1
0
Fork 0

ARM: keystone2: use SPD info to configure K2HK and K2E DDR3

This commit replaces hard-coded EMIF and PHY DDR3 configurations for
predefined SODIMMs to a calculated configuration. The SODIMM parameters
are read from SODIMM's SPD and used to calculated the configuration.

The current commit supports calculation for DDR3 with 1600MHz and 1333MHz
only.

Signed-off-by: Vitaly Andrianov <vitalya@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
utp
Vitaly Andrianov 2016-03-04 10:36:42 -06:00 committed by Tom Rini
parent ef76ebb1ef
commit d9a76e77c8
10 changed files with 534 additions and 265 deletions

View File

@ -13,3 +13,5 @@ obj-y += cmd_mon.o
obj-y += msmc.o
obj-y += ddr3.o cmd_ddr3.o
obj-y += keystone.o
obj-$(CONFIG_K2E_EVM) += ddr3_spd.o
obj-$(CONFIG_K2HK_EVM) += ddr3_spd.o

View File

@ -0,0 +1,453 @@
/*
* Keystone2: DDR3 SPD configuration
*
* (C) Copyright 2015-2016 Texas Instruments Incorporated, <www.ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <i2c.h>
#include <ddr_spd.h>
#include <asm/arch/ddr3.h>
#include <asm/arch/hardware.h>
#define DUMP_DDR_CONFIG 0 /* set to 1 to debug */
#define debug_ddr_cfg(fmt, args...) \
debug_cond(DUMP_DDR_CONFIG, fmt, ##args)
static void dump_phy_config(struct ddr3_phy_config *ptr)
{
debug_ddr_cfg("\npllcr 0x%08X\n", ptr->pllcr);
debug_ddr_cfg("pgcr1_mask 0x%08X\n", ptr->pgcr1_mask);
debug_ddr_cfg("pgcr1_val 0x%08X\n", ptr->pgcr1_val);
debug_ddr_cfg("ptr0 0x%08X\n", ptr->ptr0);
debug_ddr_cfg("ptr1 0x%08X\n", ptr->ptr1);
debug_ddr_cfg("ptr2 0x%08X\n", ptr->ptr2);
debug_ddr_cfg("ptr3 0x%08X\n", ptr->ptr3);
debug_ddr_cfg("ptr4 0x%08X\n", ptr->ptr4);
debug_ddr_cfg("dcr_mask 0x%08X\n", ptr->dcr_mask);
debug_ddr_cfg("dcr_val 0x%08X\n", ptr->dcr_val);
debug_ddr_cfg("dtpr0 0x%08X\n", ptr->dtpr0);
debug_ddr_cfg("dtpr1 0x%08X\n", ptr->dtpr1);
debug_ddr_cfg("dtpr2 0x%08X\n", ptr->dtpr2);
debug_ddr_cfg("mr0 0x%08X\n", ptr->mr0);
debug_ddr_cfg("mr1 0x%08X\n", ptr->mr1);
debug_ddr_cfg("mr2 0x%08X\n", ptr->mr2);
debug_ddr_cfg("dtcr 0x%08X\n", ptr->dtcr);
debug_ddr_cfg("pgcr2 0x%08X\n", ptr->pgcr2);
debug_ddr_cfg("zq0cr1 0x%08X\n", ptr->zq0cr1);
debug_ddr_cfg("zq1cr1 0x%08X\n", ptr->zq1cr1);
debug_ddr_cfg("zq2cr1 0x%08X\n", ptr->zq2cr1);
debug_ddr_cfg("pir_v1 0x%08X\n", ptr->pir_v1);
debug_ddr_cfg("pir_v2 0x%08X\n\n", ptr->pir_v2);
};
static void dump_emif_config(struct ddr3_emif_config *ptr)
{
debug_ddr_cfg("\nsdcfg 0x%08X\n", ptr->sdcfg);
debug_ddr_cfg("sdtim1 0x%08X\n", ptr->sdtim1);
debug_ddr_cfg("sdtim2 0x%08X\n", ptr->sdtim2);
debug_ddr_cfg("sdtim3 0x%08X\n", ptr->sdtim3);
debug_ddr_cfg("sdtim4 0x%08X\n", ptr->sdtim4);
debug_ddr_cfg("zqcfg 0x%08X\n", ptr->zqcfg);
debug_ddr_cfg("sdrfc 0x%08X\n\n", ptr->sdrfc);
};
#define TEMP NORMAL_TEMP
#define VBUS_CLKPERIOD 1.875 /* Corresponds to vbus=533MHz, */
#define PLLGS_VAL (4000.0 / VBUS_CLKPERIOD) /* 4 us */
#define PLLPD_VAL (1000.0 / VBUS_CLKPERIOD) /* 1 us */
#define PLLLOCK_VAL (100000.0 / VBUS_CLKPERIOD) /* 100 us */
#define PLLRST_VAL (9000.0 / VBUS_CLKPERIOD) /* 9 us */
#define PHYRST_VAL 0x10
#define DDR_TERM RZQ_4_TERM
#define SDRAM_DRIVE RZQ_7_IMP
#define DYN_ODT ODT_DISABLE
