thneed saves 45% of a core (#1512)

* thneed runs the model

* thneed is doing the hooking

* set kernel args

* thneeding the bufferS

* print the images well

* thneeds with better buffers

* includes

* disasm adreno

* parse packets

* disasm works

* disasm better

* more thneeding

* much thneeding

* much more thneeding

* thneed works i think

* thneed is patient

* thneed works

* 7.7%

* gpuobj sync

* yay, it mallocs now

* cleaning it up, Thneed

* sync objs and set power

* thneed needs inputs and outputs

* thneed in modeld

* special modeld runs

* can't thneed the DSP

* test is weird

* thneed modeld uses 6.4% CPU

* add thneed to release

* move to debug

* delete some junk from the pr

* always track the timestamp

* timestamp hacks in thneed

* create a new command queue

* fix timestamp

* pretty much back to what we had, you can't use SNPE with thneed

* improve thneed test

* disable save log

Co-authored-by: Comma Device <device@comma.ai>
albatross
George Hotz 2020-05-15 13:53:01 -07:00 committed by GitHub
parent 3d75b4d7c0
commit 302d06ee70
15 changed files with 9788 additions and 6 deletions

View File

@ -387,6 +387,9 @@ selfdrive/modeld/transforms/loadyuv.cl
selfdrive/modeld/transforms/transform.[c,h]
selfdrive/modeld/transforms/transform.cl
selfdrive/modeld/thneed/thneed.*
selfdrive/modeld/thneed/include/*
selfdrive/modeld/runners/snpemodel.cc
selfdrive/modeld/runners/snpemodel.h
selfdrive/modeld/runners/runmodel.h

View File

@ -3,6 +3,8 @@ lenv = env.Clone()
libs = [messaging, common, 'OpenCL', 'SNPE', 'capnp', 'zmq', 'kj', 'yuv', gpucommon, visionipc]
TEST_THNEED = False
common_src = [
"models/commonmodel.c",
"runners/snpemodel.cc",
@ -11,6 +13,10 @@ common_src = [
if arch == "aarch64":
libs += ['gsl', 'CB', 'gnustl_shared']
if not TEST_THNEED:
common_src += ["thneed/thneed.cc"]
lenv['CFLAGS'].append("-DUSE_THNEED")
lenv['CXXFLAGS'].append("-DUSE_THNEED")
elif arch == "larch64":
libs += ['gsl', 'CB', 'symphony-cpu', 'pthread']
else:
@ -34,3 +40,8 @@ lenv.Program('_modeld', [
"models/driving.cc",
]+common, LIBS=libs)
if TEST_THNEED:
lenv.Program('thneed/debug/_thneed', [
"thneed/thneed.cc", "thneed/debug/test.cc"
]+common, LIBS=libs)

View File

@ -9,9 +9,9 @@ void PrintErrorStringAndExit() {
std::exit(EXIT_FAILURE);
}
SNPEModel::SNPEModel(const char *path, float *output, size_t output_size, int runtime) {
SNPEModel::SNPEModel(const char *path, float *loutput, size_t output_size, int runtime) {
output = loutput;
#ifdef QCOM
zdl::DlSystem::Runtime_t Runtime;
if (runtime==USE_GPU_RUNTIME) {
Runtime = zdl::DlSystem::Runtime_t::GPU;
} else if (runtime==USE_DSP_RUNTIME) {
@ -87,6 +87,13 @@ SNPEModel::SNPEModel(const char *path, float *output, size_t output_size, int ru
// create output buffer
{
const zdl::DlSystem::TensorShape& bufferShape = snpe->getInputOutputBufferAttributes(output_tensor_name)->getDims();
if (output_size != 0) {
assert(output_size == bufferShape[1]);
} else {
output_size = bufferShape[1];
}
std::vector<size_t> outputStrides = {output_size * sizeof(float), sizeof(float)};
outputBuffer = ubFactory.createUserBuffer(output, output_size * sizeof(float), outputStrides, &userBufferEncodingFloat);
outputMap.add(output_tensor_name, outputBuffer.get());
@ -94,14 +101,17 @@ SNPEModel::SNPEModel(const char *path, float *output, size_t output_size, int ru
}
void SNPEModel::addRecurrent(float *state, int state_size) {
recurrent = state;
recurrentBuffer = this->addExtra(state, state_size, 3);
}
void SNPEModel::addTrafficConvention(float *state, int state_size) {
trafficConvention = state;
trafficConventionBuffer = this->addExtra(state, state_size, 2);
}
void SNPEModel::addDesire(float *state, int state_size) {
desire = state;
desireBuffer = this->addExtra(state, state_size, 1);
}
@ -122,9 +132,33 @@ std::unique_ptr<zdl::DlSystem::IUserBuffer> SNPEModel::addExtra(float *state, in
}
void SNPEModel::execute(float *net_input_buf, int buf_size) {
assert(inputBuffer->setBufferAddress(net_input_buf));
if (!snpe->execute(inputMap, outputMap)) {
PrintErrorStringAndExit();
#ifdef USE_THNEED
if (Runtime == zdl::DlSystem::Runtime_t::GPU) {
if (thneed == NULL) {
assert(inputBuffer->setBufferAddress(net_input_buf));
if (!snpe->execute(inputMap, outputMap)) {
PrintErrorStringAndExit();
}
thneed = new Thneed();
//thneed->record = 3;
if (!snpe->execute(inputMap, outputMap)) {
PrintErrorStringAndExit();
}
thneed->stop();
//thneed->record = 2;
printf("thneed cached\n");
} else {
float *inputs[4] = {recurrent, trafficConvention, desire, net_input_buf};
thneed->execute(inputs, output);
}
} else {
#endif
assert(inputBuffer->setBufferAddress(net_input_buf));
if (!snpe->execute(inputMap, outputMap)) {
PrintErrorStringAndExit();
}
#ifdef USE_THNEED
}
#endif
}

View File

@ -17,9 +17,13 @@
#define USE_GPU_RUNTIME 1
#define USE_DSP_RUNTIME 2
#ifdef USE_THNEED
#include "thneed/thneed.h"
#endif
class SNPEModel : public RunModel {
public:
SNPEModel(const char *path, float *output, size_t output_size, int runtime);
SNPEModel(const char *path, float *loutput, size_t output_size, int runtime);
~SNPEModel() {
if (model_data) free(model_data);
}
@ -30,6 +34,12 @@ public:
private:
uint8_t *model_data = NULL;
#ifdef USE_THNEED
Thneed *thneed = NULL;
#endif
zdl::DlSystem::Runtime_t Runtime;
// snpe model stuff
std::unique_ptr<zdl::SNPE::SNPE> snpe;
@ -44,8 +54,11 @@ private:
// recurrent and desire
std::unique_ptr<zdl::DlSystem::IUserBuffer> addExtra(float *state, int state_size, int idx);
float *recurrent;
std::unique_ptr<zdl::DlSystem::IUserBuffer> recurrentBuffer;
float *trafficConvention;
std::unique_ptr<zdl::DlSystem::IUserBuffer> trafficConventionBuffer;
float *desire;
std::unique_ptr<zdl::DlSystem::IUserBuffer> desireBuffer;
};

View File

@ -0,0 +1,8 @@
thneed is an SNPE accelerator. I know SNPE is already an accelerator, but sometimes things need to go even faster..
It runs on the local device, and caches a single model run. Then it replays it, but fast.
thneed slices through abstraction layers like a fish.
You need a thneed.

