */
#define HTE_LFSR_VICTIM_SEED 0xF294BA21
/* random seed for aggressor */
#define HTE_LFSR_AGRESSOR_SEED 0xEBA7492D
u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag);
u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
u8 first_run, u8 mode);
u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
u32 addr, u8 first_run);
void hte_mem_op(u32 addr, u8 first_run, u8 is_write);
#endif /* _HTE_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,153 @@
/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*
* SPDX-License-Identifier: Intel
*/
#ifndef _MRC_UTIL_H_
#define _MRC_UTIL_H_
/* Turn on this macro to enable MRC debugging output */
#undef MRC_DEBUG
/* MRC Debug Support */
#define DPF debug_cond
/* debug print type */
#ifdef MRC_DEBUG
#define D_ERROR 0x0001
#define D_INFO 0x0002
#define D_REGRD 0x0004
#define D_REGWR 0x0008
#define D_FCALL 0x0010
#define D_TRN 0x0020
#define D_TIME 0x0040
#else
#define D_ERROR 0
#define D_INFO 0
#define D_REGRD 0
#define D_REGWR 0
#define D_FCALL 0
#define D_TRN 0
#define D_TIME 0
#endif
#define ENTERFN(...) debug_cond(D_FCALL, "<%s>\n", __func__)
#define LEAVEFN(...) debug_cond(D_FCALL, "</%s>\n", __func__)
#define REPORTFN(...) debug_cond(D_FCALL, "<%s/>\n", __func__)
/* Generic Register Bits */
#define BIT0 0x00000001
#define BIT1 0x00000002
#define BIT2 0x00000004
#define BIT3 0x00000008
#define BIT4 0x00000010
#define BIT5 0x00000020
#define BIT6 0x00000040
#define BIT7 0x00000080
#define BIT8 0x00000100
#define BIT9 0x00000200
#define BIT10 0x00000400
#define BIT11 0x00000800
#define BIT12 0x00001000
#define BIT13 0x00002000
#define BIT14 0x00004000
#define BIT15 0x00008000
#define BIT16 0x00010000
#define BIT17 0x00020000
#define BIT18 0x00040000
#define BIT19 0x00080000
#define BIT20 0x00100000
#define BIT21 0x00200000
#define BIT22 0x00400000
#define BIT23 0x00800000
#define BIT24 0x01000000
#define BIT25 0x02000000
#define BIT26 0x04000000
#define BIT27 0x08000000
#define BIT28 0x10000000
#define BIT29 0x20000000
#define BIT30 0x40000000
#define BIT31 0x80000000
/* Message Bus Port */
#define MEM_CTLR 0x01
#define HOST_BRIDGE 0x03
#define MEM_MGR 0x05
#define HTE 0x11
#define DDRPHY 0x12
/* number of sample points */
#define SAMPLE_CNT 3
/* number of PIs to increment per sample */
#define SAMPLE_DLY 26
enum {
/* indicates to decrease delays when looking for edge */
BACKWARD,
/* indicates to increase delays when looking for edge */
FORWARD
};
enum {
RCVN,
WDQS,
WDQX,
RDQS,
VREF,
WCMD,
WCTL,
WCLK,
MAX_ALGOS,
};
void mrc_write_mask(u32 unit, u32 addr, u32 data, u32 mask);
void mrc_alt_write_mask(u32 unit, u32 addr, u32 data, u32 mask);
void mrc_post_code(uint8_t major, uint8_t minor);
void delay_n(uint32_t ns);
void delay_u(uint32_t ms);
void select_mem_mgr(void);
void select_hte(void);
void dram_init_command(uint32_t data);
void dram_wake_command(void);
void training_message(uint8_t channel, uint8_t rank, uint8_t byte_lane);
void set_rcvn(uint8_t channel, uint8_t rank,
uint8_t byte_lane, uint32_t pi_count);
uint32_t get_rcvn(uint8_t channel, uint8_t rank, uint8_t byte_lane);
void set_rdqs(uint8_t channel, uint8_t rank,
uint8_t byte_lane, uint32_t pi_count);
uint32_t get_rdqs(uint8_t channel, uint8_t rank, uint8_t byte_lane);
void set_wdqs(uint8_t channel, uint8_t rank,
uint8_t byte_lane, uint32_t pi_count);
uint32_t get_wdqs(uint8_t channel, uint8_t rank, uint8_t byte_lane);
void set_wdq(uint8_t channel, uint8_t rank,
uint8_t byte_lane, uint32_t pi_count);
uint32_t get_wdq(uint8_t channel, uint8_t rank, uint8_t byte_lane);
void set_wcmd(uint8_t channel, uint32_t pi_count);
uint32_t get_wcmd(uint8_t channel);
void set_wclk(uint8_t channel, uint8_t rank, uint32_t pi_count);
uint32_t get_wclk(uint8_t channel, uint8_t rank);
void set_wctl(uint8_t channel, uint8_t rank, uint32_t pi_count);
uint32_t get_wctl(uint8_t channel, uint8_t rank);
void set_vref(uint8_t channel, uint8_t byte_lane, uint32_t setting);
uint32_t get_vref(uint8_t channel, uint8_t byte_lane);
uint32_t get_addr(uint8_t channel, uint8_t rank);
uint32_t sample_dqs(struct mrc_params *mrc_params, uint8_t channel,
uint8_t rank, bool rcvn);
void find_rising_edge(struct mrc_params *mrc_params, uint32_t delay[],
uint8_t channel, uint8_t rank, bool rcvn);
uint32_t byte_lane_mask(struct mrc_params *mrc_params);
uint32_t check_rw_coarse(struct mrc_params *mrc_params, uint32_t address);
uint32_t check_bls_ex(struct mrc_params *mrc_params, uint32_t address);
void lfsr32(uint32_t *lfsr_ptr);
void clear_pointers(void);
void print_timings(struct mrc_params *mrc_params);
#endif /* _MRC_UTIL_H_ */