enum srt {
NORMAL_TEMP,
EXTENDED_TEMP
};
enum out_impedance {
RZQ_6_IMP = 0,
RZQ_7_IMP
};
enum die_term {
ODT_DISABLE = 0,
RZQ_4_TERM,
RZQ_2_TERM,
RZQ_6_TERM,
RZQ_12_TERM,
RZQ_8_TERM
};
struct ddr3_sodimm {
u32 t_ck;
u32 freqsel;
u32 t_xp;
u32 t_cke;
u32 t_pllpd;
u32 t_pllgs;
u32 t_phyrst;
u32 t_plllock;
u32 t_pllrst;
u32 t_rfc;
u32 t_xs;
u32 t_dinit0;
u32 t_dinit1;
u32 t_dinit2;
u32 t_dinit3;
u32 t_rtp;
u32 t_wtr;
u32 t_rp;
u32 t_rcd;
u32 t_ras;
u32 t_rrd;
u32 t_rc;
u32 t_faw;
u32 t_mrd;
u32 t_mod;
u32 t_wlo;
u32 t_wlmrd;
u32 t_xsdll;
u32 t_xpdll;
u32 t_ckesr;
u32 t_dllk;
u32 t_wr;
u32 t_wr_bin;
u32 cas;
u32 cwl;
u32 asr;
u32 pasr;
u32 t_refprd;
u8 sdram_type;
u8 ibank;
u8 pagesize;
u8 t_rrd2;
u8 t_ras_max;
u8 t_zqcs;
u32 refresh_rate;
u8 t_csta;
u8 rank;
u8 mirrored;
u8 buswidth;
};
static u8 cas_latancy(u16 temp)
{
int loop;
u8 cas_bin = 0;
for (loop = 0; loop < 32; loop += 2, temp >>= 1) {
if (temp & 0x0001)
cas_bin = (loop > 15) ? loop - 15 : loop;
}
return cas_bin;
}
static int ddr3_get_size_in_mb(ddr3_spd_eeprom_t *buf)
{
return (((buf->organization & 0x38) >> 3) + 1) *
(256 << (buf->density_banks & 0xf));
}
static int ddrtimingcalculation(ddr3_spd_eeprom_t *buf, struct ddr3_sodimm *spd,
struct ddr3_spd_cb *spd_cb)
{
u32 mtb, clk_freq;
if ((buf->mem_type != 0x0b) ||
((buf->density_banks & 0x70) != 0x00))
return 1;
spd->sdram_type = 0x03;
spd->ibank = 0x03;
mtb = buf->mtb_dividend * 1000 / buf->mtb_divisor;
spd->t_ck = buf->tck_min * mtb;
spd_cb->ddrspdclock = 2000000 / spd->t_ck;
clk_freq = spd_cb->ddrspdclock / 2;
spd->rank = ((buf->organization & 0x38) >> 3) + 1;
if (spd->rank > 2)
return 1;
spd->pagesize = (buf->addressing & 0x07) + 1;
if (spd->pagesize > 3)
return 1;
spd->buswidth = 8 << (buf->bus_width & 0x7);
if ((spd->buswidth < 16) || (spd->buswidth > 64))
return 1;
spd->mirrored = buf->mod_section.unbuffered.addr_mapping & 1;
printf("DDR3A Speed will be configured for %d Operation.\n",
spd_cb->ddrspdclock);
if (spd_cb->ddrspdclock == 1333) {
spd->t_xp = ((3 * spd->t_ck) > 6000) ?
3 : ((5999 / spd->t_ck) + 1);
spd->t_cke = ((3 * spd->t_ck) > 5625) ?
3 : ((5624 / spd->t_ck) + 1);
} else if (spd_cb->ddrspdclock == 1600) {
spd->t_xp = ((3 * spd->t_ck) > 6000) ?
3 : ((5999 / spd->t_ck) + 1);
spd->t_cke = ((3 * spd->t_ck) > 5000) ?
3 : ((4999 / spd->t_ck) + 1);
} else {
printf("Unsupported DDR3 speed %d\n", spd_cb->ddrspdclock);
return 1;
}
spd->t_xpdll = (spd->t_ck > 2400) ? 10 : 24000 / spd->t_ck;
spd->t_ckesr = spd->t_cke + 1;
/* SPD Calculated Values */
spd->cas = cas_latancy((buf->caslat_msb << 8) |
buf->caslat_lsb);
spd->t_wr = (buf->twr_min * mtb) / spd->t_ck;
spd->t_wr_bin = (spd->t_wr / 2) & 0x07;
spd->t_rcd = ((buf->trcd_min * mtb) - 1) / spd->t_ck + 1;
spd->t_rrd = ((buf->trrd_min * mtb) - 1) / spd->t_ck + 1;
spd->t_rp = (((buf->trp_min * mtb) - 1) / spd->t_ck) + 1;
spd->t_ras = (((buf->tras_trc_ext & 0x0f) << 8 | buf->tras_min_lsb) *
mtb) / spd->t_ck;
spd->t_rc = (((((buf->tras_trc_ext & 0xf0) << 4) | buf->trc_min_lsb) *
mtb) - 1) / spd->t_ck + 1;
spd->t_rfc = (buf->trfc_min_lsb | (buf->trfc_min_msb << 8)) * mtb /
1000;