View File

@ -0,0 +1 @@
_thneed

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,473 @@
/* Copyright (c) 2002,2007-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ADRENO_PM4TYPES_H
#define __ADRENO_PM4TYPES_H
//#include "adreno.h"
#define CP_PKT_MASK 0xc0000000
#define CP_TYPE0_PKT ((unsigned int)0 << 30)
#define CP_TYPE3_PKT ((unsigned int)3 << 30)
#define CP_TYPE4_PKT ((unsigned int)4 << 28)
#define CP_TYPE7_PKT ((unsigned int)7 << 28)
#define PM4_TYPE4_PKT_SIZE_MAX 128
/* type3 packets */
/* Enable preemption flag */
#define CP_PREEMPT_ENABLE 0x1C
/* Preemption token command on which preemption occurs */
#define CP_PREEMPT_TOKEN 0x1E
/* Bit to set in CP_PREEMPT_TOKEN ordinal for interrupt on preemption */
#define CP_PREEMPT_ORDINAL_INTERRUPT 24
/* copy from ME scratch RAM to a register */
#define CP_SCRATCH_TO_REG 0x4d
/* Copy from REG to ME scratch RAM */
#define CP_REG_TO_SCRATCH 0x4a
/* Wait for memory writes to complete */
#define CP_WAIT_MEM_WRITES 0x12
/* Conditional execution based on register comparison */
#define CP_COND_REG_EXEC 0x47
/* Memory to REG copy */
#define CP_MEM_TO_REG 0x42
/* initialize CP's micro-engine */
#define CP_ME_INIT 0x48
/* skip N 32-bit words to get to the next packet */
#define CP_NOP 0x10
/* indirect buffer dispatch. same as IB, but init is pipelined */
#define CP_INDIRECT_BUFFER_PFD 0x37
/* wait for the IDLE state of the engine */
#define CP_WAIT_FOR_IDLE 0x26
/* wait until a register or memory location is a specific value */
#define CP_WAIT_REG_MEM 0x3c
/* wait until a register location is equal to a specific value */
#define CP_WAIT_REG_EQ 0x52
/* switches SMMU pagetable, used on a5xx only */
#define CP_SMMU_TABLE_UPDATE 0x53
/* wait until a read completes */
#define CP_WAIT_UNTIL_READ 0x5c
/* wait until all base/size writes from an IB_PFD packet have completed */
#define CP_WAIT_IB_PFD_COMPLETE 0x5d
/* register read/modify/write */
#define CP_REG_RMW 0x21
/* Set binning configuration registers */
#define CP_SET_BIN_DATA 0x2f
/* reads register in chip and writes to memory */
#define CP_REG_TO_MEM 0x3e
/* write N 32-bit words to memory */
#define CP_MEM_WRITE 0x3d
/* write CP_PROG_COUNTER value to memory */
#define CP_MEM_WRITE_CNTR 0x4f
/* conditional execution of a sequence of packets */
#define CP_COND_EXEC 0x44
/* conditional write to memory or register */
#define CP_COND_WRITE 0x45
/* generate an event that creates a write to memory when completed */
#define CP_EVENT_WRITE 0x46
/* generate a VS|PS_done event */
#define CP_EVENT_WRITE_SHD 0x58
/* generate a cache flush done event */
#define CP_EVENT_WRITE_CFL 0x59
/* generate a z_pass done event */
#define CP_EVENT_WRITE_ZPD 0x5b
/* initiate fetch of index buffer and draw */
#define CP_DRAW_INDX 0x22
/* draw using supplied indices in packet */
#define CP_DRAW_INDX_2 0x36
/* initiate fetch of index buffer and binIDs and draw */
#define CP_DRAW_INDX_BIN 0x34
/* initiate fetch of bin IDs and draw using supplied indices */
#define CP_DRAW_INDX_2_BIN 0x35
/* New draw packets defined for A4XX */
#define CP_DRAW_INDX_OFFSET 0x38
#define CP_DRAW_INDIRECT 0x28
#define CP_DRAW_INDX_INDIRECT 0x29
#define CP_DRAW_AUTO 0x24
/* begin/end initiator for viz query extent processing */
#define CP_VIZ_QUERY 0x23
/* fetch state sub-blocks and initiate shader code DMAs */
#define CP_SET_STATE 0x25
/* load constant into chip and to memory */
#define CP_SET_CONSTANT 0x2d
/* load sequencer instruction memory (pointer-based) */
#define CP_IM_LOAD 0x27
/* load sequencer instruction memory (code embedded in packet) */
#define CP_IM_LOAD_IMMEDIATE 0x2b
/* load constants from a location in memory */
#define CP_LOAD_CONSTANT_CONTEXT 0x2e
/* selective invalidation of state pointers */
#define CP_INVALIDATE_STATE 0x3b
/* dynamically changes shader instruction memory partition */
#define CP_SET_SHADER_BASES 0x4A
/* sets the 64-bit BIN_MASK register in the PFP */
#define CP_SET_BIN_MASK 0x50
/* sets the 64-bit BIN_SELECT register in the PFP */
#define CP_SET_BIN_SELECT 0x51
/* updates the current context, if needed */
#define CP_CONTEXT_UPDATE 0x5e
/* generate interrupt from the command stream */
#define CP_INTERRUPT 0x40
/* A5XX Enable yield in RB only */
#define CP_YIELD_ENABLE 0x1C
/* Enable/Disable/Defer A5x global preemption model */
#define CP_PREEMPT_ENABLE_GLOBAL 0x69
/* Enable/Disable A5x local preemption model */
#define CP_PREEMPT_ENABLE_LOCAL 0x6A
/* Yeild token on a5xx similar to CP_PREEMPT on a4xx */
#define CP_CONTEXT_SWITCH_YIELD 0x6B
/* Inform CP about current render mode (needed for a5xx preemption) */
#define CP_SET_RENDER_MODE 0x6C
/* copy sequencer instruction memory to system memory */
#define CP_IM_STORE 0x2c
/* test 2 memory locations to dword values specified */
#define CP_TEST_TWO_MEMS 0x71
/* Write register, ignoring context state for context sensitive registers */
#define CP_REG_WR_NO_CTXT 0x78
/*
* for A4xx
* Write to register with address that does not fit into type-0 pkt
*/
#define CP_WIDE_REG_WRITE 0x74
/* PFP waits until the FIFO between the PFP and the ME is empty */
#define CP_WAIT_FOR_ME 0x13
/* Record the real-time when this packet is processed by PFP */
#define CP_RECORD_PFP_TIMESTAMP 0x11
#define CP_SET_PROTECTED_MODE 0x5f /* sets the register protection mode */
/* Used to switch GPU between secure and non-secure modes */
#define CP_SET_SECURE_MODE 0x66
#define CP_BOOTSTRAP_UCODE 0x6f /* bootstraps microcode */
/*
* for a3xx
*/
#define CP_LOAD_STATE 0x30 /* load high level sequencer command */
/* Conditionally load a IB based on a flag */
#define CP_COND_INDIRECT_BUFFER_PFE 0x3A /* prefetch enabled */
#define CP_COND_INDIRECT_BUFFER_PFD 0x32 /* prefetch disabled */
/* Load a buffer with pre-fetch enabled */
#define CP_INDIRECT_BUFFER_PFE 0x3F
#define CP_EXEC_CL 0x31
/* (A4x) save PM4 stream pointers to execute upon a visible draw */
#define CP_SET_DRAW_STATE 0x43
#define CP_LOADSTATE_DSTOFFSET_SHIFT 0x00000000
#define CP_LOADSTATE_STATESRC_SHIFT 0x00000010
#define CP_LOADSTATE_STATEBLOCKID_SHIFT 0x00000013
#define CP_LOADSTATE_NUMOFUNITS_SHIFT 0x00000016
#define CP_LOADSTATE_STATETYPE_SHIFT 0x00000000
#define CP_LOADSTATE_EXTSRCADDR_SHIFT 0x00000002
static inline uint pm4_calc_odd_parity_bit(uint val)
{
return (0x9669 >> (0xf & ((val) ^
((val) >> 4) ^ ((val) >> 8) ^ ((val) >> 12) ^
((val) >> 16) ^ ((val) >> 20) ^ ((val) >> 24) ^
((val) >> 28)))) & 1;
}
/*
* PM4 packet header functions
* For all the packet functions the passed in count should be the size of the
* payload excluding the header
*/
static inline uint cp_type0_packet(uint regindx, uint cnt)
{
return CP_TYPE0_PKT | ((cnt-1) << 16) | ((regindx) & 0x7FFF);
}
static inline uint cp_type3_packet(uint opcode, uint cnt)
{
return CP_TYPE3_PKT | ((cnt-1) << 16) | (((opcode) & 0xFF) << 8);
}
static inline uint cp_type4_packet(uint opcode, uint cnt)
{
return CP_TYPE4_PKT | ((cnt) << 0) |
(pm4_calc_odd_parity_bit(cnt) << 7) |
(((opcode) & 0x3FFFF) << 8) |
((pm4_calc_odd_parity_bit(opcode) << 27));
}
static inline uint cp_type7_packet(uint opcode, uint cnt)
{
return CP_TYPE7_PKT | ((cnt) << 0) |
(pm4_calc_odd_parity_bit(cnt) << 15) |
(((opcode) & 0x7F) << 16) |
((pm4_calc_odd_parity_bit(opcode) << 23));
}
#define pkt_is_type0(pkt) (((pkt) & 0XC0000000) == CP_TYPE0_PKT)
#define type0_pkt_size(pkt) ((((pkt) >> 16) & 0x3FFF) + 1)
#define type0_pkt_offset(pkt) ((pkt) & 0x7FFF)
/*
* Check both for the type3 opcode and make sure that the reserved bits [1:7]
* and 15 are 0
*/
#define pkt_is_type3(pkt) \
((((pkt) & 0xC0000000) == CP_TYPE3_PKT) && \
(((pkt) & 0x80FE) == 0))
#define cp_type3_opcode(pkt) (((pkt) >> 8) & 0xFF)
#define type3_pkt_size(pkt) ((((pkt) >> 16) & 0x3FFF) + 1)
#define pkt_is_type4(pkt) \
((((pkt) & 0xF0000000) == CP_TYPE4_PKT) && \
((((pkt) >> 27) & 0x1) == \
pm4_calc_odd_parity_bit(cp_type4_base_index_one_reg_wr(pkt))) \
&& ((((pkt) >> 7) & 0x1) == \
pm4_calc_odd_parity_bit(type4_pkt_size(pkt))))
#define cp_type4_base_index_one_reg_wr(pkt) (((pkt) >> 8) & 0x7FFFF)
#define type4_pkt_size(pkt) ((pkt) & 0x7F)
#define pkt_is_type7(pkt) \
((((pkt) & 0xF0000000) == CP_TYPE7_PKT) && \
(((pkt) & 0x0F000000) == 0) && \
((((pkt) >> 23) & 0x1) == \
pm4_calc_odd_parity_bit(cp_type7_opcode(pkt))) \
&& ((((pkt) >> 15) & 0x1) == \
pm4_calc_odd_parity_bit(type7_pkt_size(pkt))))
#define cp_type7_opcode(pkt) (((pkt) >> 16) & 0x7F)
#define type7_pkt_size(pkt) ((pkt) & 0x3FFF)
/* dword base address of the GFX decode space */
#define SUBBLOCK_OFFSET(reg) ((unsigned int)((reg) - (0x2000)))
/* gmem command buffer length */
#define CP_REG(reg) ((0x4 << 16) | (SUBBLOCK_OFFSET(reg)))
// add these
#define ADRENO_GPUREV(x) 530
#define lower_32_bits(n) ((uint32_t)(n))
#define upper_32_bits(n) ((uint32_t)(((n) >> 16) >> 16))
/* Return true if the hardware uses the legacy (A4XX and older) PM4 format */
#define ADRENO_LEGACY_PM4(_d) (ADRENO_GPUREV(_d) < 500)
/**
* cp_packet - Generic CP packet to support different opcodes on
* different GPU cores.
* @adreno_dev: The adreno device
* @opcode: Operation for cp packet
* @size: size for cp packet
*/
static inline uint cp_packet(struct adreno_device *adreno_dev,
int opcode, uint size)
{
if (ADRENO_LEGACY_PM4(adreno_dev))
return cp_type3_packet(opcode, size);
return cp_type7_packet(opcode, size);
}
/**
* cp_mem_packet - Generic CP memory packet to support different
* opcodes on different GPU cores.
* @adreno_dev: The adreno device
* @opcode: mem operation for cp packet
* @size: size for cp packet
* @num_mem: num of mem access
*/
static inline uint cp_mem_packet(struct adreno_device *adreno_dev,
int opcode, uint size, uint num_mem)
{
if (ADRENO_LEGACY_PM4(adreno_dev))
return cp_type3_packet(opcode, size);
return cp_type7_packet(opcode, size + num_mem);
}
/* Return 1 if the command is an indirect buffer of any kind */
static inline int adreno_cmd_is_ib(struct adreno_device *adreno_dev,
unsigned int cmd)
{
return cmd == cp_mem_packet(adreno_dev,
CP_INDIRECT_BUFFER_PFE, 2, 1) ||
cmd == cp_mem_packet(adreno_dev,
CP_INDIRECT_BUFFER_PFD, 2, 1) ||
cmd == cp_mem_packet(adreno_dev,
CP_COND_INDIRECT_BUFFER_PFE, 2, 1) ||
cmd == cp_mem_packet(adreno_dev,
CP_COND_INDIRECT_BUFFER_PFD, 2, 1);
}
/**
* cp_gpuaddr - Generic function to add 64bit and 32bit gpuaddr
* to pm4 commands
* @adreno_dev: The adreno device
* @cmds: command pointer to add gpuaddr
* @gpuaddr: gpuaddr to add
*/
static inline uint cp_gpuaddr(struct adreno_device *adreno_dev,
uint *cmds, uint64_t gpuaddr)
{
uint *start = cmds;
if (ADRENO_LEGACY_PM4(adreno_dev))
*cmds++ = (uint)gpuaddr;
else {
*cmds++ = lower_32_bits(gpuaddr);
*cmds++ = upper_32_bits(gpuaddr);
}
return cmds - start;
}
/**
* cp_register - Generic function for gpu register operation
* @adreno_dev: The adreno device
* @reg: GPU register
* @size: count for PM4 operation
*/
static inline uint cp_register(struct adreno_device *adreno_dev,
unsigned int reg, unsigned int size)
{
if (ADRENO_LEGACY_PM4(adreno_dev))
return cp_type0_packet(reg, size);
return cp_type4_packet(reg, size);
}
/**
* cp_wait_for_me - common function for WAIT_FOR_ME
* @adreno_dev: The adreno device
* @cmds: command pointer to add gpuaddr
*/
static inline uint cp_wait_for_me(struct adreno_device *adreno_dev,
uint *cmds)
{
uint *start = cmds;
if (ADRENO_LEGACY_PM4(adreno_dev)) {
*cmds++ = cp_type3_packet(CP_WAIT_FOR_ME, 1);
*cmds++ = 0;
} else
*cmds++ = cp_type7_packet(CP_WAIT_FOR_ME, 0);
return cmds - start;
}
/**
* cp_wait_for_idle - common function for WAIT_FOR_IDLE
* @adreno_dev: The adreno device
* @cmds: command pointer to add gpuaddr
*/
static inline uint cp_wait_for_idle(struct adreno_device *adreno_dev,
uint *cmds)
{
uint *start = cmds;
if (ADRENO_LEGACY_PM4(adreno_dev)) {
*cmds++ = cp_type3_packet(CP_WAIT_FOR_IDLE, 1);
*cmds++ = 0;
} else
*cmds++ = cp_type7_packet(CP_WAIT_FOR_IDLE, 0);
return cmds - start;
}
/**
* cp_invalidate_state - common function for invalidating cp
* state
* @adreno_dev: The adreno device
* @cmds: command pointer to add gpuaddr
*/
static inline uint cp_invalidate_state(struct adreno_device *adreno_dev,
uint *cmds)
{
uint *start = cmds;
if (ADRENO_GPUREV(adreno_dev) < 500) {
*cmds++ = cp_type3_packet(CP_INVALIDATE_STATE, 1);
*cmds++ = 0x7fff;
} else {
*cmds++ = cp_type7_packet(CP_SET_DRAW_STATE, 3);
*cmds++ = 0x40000;
*cmds++ = 0;
*cmds++ = 0;
}
return cmds - start;
}
#endif /* __ADRENO_PM4TYPES_H */