spd->t_wtr = (buf->twtr_min * mtb) / spd->t_ck;
spd->t_rtp = (buf->trtp_min * mtb) / spd->t_ck;
spd->t_xs = (((spd->t_rfc + 10) * 1000) / spd->t_ck);
spd->t_rfc = ((spd->t_rfc * 1000) - 1) / spd->t_ck + 1;
spd->t_faw = (((buf->tfaw_msb << 8) | buf->tfaw_min) * mtb) / spd->t_ck;
spd->t_rrd2 = ((((buf->tfaw_msb << 8) |
buf->tfaw_min) * mtb) / (4 * spd->t_ck)) - 1;
/* Hard-coded values */
spd->t_mrd = 0x00;
spd->t_mod = 0x00;
spd->t_wlo = 0x0C;
spd->t_wlmrd = 0x28;
spd->t_xsdll = 0x200;
spd->t_ras_max = 0x0F;
spd->t_csta = 0x05;
spd->t_dllk = 0x200;
/* CAS Write Latency */
if (spd->t_ck >= 2500)
spd->cwl = 0;
else if (spd->t_ck >= 1875)
spd->cwl = 1;
else if (spd->t_ck >= 1500)
spd->cwl = 2;
else if (spd->t_ck >= 1250)
spd->cwl = 3;
else if (spd->t_ck >= 1071)
spd->cwl = 4;
else
spd->cwl = 5;
/* SD:RAM Thermal and Refresh Options */
spd->asr = (buf->therm_ref_opt & 0x04) >> 2;
spd->pasr = (buf->therm_ref_opt & 0x80) >> 7;
spd->t_zqcs = 64;
spd->t_refprd = (TEMP == NORMAL_TEMP) ? 7812500 : 3906250;
spd->t_refprd = spd->t_refprd / spd->t_ck;
spd->refresh_rate = spd->t_refprd;
spd->t_refprd = spd->t_refprd * 5;
/* Set MISC PHY space registers fields */
if ((clk_freq / 2) >= 166 && (clk_freq / 2 < 275))
spd->freqsel = 0x03;
else if ((clk_freq / 2) > 225 && (clk_freq / 2 < 385))
spd->freqsel = 0x01;
else if ((clk_freq / 2) > 335 && (clk_freq / 2 < 534))
spd->freqsel = 0x00;
spd->t_dinit0 = 500000000 / spd->t_ck; /* CKE low time 500 us */
spd->t_dinit1 = spd->t_xs;
spd->t_dinit2 = 200000000 / spd->t_ck; /* Reset low time 200 us */
/* Time from ZQ initialization command to first command (1 us) */
spd->t_dinit3 = 1000000 / spd->t_ck;
spd->t_pllgs = PLLGS_VAL + 1;
spd->t_pllpd = PLLPD_VAL + 1;
spd->t_plllock = PLLLOCK_VAL + 1;
spd->t_pllrst = PLLRST_VAL;
spd->t_phyrst = PHYRST_VAL;
spd_cb->ddr_size_gbyte = ddr3_get_size_in_mb(buf) / 1024;
return 0;
}
static void init_ddr3param(struct ddr3_spd_cb *spd_cb,
struct ddr3_sodimm *spd)
{
spd_cb->phy_cfg.pllcr = (spd->freqsel & 3) << 18 | 0xE << 13;
spd_cb->phy_cfg.pgcr1_mask = (IODDRM_MASK | ZCKSEL_MASK);
spd_cb->phy_cfg.pgcr1_val = ((1 << 2) | (1 << 7) | (1 << 23));
spd_cb->phy_cfg.ptr0 = ((spd->t_pllpd & 0x7ff) << 21) |
((spd->t_pllgs & 0x7fff) << 6) | (spd->t_phyrst & 0x3f);
spd_cb->phy_cfg.ptr1 = ((spd->t_plllock & 0xffff) << 16) |
(spd->t_pllrst & 0x1fff);
spd_cb->phy_cfg.ptr2 = 0;
spd_cb->phy_cfg.ptr3 = ((spd->t_dinit1 & 0x1ff) << 20) |
(spd->t_dinit0 & 0xfffff);
spd_cb->phy_cfg.ptr4 = ((spd->t_dinit3 & 0x3ff) << 18) |
(spd->t_dinit2 & 0x3ffff);
spd_cb->phy_cfg.dcr_mask = PDQ_MASK | MPRDQ_MASK | BYTEMASK_MASK;
spd_cb->phy_cfg.dcr_val = 1 << 10;
if (spd->mirrored) {
spd_cb->phy_cfg.dcr_mask |= NOSRA_MASK | UDIMM_MASK;
spd_cb->phy_cfg.dcr_val |= (1 << 27) | (1 << 29);
}
spd_cb->phy_cfg.dtpr0 = (spd->t_rc & 0x3f) << 26 |
(spd->t_rrd & 0xf) << 22 |
(spd->t_ras & 0x3f) << 16 | (spd->t_rcd & 0xf) << 12 |
(spd->t_rp & 0xf) << 8 | (spd->t_wtr & 0xf) << 4 |
(spd->t_rtp & 0xf);
spd_cb->phy_cfg.dtpr1 = (spd->t_wlo & 0xf) << 26 |
(spd->t_wlmrd & 0x3f) << 20 | (spd->t_rfc & 0x1ff) << 11 |
(spd->t_faw & 0x3f) << 5 | (spd->t_mod & 0x7) << 2 |
(spd->t_mrd & 0x3);