View File

@ -0,0 +1,733 @@
#include <sys/types.h>
#include "include/msm_kgsl.h"
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <cassert>
#include <sys/mman.h>
int run_num = 0;
int ioctl_num = 0;
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
void hexdump8(uint8_t *d, int len) {
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%02x ", d[i]);
}
printf("\n");
}
#include <string>
#include <vector>
#include <map>
using namespace std;
#include "disasm/include/adreno_pm4types.h"
#define REG_A5XX_TPL1_CS_TEX_CONST_LO 0x0000e760
#define REG_A5XX_TPL1_CS_TEX_SAMP_LO 0x0000e75c
class CachedCommand {
public:
CachedCommand(struct kgsl_gpu_command *cmd, int lfd);
void exec(bool wait);
private:
string cmd_0, cmd_1;
int obj_len;
int fd;
struct kgsl_gpu_command cache;
struct kgsl_command_object cmds[2];
struct kgsl_command_object objs[1];
};
vector<CachedCommand *> queue_cmds;
void disassemble(uint32_t *src, int len) {
int i = 0;
while (i < len) {
int pktsize;
int pkttype = -1;
if (pkt_is_type0(src[i])) {
pkttype = 0;
pktsize = type0_pkt_size(src[i]);
} else if (pkt_is_type3(src[i])) {
pkttype = 3;
pktsize = type3_pkt_size(src[i]);
} else if (pkt_is_type4(src[i])) {
pkttype = 4;
pktsize = type4_pkt_size(src[i]);
} else if (pkt_is_type7(src[i])) {
pkttype = 7;
pktsize = type7_pkt_size(src[i]);
}
printf("%3d: type:%d size:%d ", i, pkttype, pktsize);
if (pkttype == 7) {
printf("op: %4x ", cp_type7_opcode(src[i]));
}
if (pkttype == 4) {
printf("reg: %4x ", cp_type4_base_index_one_reg_wr(src[i]));
}
for (int j = 0; j < pktsize+1; j++) {
printf("%8.8X ", src[i+j]);
}
printf("\n");
if (pkttype == 7 && cp_type7_opcode(src[i]) == CP_LOAD_STATE) {
// CP_LOAD_STATE4
int sz = (src[i+1] & 0xffc00000) >> 22;
uint64_t addr = (uint64_t)(src[i+2] & 0xfffffffc) | ((uint64_t)(src[i+3]) << 32);
hexdump((uint32_t *)addr, sz*4);
}
if (pkttype == 4 && cp_type4_base_index_one_reg_wr(src[i]) == REG_A5XX_TPL1_CS_TEX_CONST_LO) {
uint64_t addr = (uint64_t)(src[i+1] & 0xffffffff) | ((uint64_t)(src[i+2]) << 32);
hexdump((uint32_t *)addr, 0x40);
}
if (pkttype == 4 && cp_type4_base_index_one_reg_wr(src[i]) == REG_A5XX_TPL1_CS_TEX_SAMP_LO) {
uint64_t addr = (uint64_t)(src[i+1] & 0xffffffff) | ((uint64_t)(src[i+2]) << 32);
hexdump((uint32_t *)addr, 0x40);
}
if (pkttype == -1) break;
i += (1+pktsize);
}
assert(i == len);
}
int intercept = 1;
int prop_num = 0;
extern "C" {
/*void *gsl_memory_alloc_pure(long param_1, long param_2, long *param_3) {
void *(*my_gsl_memory_alloc_pure)(long param_1, long param_2, long *param_3);
my_gsl_memory_alloc_pure = reinterpret_cast<decltype(my_gsl_memory_alloc_pure)>(dlsym(RTLD_NEXT, "gsl_memory_alloc_pure"));
void *ret = my_gsl_memory_alloc_pure(param_1, param_2, param_3);
printf("gsl_memory_alloc_pure: 0x%lx 0x%lx %p = %p\n", param_1, param_2, param_3, ret);
return ret;
}*/
void *mmap64(void *addr, size_t len, int prot, int flags, int fildes, off64_t off) {
void *(*my_mmap64)(void *addr, size_t len, int prot, int flags, int fildes, off64_t off);
my_mmap64 = reinterpret_cast<decltype(my_mmap64)>(dlsym(RTLD_NEXT, "mmap64"));
void *ret = my_mmap64(addr, len, prot, flags, fildes, off);
if (fildes == 3) {
printf("mmap64(addr=%p, len=0x%zx, prot=0x%x, flags=0x%x, fildes=%d, off=0x%lx) = %p\n", addr, len, prot, flags, fildes, off, ret);
}
return ret;
}
pid_t gettid(void);
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
int (*my_ioctl)(int filedes, unsigned long request, void *argp);
my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
int skip = 0;
if (intercept) {
int tid = gettid();
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
printf("IOCTL_KGSL_GPU_COMMAND(%d): flags: 0x%lx numcmds: %u numobjs: %u numsyncs: %u context_id: %u timestamp: %u\n",
tid,
cmd->flags,
cmd->numcmds, cmd->numobjs, cmd->numsyncs,
cmd->context_id, cmd->timestamp);
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
//struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->cmdlist;
//assert(obj[0].size == sizeof(queue_init));
//memcpy(queue_init, (void*)obj[0].gpuaddr, sizeof(queue_init));
//string qcmd((char*)obj[1].gpuaddr, obj[1].size);
if (run_num == 3) {
CachedCommand *ccmd = new CachedCommand(cmd, filedes);
queue_cmds.push_back(ccmd);
//ccmd->exec();
//skip = 0;
//printf("command 0x%lx\n", obj[1].gpuaddr);
//disassemble((uint32_t *)qcmd.data(), qcmd.size()/4);
//queue_cmds.push_back(qcmd);
}
#ifdef DUMP
char tmp[0x100];
snprintf(tmp, sizeof(tmp), "/tmp/thneed/run_%d_%d", run_num, ioctl_num++);
FILE *f = fopen(tmp, "wb");
#endif
// kgsl_cmdbatch_add_cmdlist
for (int i = 0; i < cmd->numcmds; i++) {
struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->cmdlist;
printf(" cmd: %lx %5lx %5lx flags:%3x %d\n",
obj[i].offset, obj[i].gpuaddr, obj[i].size, obj[i].flags, obj[i].id);
//hexdump((uint32_t *)obj[i].gpuaddr, obj[i].size);
#ifdef DUMP
fwrite(&obj[i].size, sizeof(obj[i].size), 1, f);
fwrite((void*)obj[i].gpuaddr, obj[i].size, 1, f);
#endif
}
// kgsl_cmdbatch_add_memlist
for (int i = 0; i < cmd->numobjs; i++) {
struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->objlist;
printf(" obj: %lx %5lx %5lx flags:%3x %d\n",
obj[i].offset, obj[i].gpuaddr, obj[i].size, obj[i].flags, obj[i].id);
//hexdump((uint32_t *)obj[i].gpuaddr, obj[i].size);
#ifdef DUMP
fwrite(&obj[i].size, sizeof(obj[i].size), 1, f);
fwrite((void*)obj[i].gpuaddr, obj[i].size, 1, f);
#endif
}
#ifdef DUMP
fclose(f);
#endif
} else if (request == IOCTL_KGSL_SETPROPERTY) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY(%d): 0x%x\n", tid, prop->type);
hexdump8((uint8_t*)prop->value, prop->sizebytes);
if (prop_num == 1) { printf("SKIPPING\n"); skip = 1; }
if (run_num == 3) prop_num++;
//hexdump((unsigned char*)prop->value, prop->sizebytes);
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
printf("IOCTL_KGSL_GPUOBJ_SYNC(%d) count:%d ", tid, cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID(%d): context_id: %d timestamp: %d timeout: %d\n",
tid, cmd->context_id, cmd->timestamp, cmd->timeout);
} else if (request == IOCTL_KGSL_GPUOBJ_ALLOC) {
struct kgsl_gpuobj_alloc *cmd = (struct kgsl_gpuobj_alloc *)argp;
printf("IOCTL_KGSL_GPUOBJ_ALLOC: size:0x%lx flags:0x%lx va_len:0x%lx ", cmd->size, cmd->flags, cmd->va_len);
} else if (request == IOCTL_KGSL_GPUOBJ_FREE) {
//printf("IOCTL_KGSL_GPUOBJ_FREE\n");
} else if (filedes == 3) {
printf("ioctl(%d) %lx\n", tid, request);
}
}
int ret;
if (skip) {
ret = 0;
} else {
ret = my_ioctl(filedes, request, argp);
}
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) {
struct kgsl_gpuobj_alloc *cmd = (struct kgsl_gpuobj_alloc *)argp;
printf("mmapsize:0x%lx id:%d metadata_len:%x metadata:0x%lx = %d\n", cmd->mmapsize, cmd->id, cmd->metadata_len, cmd->metadata, ret);
}
return ret;
}
}
#include <CL/cl.h>
#include "../runners/snpemodel.h"
#include <sys/types.h>
#include <time.h>
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec;
}
int global_timestamp = -1;
CachedCommand::CachedCommand(struct kgsl_gpu_command *cmd, int lfd) {
fd = lfd;
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
global_timestamp = cmd->timestamp;
printf("%p %p %p\n", cmd, (void*)cmd->cmdlist, (void*)cmd->objlist);
memcpy(cmds, (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*2);
memcpy(objs, (void *)cmd->objlist, sizeof(struct kgsl_command_object)*1);
cmd_0.assign((char*)cmds[0].gpuaddr, cmds[0].size);
cmd_1.assign((char*)cmds[1].gpuaddr, cmds[1].size);
memcpy(&cache, cmd, sizeof(cache));
}
// i think you get these with cl_a5x_ringbuffer_alloc
uint64_t base = 0;
void CachedCommand::exec(bool wait) {
printf("old addr 0x%lx ", cmds[1].gpuaddr);
cmds[1].gpuaddr = base;
printf("using addr 0x%lx with size 0x%4lx ", cmds[1].gpuaddr, cmd_1.size());
base += (cmd_1.size()+0xff) & (~0xFF);
memcpy((void*)cmds[1].gpuaddr, cmd_1.data(), cmd_1.size());
// set up other buffers
memcpy((void*)cmds[0].gpuaddr, cmd_0.data(), cmd_0.size());
memset((void*)objs[0].gpuaddr, 0, objs[0].size);
cache.timestamp = ++global_timestamp;
cache.cmdlist = (uint64_t)cmds;
cache.objlist = (uint64_t)objs;
// run
int ret = ioctl(fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (wait) {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = cache.context_id;
wait.timestamp = cache.timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
printf("exec %d wait %d after %lu us\n", ret, wret, (te-tb)/1000);
} else {
printf("CachedCommand::exec got %d\n", ret);
}
}
int do_print = 0;
#define TEMPORAL_SIZE 512
#define DESIRE_LEN 8
#define TRAFFIC_CONVENTION_LEN 2
FILE *f = NULL;
cl_program clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) {
cl_program (*my_clCreateProgramWithSource)(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) = NULL;
my_clCreateProgramWithSource = reinterpret_cast<decltype(my_clCreateProgramWithSource)>(dlsym(RTLD_NEXT, "REAL_clCreateProgramWithSource"));
//printf("clCreateProgramWithSource: %d\n", count);
if (f == NULL) {
f = fopen("/tmp/kernels.cl", "w");
}
fprintf(f, "/* ************************ PROGRAM BREAK ****************************/\n");
for (int i = 0; i < count; i++) {
fprintf(f, "%s\n", strings[i]);
if (i != 0) fprintf(f, "/* ************************ SECTION BREAK ****************************/\n");
}
fflush(f);
return my_clCreateProgramWithSource(context, count, strings, lengths, errcode_ret);
}
map<cl_kernel, string> kernels;
map<cl_kernel, cl_mem> kernel_inputs;
map<cl_kernel, cl_mem> kernel_outputs;
cl_kernel clCreateKernel(cl_program program, const char *kernel_name, cl_int *errcode_ret) {
cl_kernel (*my_clCreateKernel)(cl_program program, const char *kernel_name, cl_int *errcode_ret) = NULL;
my_clCreateKernel = reinterpret_cast<decltype(my_clCreateKernel)>(dlsym(RTLD_NEXT, "REAL_clCreateKernel"));
cl_kernel ret = my_clCreateKernel(program, kernel_name, errcode_ret);
printf("clCreateKernel: %s -> %p\n", kernel_name, ret);
kernels.insert(make_pair(ret, kernel_name));
return ret;
}
typedef struct image {
size_t image_width;
size_t image_height;
size_t image_row_pitch;
cl_mem buffer;
} image;
map<cl_mem, size_t> buffers;
map<cl_mem, image> images;
cl_int clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
cl_int (*my_clSetKernelArg)(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) = NULL;