spd_cb->phy_cfg.dtpr2 = 0 << 31 | 1 << 30 | 0 << 29 |
(spd->t_dllk & 0x3ff) << 19 | (spd->t_ckesr & 0xf) << 15;
spd_cb->phy_cfg.dtpr2 |= (((spd->t_xp > spd->t_xpdll) ?
spd->t_xp : spd->t_xpdll) &
0x1f) << 10;
spd_cb->phy_cfg.dtpr2 |= (((spd->t_xs > spd->t_xsdll) ?
spd->t_xs : spd->t_xsdll) &
0x3ff);
spd_cb->phy_cfg.mr0 = 1 << 12 | (spd->t_wr_bin & 0x7) << 9 | 0 << 8 |
0 << 7 | ((spd->cas & 0x0E) >> 1) << 4 | 0 << 3 |
(spd->cas & 0x01) << 2;
spd_cb->phy_cfg.mr1 = 0 << 12 | 0 << 11 | 0 << 7 | 0 << 3 |
((DDR_TERM >> 2) & 1) << 9 | ((DDR_TERM >> 1) & 1) << 6 |
(DDR_TERM & 0x1) << 2 | ((SDRAM_DRIVE >> 1) & 1) << 5 |
(SDRAM_DRIVE & 1) << 1 | 0 << 0;
spd_cb->phy_cfg.mr2 = DYN_ODT << 9 | TEMP << 7 | (spd->asr & 1) << 6 |
(spd->cwl & 7) << 3 | (spd->pasr & 7);
spd_cb->phy_cfg.dtcr = (spd->rank == 2) ? 0x730035C7 : 0x710035C7;
spd_cb->phy_cfg.pgcr2 = (0xF << 20) | ((int)spd->t_refprd & 0x3ffff);
spd_cb->phy_cfg.zq0cr1 = 0x0000005D;
spd_cb->phy_cfg.zq1cr1 = 0x0000005B;
spd_cb->phy_cfg.zq2cr1 = 0x0000005B;
spd_cb->phy_cfg.pir_v1 = 0x00000033;
spd_cb->phy_cfg.pir_v2 = 0x0000FF81;
/* EMIF Registers */
spd_cb->emif_cfg.sdcfg = spd->sdram_type << 29 | (DDR_TERM & 7) << 25 |
(DYN_ODT & 3) << 22 | (spd->cwl & 0x7) << 14 |
(spd->cas & 0xf) << 8 | (spd->ibank & 3) << 5 |
(spd->buswidth & 3) << 12 | (spd->pagesize & 3);
if (spd->rank == 2)
spd_cb->emif_cfg.sdcfg |= 1 << 3;
spd_cb->emif_cfg.sdtim1 = ((spd->t_wr - 1) & 0x1f) << 25 |
((spd->t_ras - 1) & 0x7f) << 18 |
((spd->t_rc - 1) & 0xff) << 10 |
(spd->t_rrd2 & 0x3f) << 4 |
((spd->t_wtr - 1) & 0xf);
spd_cb->emif_cfg.sdtim2 = 0x07 << 10 | ((spd->t_rp - 1) & 0x1f) << 5 |
((spd->t_rcd - 1) & 0x1f);
spd_cb->emif_cfg.sdtim3 = ((spd->t_xp - 2) & 0xf) << 28 |
((spd->t_xs - 1) & 0x3ff) << 18 |
((spd->t_xsdll - 1) & 0x3ff) << 8 |
((spd->t_rtp - 1) & 0xf) << 4 | ((spd->t_cke) & 0xf);
spd_cb->emif_cfg.sdtim4 = (spd->t_csta & 0xf) << 28 |
((spd->t_ckesr - 1) & 0xf) << 24 |
((spd->t_zqcs - 1) & 0xff) << 16 |
((spd->t_rfc - 1) & 0x3ff) << 4 |
(spd->t_ras_max & 0xf);
spd_cb->emif_cfg.sdrfc = (spd->refresh_rate - 1) & 0xffff;
/* TODO zqcfg value fixed ,May be required correction for K2E evm. */
spd_cb->emif_cfg.zqcfg = (spd->rank == 2) ? 0xF0073200 : 0x70073200;
}
static int ddr3_read_spd(ddr3_spd_eeprom_t *spd_params)
{
int ret;
int old_bus;
i2c_init(CONFIG_SYS_DAVINCI_I2C_SPEED, CONFIG_SYS_DAVINCI_I2C_SLAVE);
old_bus = i2c_get_bus_num();
i2c_set_bus_num(1);
ret = i2c_read(0x53, 0, 1, (unsigned char *)spd_params, 256);
i2c_set_bus_num(old_bus);
if (ret) {
printf("Cannot read DIMM params\n");
return 1;
}
if (ddr3_spd_check(spd_params))
return 1;
return 0;
}
int ddr3_get_dimm_params_from_spd(struct ddr3_spd_cb *spd_cb)
{
struct ddr3_sodimm spd;
ddr3_spd_eeprom_t spd_params;
memset(&spd, 0, sizeof(spd));
if (ddr3_read_spd(&spd_params))
return 1;
if (ddrtimingcalculation(&spd_params, &spd, spd_cb)) {
printf("Timing caclulation error\n");
return 1;
}
strncpy(spd_cb->dimm_name, (char *)spd_params.mpart, 18);
spd_cb->dimm_name[18] = '\0';
init_ddr3param(spd_cb, &spd);
dump_emif_config(&spd_cb->emif_cfg);
dump_phy_config(&spd_cb->phy_cfg);
return 0;
}