my_clSetKernelArg = reinterpret_cast<decltype(my_clSetKernelArg)>(dlsym(RTLD_NEXT, "REAL_clSetKernelArg"));
char arg_type[0x100];
char arg_name[0x100];
clGetKernelArgInfo(kernel, arg_index, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_type), arg_type, NULL);
clGetKernelArgInfo(kernel, arg_index, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
printf(" %s %s", arg_type, arg_name);
if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (strcmp(arg_type, "float") == 0) {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
if (strcmp(arg_name, "input") == 0) kernel_inputs[kernel] = val;
if (strcmp(arg_name, "output") == 0) kernel_outputs[kernel] = val;
if (strcmp(arg_name, "accumulator") == 0) assert(kernel_inputs[kernel] = val);
if (buffers.find(val) != buffers.end()) {
printf(" buffer %zu", buffers[val]);
}
if (images.find(val) != images.end()) {
printf(" image %zu x %zu rp %zu @ %p", images[val].image_width, images[val].image_height, images[val].image_row_pitch, images[val].buffer);
}
} else {
printf(" %zu", arg_size);
}
printf("\n");
cl_int ret = my_clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
uint64_t start_time = 0;
uint64_t tns = 0;
int cnt = 0;
cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
cl_int (*my_clEnqueueNDRangeKernel)(cl_command_queue, cl_kernel, cl_uint, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *) = NULL;
my_clEnqueueNDRangeKernel = reinterpret_cast<decltype(my_clEnqueueNDRangeKernel)>(dlsym(RTLD_NEXT, "REAL_clEnqueueNDRangeKernel"));
uint64_t tb = nanos_since_boot();
cl_int ret = my_clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
uint64_t te = nanos_since_boot();
/*ret = clWaitForEvents(1, event);
assert(ret == CL_SUCCESS);
uint64_t tq = nanos_since_boot();*/
if (do_print) {
tns += te-tb;
}
printf("%10lu %10lu running(%3d) -- %p -- %56s -- %p -> %p %s ", (tb-start_time)/1000, (tns/1000), cnt++, kernel, kernels[kernel].c_str(), kernel_inputs[kernel], kernel_outputs[kernel],
(buffers[kernel_outputs[kernel]] != 0) ? "B" : "I");
printf("global -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", global_work_size[i]);
}
printf("local -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", local_work_size[i]);
}
printf("\n");
return ret;
}
cl_mem clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void *host_ptr, cl_int *errcode_ret) {
cl_mem (*my_clCreateBuffer)(cl_context context, cl_mem_flags flags, size_t size, void *host_ptr, cl_int *errcode_ret) = NULL;
my_clCreateBuffer = reinterpret_cast<decltype(my_clCreateBuffer)>(dlsym(RTLD_NEXT, "REAL_clCreateBuffer"));
cl_mem ret = my_clCreateBuffer(context, flags, size, host_ptr, errcode_ret);
buffers[ret] = size;
printf("%p = clCreateBuffer %zu\n", ret, size);
return ret;
}
cl_mem clCreateImage(cl_context context, cl_mem_flags flags, const cl_image_format *image_format, const cl_image_desc *image_desc, void *host_ptr, cl_int *errcode_ret) {
cl_mem (*my_clCreateImage)(cl_context context, cl_mem_flags flags, const cl_image_format *image_format, const cl_image_desc *image_desc, void *host_ptr, cl_int *errcode_ret) = NULL;
my_clCreateImage = reinterpret_cast<decltype(my_clCreateImage)>(dlsym(RTLD_NEXT, "REAL_clCreateImage"));
// SNPE only uses this
assert(CL_MEM_OBJECT_IMAGE2D == image_desc->image_type);
// RGBA, HALF FLOAT
assert(CL_RGBA == image_format->image_channel_order);
assert(CL_HALF_FLOAT == image_format->image_channel_data_type);
map<cl_mem_object_type, string> lc = {
{CL_MEM_OBJECT_BUFFER, "CL_MEM_OBJECT_BUFFER"},
{CL_MEM_OBJECT_IMAGE2D, "CL_MEM_OBJECT_IMAGE2D"}, // all this one
{CL_MEM_OBJECT_IMAGE3D, "CL_MEM_OBJECT_IMAGE3D"},
{CL_MEM_OBJECT_IMAGE2D_ARRAY, "CL_MEM_OBJECT_IMAGE2D_ARRAY"},
{CL_MEM_OBJECT_IMAGE1D, "CL_MEM_OBJECT_IMAGE1D"},
{CL_MEM_OBJECT_IMAGE1D_ARRAY, "CL_MEM_OBJECT_IMAGE1D_ARRAY"},
{CL_MEM_OBJECT_IMAGE1D_BUFFER, "CL_MEM_OBJECT_IMAGE1D_BUFFER"}};
assert(image_desc->image_depth == 0);
assert(image_desc->image_array_size == 0);
assert(image_desc->image_slice_pitch == 0);
//assert(image_desc->image_width * image_desc->image_height * 2 == image_desc->image_row_pitch);
image img;
img.image_width = image_desc->image_width;
img.image_height = image_desc->image_height;
img.image_row_pitch = image_desc->image_row_pitch;
img.buffer = image_desc->buffer;
cl_mem ret = my_clCreateImage(context, flags, image_format, image_desc, host_ptr, errcode_ret);
printf("%p = clCreateImage %s -- %p -- %d %d -- %4zu x %4zu x %4zu -- %4zu %4zu %4zu\n", ret, lc[image_desc->image_type].c_str(),
image_desc->buffer,
image_format->image_channel_order, image_format->image_channel_data_type,
image_desc->image_width, image_desc->image_height, image_desc->image_depth,
image_desc->image_array_size, image_desc->image_row_pitch, image_desc->image_slice_pitch
);
images[ret] = img;
return ret;
}
cl_int clWaitForEvents(cl_uint num_events, const cl_event *event_list) {
cl_int (*my_clWaitForEvents)(cl_uint num_events, const cl_event *event_list);
my_clWaitForEvents = reinterpret_cast<decltype(my_clWaitForEvents)>(dlsym(RTLD_NEXT, "REAL_clWaitForEvents"));
printf("clWaitForEvents\n");
return my_clWaitForEvents(num_events, event_list);
}