View File

@ -48,6 +48,14 @@ struct ddr3_emif_config {
unsigned int sdrfc;
};
struct ddr3_spd_cb {
char dimm_name[32];
struct ddr3_phy_config phy_cfg;
struct ddr3_emif_config emif_cfg;
unsigned int ddrspdclock;
int ddr_size_gbyte;
};
u32 ddr3_init(void);
void ddr3_reset_ddrphy(void);
void ddr3_init_ecc(u32 base, u32 ddr3_size);

View File

@ -1,17 +1,17 @@
#
# KS2-EVM: board Makefile
# (C) Copyright 2012-2014
# (C) Copyright 2012-2015
# Texas Instruments Incorporated, <www.ti.com>
# SPDX-License-Identifier: GPL-2.0+
#
obj-y += board.o
obj-y += ddr3_cfg.o
obj-$(CONFIG_K2HK_EVM) += board_k2hk.o
obj-$(CONFIG_K2HK_EVM) += ddr3_k2hk.o
obj-$(CONFIG_K2E_EVM) += board_k2e.o
obj-$(CONFIG_K2E_EVM) += ddr3_k2e.o
obj-$(CONFIG_K2L_EVM) += board_k2l.o
obj-$(CONFIG_K2L_EVM) += ddr3_k2l.o
obj-$(CONFIG_K2L_EVM) += ddr3_cfg.o
obj-$(CONFIG_K2G_EVM) += board_k2g.o
obj-$(CONFIG_K2G_EVM) += ddr3_k2g.o

View File

@ -9,129 +9,8 @@
#include <common.h>
#include <i2c.h>
#include <asm/arch/ddr3.h>
#include <asm/arch/hardware.h>
DECLARE_GLOBAL_DATA_PTR;
/* DDR3 PHY configuration data with 1600M rate, 8GB size */
struct ddr3_phy_config ddr3phy_1600_8g = {
.pllcr = 0x0001C000ul,
.pgcr1_mask = (IODDRM_MASK | ZCKSEL_MASK),
.pgcr1_val = ((1 << 2) | (1 << 7) | (1 << 23)),
.ptr0 = 0x42C21590ul,
.ptr1 = 0xD05612C0ul,
.ptr2 = 0, /* not set in gel */
.ptr3 = 0x0D861A80ul,
.ptr4 = 0x0C827100ul,
.dcr_mask = (PDQ_MASK | MPRDQ_MASK | BYTEMASK_MASK),
.dcr_val = ((1 << 10)),
.dtpr0 = 0xA19DBB66ul,
.dtpr1 = 0x32868300ul,
.dtpr2 = 0x50035200ul,
.mr0 = 0x00001C70ul,
.mr1 = 0x00000006ul,
.mr2 = 0x00000018ul,
.dtcr = 0x730035C7ul,
.pgcr2 = 0x00F07A12ul,
.zq0cr1 = 0x0000005Dul,
.zq1cr1 = 0x0000005Bul,
.zq2cr1 = 0x0000005Bul,
.pir_v1 = 0x00000033ul,
.pir_v2 = 0x0000FF81ul,
};
/* DDR3 EMIF configuration data with 1600M rate, 8GB size */
struct ddr3_emif_config ddr3_1600_8g = {
.sdcfg = 0x6200CE6Aul,
.sdtim1 = 0x16709C55ul,
.sdtim2 = 0x00001D4Aul,
.sdtim3 = 0x435DFF54ul,
.sdtim4 = 0x553F0CFFul,
.zqcfg = 0xF0073200ul,
.sdrfc = 0x00001869ul,
};
#ifdef CONFIG_K2HK_EVM
/* DDR3 PHY configuration data with 1333M rate, and 2GB size */
struct ddr3_phy_config ddr3phy_1333_2g = {
.pllcr = 0x0005C000ul,
.pgcr1_mask = (IODDRM_MASK | ZCKSEL_MASK),
.pgcr1_val = ((1 << 2) | (1 << 7) | (1 << 23)),
.ptr0 = 0x42C21590ul,
.ptr1 = 0xD05612C0ul,
.ptr2 = 0, /* not set in gel */
.ptr3 = 0x0B4515C2ul,
.ptr4 = 0x0A6E08B4ul,
.dcr_mask = (PDQ_MASK | MPRDQ_MASK | BYTEMASK_MASK),
.dcr_val = ((1 << 10)),
.dtpr0 = 0x8558AA55ul,
.dtpr1 = 0x32857280ul,
.dtpr2 = 0x5002C200ul,
.mr0 = 0x00001A60ul,
.mr1 = 0x00000006ul,
.mr2 = 0x00000010ul,
.dtcr = 0x710035C7ul,
.pgcr2 = 0x00F065B8ul,
.zq0cr1 = 0x0000005Dul,
.zq1cr1 = 0x0000005Bul,
.zq2cr1 = 0x0000005Bul,
.pir_v1 = 0x00000033ul,
.pir_v2 = 0x0000FF81ul,
};
/* DDR3 EMIF configuration data with 1333M rate, and 2GB size */
struct ddr3_emif_config ddr3_1333_2g = {
.sdcfg = 0x62008C62ul,
.sdtim1 = 0x125C8044ul,
.sdtim2 = 0x00001D29ul,
.sdtim3 = 0x32CDFF43ul,
.sdtim4 = 0x543F0ADFul,
.zqcfg = 0x70073200ul,
.sdrfc = 0x00001457ul,
};
#endif
#ifdef CONFIG_K2E_EVM
/* DDR3 PHY configuration data with 1600M rate, and 4GB size */
struct ddr3_phy_config ddr3phy_1600_4g = {
.pllcr = 0x0001C000ul,
.pgcr1_mask = (IODDRM_MASK | ZCKSEL_MASK),
.pgcr1_val = ((1 << 2) | (1 << 7) | (1 << 23)),
.ptr0 = 0x42C21590ul,
.ptr1 = 0xD05612C0ul,
.ptr2 = 0, /* not set in gel */
.ptr3 = 0x08861A80ul,
.ptr4 = 0x0C827100ul,
.dcr_mask = (PDQ_MASK | MPRDQ_MASK | BYTEMASK_MASK),
.dcr_val = ((1 << 10)),
.dtpr0 = 0x9D9CBB66ul,
.dtpr1 = 0x12840300ul,
.dtpr2 = 0x5002D200ul,
.mr0 = 0x00001C70ul,
.mr1 = 0x00000006ul,
.mr2 = 0x00000018ul,
.dtcr = 0x710035C7ul,
.pgcr2 = 0x00F07A12ul,
.zq0cr1 = 0x0001005Dul,
.zq1cr1 = 0x0001005Bul,
.zq2cr1 = 0x0001005Bul,
.pir_v1 = 0x00000033ul,
.pir_v2 = 0x0000FF81ul,
};
/* DDR3 EMIF configuration data with 1600M rate, and 4GB size */
struct ddr3_emif_config ddr3_1600_4g = {
.sdcfg = 0x6200CE62ul,
.sdtim1 = 0x166C9855ul,
.sdtim2 = 0x00001D4Aul,
.sdtim3 = 0x421DFF53ul,
.sdtim4 = 0x543F07FFul,
.zqcfg = 0x70073200ul,
.sdrfc = 0x00001869ul,
};
#endif
#include "ddr3_cfg.h"
struct ddr3_phy_config ddr3phy_1600_2g = {
.pllcr = 0x0001C000ul,
@ -168,39 +47,3 @@ struct ddr3_emif_config ddr3_1600_2g = {
.zqcfg = 0x70073200ul,
.sdrfc = 0x00001869ul,
};
int ddr3_get_dimm_params(char *dimm_name)
{
int ret;
int old_bus;
u8 spd_params[256];
i2c_init(CONFIG_SYS_DAVINCI_I2C_SPEED, CONFIG_SYS_DAVINCI_I2C_SLAVE);
old_bus = i2c_get_bus_num();
i2c_set_bus_num(1);
ret = i2c_read(0x53, 0, 1, spd_params, 256);
i2c_set_bus_num(old_bus);
dimm_name[0] = '\0';
if (ret) {
puts("Cannot read DIMM params\n");
return 1;
}
/*
* We need to convert spd data to dimm parameters
* and to DDR3 EMIF and PHY regirsters values.
* For now we just return DIMM type string value.
* Caller may use this value to choose appropriate
* a pre-set DDR3 configuration
*/
strncpy(dimm_name, (char *)&spd_params[0x80], 18);
dimm_name[18] = '\0';
return 0;
}