cl_int clReleaseEvent(cl_event event) {
cl_int (*my_clReleaseEvent)(cl_event event);
my_clReleaseEvent = reinterpret_cast<decltype(my_clReleaseEvent)>(dlsym(RTLD_NEXT, "REAL_clReleaseEvent"));
printf("clReleaseEvent: %p\n", event);
return my_clReleaseEvent(event);
}
/*size_t total = 0;
void *calloc(size_t num, size_t size) {
void *(*my_calloc)(size_t num, size_t size);
my_calloc = reinterpret_cast<decltype(my_calloc)>(dlsym(RTLD_NEXT, "REAL_calloc"));
void *ret = my_calloc(num, size);
if (do_print) {
total += num*size;
printf("calloc %p -- total:0x%zx -- num:0x%zx size:0x%zx\n", ret, total, num, size);
}
return ret;
}
void free(void *ptr) {
void (*my_free)(void *ptr);
my_free = reinterpret_cast<decltype(my_free)>(dlsym(RTLD_NEXT, "REAL_free"));
if (do_print) {
//printf("free: %p\n", ptr);
} else {
my_free(ptr);
}
}*/
void *dlsym(void *handle, const char *symbol) {
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen-0x2d4);
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clCreateProgramWithSource", symbol) == 0) {
return (void*)clCreateProgramWithSource;
} else if (strcmp("clCreateKernel", symbol) == 0) {
return (void*)clCreateKernel;
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)clSetKernelArg;
} else if (strcmp("clCreateBuffer", symbol) == 0) {
return (void*)clCreateBuffer;
} else if (strcmp("clCreateImage", symbol) == 0) {
return (void*)clCreateImage;
/*} else if (strcmp("clReleaseEvent", symbol) == 0) {
return (void*)clReleaseEvent;
} else if (strcmp("clWaitForEvents", symbol) == 0) {
return (void*)clWaitForEvents;*/
} else {
//printf("dlsym %s\n", symbol);
return my_dlsym(handle, symbol);
}
}
int main(int argc, char* argv[]) {
int err;
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint num_devices;
cl_uint num_platforms;
start_time = nanos_since_boot();
err = clGetPlatformIDs(1, &platform_id, &num_platforms);
assert(err == 0);
err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, &num_devices);
assert(err == 0);
cl_uint tmp;
// sweet this is 64!
err = clGetDeviceInfo(device_id, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, sizeof(tmp), &tmp, NULL);
assert(err == 0);
printf("CL_DEVICE_MAX_WRITE_IMAGE_ARGS: %u\n", tmp);
err = clGetDeviceInfo(device_id, CL_DEVICE_MAX_READ_IMAGE_ARGS, sizeof(tmp), &tmp, NULL);
assert(err == 0);
printf("CL_DEVICE_MAX_READ_IMAGE_ARGS: %u\n", tmp);
float *output = (float*)calloc(0x10000, sizeof(float));
SNPEModel mdl(argv[1], output, 0, USE_GPU_RUNTIME);
float state[TEMPORAL_SIZE];
mdl.addRecurrent(state, TEMPORAL_SIZE);
float desire[DESIRE_LEN];
mdl.addDesire(desire, DESIRE_LEN);
float traffic_convention[TRAFFIC_CONVENTION_LEN];
mdl.addTrafficConvention(traffic_convention, TRAFFIC_CONVENTION_LEN);
float *input = (float*)calloc(0x1000000, sizeof(float));;
printf("************** execute 1 **************\n");
printf("%p %p %p %p -> %p\n", input, state, desire, traffic_convention, output);
run_num = 1; ioctl_num = 0;
do_print = 0;
start_time = nanos_since_boot();
mdl.execute(input, 0);
printf("************** execute 2 **************\n");
run_num = 2; ioctl_num = 0;
do_print = 0;
mdl.execute(input, 0);
printf("************** execute 3 **************\n");
run_num = 3; ioctl_num = 0;
do_print = 1;
start_time = nanos_since_boot();
mdl.execute(input, 0);
do_print = 0;
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = 0x40000;
alloc.flags = 0x10000a00;
int fd = 3;
int ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
intercept = 0;
while (1) {
printf("************** execute 4 **************\n");
run_num = 4;
base = (uint64_t)addr;
uint64_t tb = nanos_since_boot();
int i = 0;
for (auto it = queue_cmds.begin(); it != queue_cmds.end(); ++it) {
printf("run %2d: ", i++);
//(*it)->exec(i == queue_cmds.size());
(*it)->exec(true);
}
uint64_t te = nanos_since_boot();
printf("model exec in %lu us\n", (te-tb)/1000);
break;
}
/*FILE *f = fopen("/proc/self/maps", "rb");
char maps[0x100000];
int len = fread(maps, 1, sizeof(maps), f);
maps[len] = '\0';
fclose(f);
printf("%s\n", maps);*/
printf("buffers: %lu images: %lu\n", buffers.size(), images.size());
printf("queues: %lu\n", queue_cmds.size());
// IOCTL_KGSL_GPU_COMMAND: flags: 0x11 numcmds: 2 numobjs: 1 numsyncs: 0 context_id: 7 timestamp: 77
/*int ts = 100;
for (auto it = queue_cmds.begin(); it != queue_cmds.end(); ++it) {
auto qcmd = *it;
//disassemble((uint32_t *)qcmd.data(), qcmd.size()/4);
struct kgsl_command_object cmdlists[2];
struct kgsl_command_object objlists;
struct kgsl_gpu_command cmd;
uint8_t objs[0xc0];
memset(objs, 0, 0xc0);
memset(&cmd, 0, sizeof(cmd));
memset(&cmdlists, 0, sizeof(struct kgsl_command_object)*2);
memset(&objlists, 0, sizeof(objlists));
cmd.flags = 0x11;
cmd.cmdlist = (uint64_t)cmdlists;
cmd.numcmds = 2;
cmd.objlist = (uint64_t)objlists;
cmd.numobjs = 1;
cmd.numsyncs = 0;
cmd.context_id = 7;
cmd.timestamp = ts++;
cmdlists[0].gpuaddr = (uint64_t)queue_init;
cmdlists[0].size = 0xbc;
cmdlists[0].flags = 1;
cmdlists[1].gpuaddr = (uint64_t)qcmd.data();
cmdlists[1].size = qcmd.size();
cmdlists[1].flags = 1;
objlists.gpuaddr = (uint64_t)objs;
objlists.size = 0xc0;
objlists.flags = 0x18;
}*/
}