View File

@ -10,18 +10,11 @@
#ifndef __DDR3_CFG_H
#define __DDR3_CFG_H
extern struct ddr3_phy_config ddr3phy_1600_8g;
extern struct ddr3_emif_config ddr3_1600_8g;
extern struct ddr3_phy_config ddr3phy_1333_2g;
extern struct ddr3_emif_config ddr3_1333_2g;
extern struct ddr3_phy_config ddr3phy_1600_4g;
extern struct ddr3_emif_config ddr3_1600_4g;
#include <asm/arch/ddr3.h>
extern struct ddr3_phy_config ddr3phy_1600_2g;
extern struct ddr3_emif_config ddr3_1600_2g;
int ddr3_get_dimm_params(char *dimm_name);
int ddr3_get_dimm_params_from_spd(struct ddr3_spd_cb *spd_cb);
#endif /* __DDR3_CFG_H */

View File

@ -1,7 +1,7 @@
/*
* Keystone2: DDR3 initialization
*
* (C) Copyright 2014
* (C) Copyright 2014-2015
* Texas Instruments Incorporated, <www.ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
@ -12,42 +12,37 @@
#include <asm/arch/ddr3.h>
static struct pll_init_data ddr3_400 = DDR3_PLL_400;
static struct pll_init_data ddr3_333 = DDR3_PLL_333;
u32 ddr3_init(void)
{
u32 ddr3_size;
char dimm_name[32];
struct ddr3_spd_cb spd_cb;
if (~(readl(KS2_PLL_CNTRL_BASE + KS2_RSTCTRL_RSTYPE) & 0x1))
if (ddr3_get_dimm_params_from_spd(&spd_cb)) {
printf("Sorry, I don't know how to configure DDR3A.\n"
"Bye :(\n");
for (;;)
;
}
printf("Detected SO-DIMM [%s]\n", spd_cb.dimm_name);
printf("DDR3 speed %d\n", spd_cb.ddrspdclock);
if (spd_cb.ddrspdclock == 1600)
init_pll(&ddr3_400);
ddr3_get_dimm_params(dimm_name);
printf("Detected SO-DIMM [%s]\n", dimm_name);
else
init_pll(&ddr3_333);
/* Reset DDR3 PHY after PLL enabled */
ddr3_reset_ddrphy();
if (!strcmp(dimm_name, "18KSF1G72HZ-1G6E2 ")) {
/* 8G SO-DIMM */
ddr3_size = 8;
printf("DRAM: 8 GiB\n");
ddr3phy_1600_8g.zq0cr1 |= 0x10000;
ddr3phy_1600_8g.zq1cr1 |= 0x10000;
ddr3phy_1600_8g.zq2cr1 |= 0x10000;
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &ddr3phy_1600_8g);
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE, &ddr3_1600_8g);
} else if (!strcmp(dimm_name, "18KSF51272HZ-1G6K2")) {
/* 4G SO-DIMM */
ddr3_size = 4;
printf("DRAM: 4 GiB\n");
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &ddr3phy_1600_4g);
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE, &ddr3_1600_4g);
} else {
printf("Unknown SO-DIMM. Cannot configure DDR3\n");
while (1)
;
}
spd_cb.phy_cfg.zq0cr1 |= 0x10000;
spd_cb.phy_cfg.zq1cr1 |= 0x10000;
spd_cb.phy_cfg.zq2cr1 |= 0x10000;
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &spd_cb.phy_cfg);
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE, &spd_cb.emif_cfg);
return ddr3_size;
printf("DRAM: %d GiB\n", spd_cb.ddr_size_gbyte);
return (u32)spd_cb.ddr_size_gbyte;
}

View File

@ -17,78 +17,49 @@ struct pll_init_data ddr3a_400 = DDR3_PLL_400(A);
u32 ddr3_init(void)
{
char dimm_name[32];
u32 ddr3_size;
struct ddr3_spd_cb spd_cb;
ddr3_get_dimm_params(dimm_name);
printf("Detected SO-DIMM [%s]\n", dimm_name);
if (!strcmp(dimm_name, "18KSF1G72HZ-1G6E2 ")) {
init_pll(&ddr3a_400);
if (cpu_revision() > 0) {
if (cpu_revision() > 1) {
/* PG 2.0 */
/* Reset DDR3A PHY after PLL enabled */
ddr3_reset_ddrphy();
ddr3phy_1600_8g.zq0cr1 |= 0x10000;
ddr3phy_1600_8g.zq1cr1 |= 0x10000;
ddr3phy_1600_8g.zq2cr1 |= 0x10000;
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC,
&ddr3phy_1600_8g);
} else {
/* PG 1.1 */
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC,
&ddr3phy_1600_8g);
}
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE,
&ddr3_1600_8g);
printf("DRAM: Capacity 8 GiB (includes reported below)\n");
ddr3_size = 8;
} else {
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &ddr3phy_1600_8g);
ddr3_1600_8g.sdcfg |= 0x1000;
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE,
&ddr3_1600_8g);
printf("DRAM: Capacity 4 GiB (includes reported below)\n");
ddr3_size = 4;
}
} else if (!strcmp(dimm_name, "SQR-SD3T-2G1333SED")) {
init_pll(&ddr3a_333);
if (cpu_revision() > 0) {
if (cpu_revision() > 1) {
/* PG 2.0 */
/* Reset DDR3A PHY after PLL enabled */
ddr3_reset_ddrphy();
ddr3phy_1333_2g.zq0cr1 |= 0x10000;
ddr3phy_1333_2g.zq1cr1 |= 0x10000;
ddr3phy_1333_2g.zq2cr1 |= 0x10000;
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC,
&ddr3phy_1333_2g);
} else {
/* PG 1.1 */
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC,
&ddr3phy_1333_2g);
}
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE,
&ddr3_1333_2g);
ddr3_size = 2;
printf("DRAM: 2 GiB");
} else {
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &ddr3phy_1333_2g);
ddr3_1333_2g.sdcfg |= 0x1000;
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE,
&ddr3_1333_2g);
ddr3_size = 1;
printf("DRAM: 1 GiB");
}
} else {
printf("Unknown SO-DIMM. Cannot configure DDR3\n");
while (1)
if (ddr3_get_dimm_params_from_spd(&spd_cb)) {
printf("Sorry, I don't know how to configure DDR3A.\n"
"Bye :(\n");
for (;;)
;
}
printf("Detected SO-DIMM [%s]\n", spd_cb.dimm_name);
if ((cpu_revision() > 1) ||
(__raw_readl(KS2_RSTCTRL_RSTYPE) & 0x1)) {
printf("DDR3 speed %d\n", spd_cb.ddrspdclock);
if (spd_cb.ddrspdclock == 1600)
init_pll(&ddr3a_400);
else
init_pll(&ddr3a_333);
}
if (cpu_revision() > 0) {
if (cpu_revision() > 1) {
/* PG 2.0 */
/* Reset DDR3A PHY after PLL enabled */
ddr3_reset_ddrphy();
spd_cb.phy_cfg.zq0cr1 |= 0x10000;
spd_cb.phy_cfg.zq1cr1 |= 0x10000;
spd_cb.phy_cfg.zq2cr1 |= 0x10000;
}
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &spd_cb.phy_cfg);
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE, &spd_cb.emif_cfg);
ddr3_size = spd_cb.ddr_size_gbyte;
} else {
ddr3_init_ddrphy(KS2_DDR3A_DDRPHYC, &spd_cb.phy_cfg);
spd_cb.emif_cfg.sdcfg |= 0x1000;
ddr3_init_ddremif(KS2_DDR3A_EMIF_CTRL_BASE, &spd_cb.emif_cfg);
ddr3_size = spd_cb.ddr_size_gbyte / 2;
}
printf("DRAM: %d GiB (includes reported below)\n", ddr3_size);
/* Apply the workaround for PG 1.0 and 1.1 Silicons */
if (cpu_revision() <= 1)
ddr3_err_reset_workaround();

View File

@ -38,4 +38,6 @@
#define CONFIG_KSNET_CPSW_NUM_PORTS 9
#define CONFIG_KSNET_MDIO_PHY_CONFIG_ENABLE
#define CONFIG_DDR_SPD
#endif /* __CONFIG_K2E_EVM_H */

View File

@ -37,4 +37,6 @@
#define CONFIG_KSNET_NETCP_V1_0
#define CONFIG_KSNET_CPSW_NUM_PORTS 5
#define CONFIG_DDR_SPD
#endif /* __CONFIG_K2HK_EVM_H */