View File

@ -0,0 +1,95 @@
#include "../thneed.h"
#include "../../runners/snpemodel.h"
#define TEMPORAL_SIZE 512
#define DESIRE_LEN 8
#define TRAFFIC_CONVENTION_LEN 2
void hexdump(uint32_t *d, int len);
int main(int argc, char* argv[]) {
float *output = (float*)calloc(0x10000, sizeof(float));
float *golden = (float*)calloc(0x10000, sizeof(float));
SNPEModel mdl(argv[1], output, 0, USE_GPU_RUNTIME);
// cmd line test
if (argc > 2) {
for (int i = 2; i < argc; i++) {
float *buf[5];
FILE *f = fopen(argv[i], "rb");
size_t sz;
for (int j = 0; j < 5; j++) {
fread(&sz, 1, sizeof(sz), f);
printf("reading %zu\n", sz);
buf[j] = (float*)malloc(sz);
fread(buf[j], 1, sz, f);
}
if (sz != 9532) continue;
mdl.addRecurrent(buf[0], TEMPORAL_SIZE);
mdl.addTrafficConvention(buf[1], TRAFFIC_CONVENTION_LEN);
mdl.addDesire(buf[2], DESIRE_LEN);
mdl.execute(buf[3], 0);
hexdump((uint32_t*)buf[4], 0x100);
hexdump((uint32_t*)output, 0x100);
for (int j = 0; j < sz/4; j++) {
if (buf[4][j] != output[j]) {
printf("MISMATCH %d real:%f comp:%f\n", j, buf[4][j], output[j]);
}
}
}
return 0;
}
float state[TEMPORAL_SIZE];
mdl.addRecurrent(state, TEMPORAL_SIZE);
float desire[DESIRE_LEN];
mdl.addDesire(desire, DESIRE_LEN);
float traffic_convention[TRAFFIC_CONVENTION_LEN];
mdl.addTrafficConvention(traffic_convention, TRAFFIC_CONVENTION_LEN);
float *input = (float*)calloc(0x1000000, sizeof(float));;
// first run
printf("************** execute 1 **************\n");
memset(output, 0, sizeof(output));
mdl.execute(input, 0);
hexdump((uint32_t *)output, 0x100);
memcpy(golden, output, sizeof(output));
// second run
printf("************** execute 2 **************\n");
memset(output, 0, sizeof(output));
Thneed *t = new Thneed();
t->record = 3; // debug print with record
mdl.execute(input, 0);
t->stop();
hexdump((uint32_t *)output, 0x100);
if (memcmp(golden, output, sizeof(output)) != 0) { printf("FAILURE\n"); return -1; }
// third run
printf("************** execute 3 **************\n");
memset(output, 0, sizeof(output));
t->record = 2; // debug print w/o record
float *inputs[4] = {state, traffic_convention, desire, input};
t->execute(inputs, output);
hexdump((uint32_t *)output, 0x100);
if (memcmp(golden, output, sizeof(output)) != 0) { printf("FAILURE\n"); return -1; }
printf("************** execute 4 **************\n");
memset(output, 0, sizeof(output));
//t->record = 2; // debug print w/o record
t->execute(inputs, output);
hexdump((uint32_t *)output, 0x100);
if (memcmp(golden, output, sizeof(output)) != 0) { printf("FAILURE\n"); return -1; }
printf("************** execute done **************\n");
}

View File

@ -0,0 +1,4 @@
#!/bin/sh
export LD_LIBRARY_PATH="/data/openpilot/phonelibs/snpe/aarch64/:$HOME/openpilot/phonelibs/snpe/larch64:$HOME/openpilot/phonelibs/snpe/x86_64-linux-clang:$LD_LIBRARY_PATH"
exec ./_thneed $@

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,363 @@
#include "thneed.h"
#include <cassert>
#include <sys/mman.h>
#include <dlfcn.h>
#include <map>
#include <string>
#include <errno.h>
Thneed *g_thneed = NULL;
int g_fd = -1;
std::map<std::pair<cl_kernel, int>, std::string> g_args;
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec; }
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
extern "C" {
int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL;
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
if (my_ioctl == NULL) my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
Thneed *thneed = g_thneed;
// save the fd
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes;
if (thneed != NULL) {
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
if (thneed->record & 1) {
thneed->timestamp = cmd->timestamp;
thneed->context_id = cmd->context_id;
CachedCommand *ccmd = new CachedCommand(thneed, cmd);
thneed->cmds.push_back(ccmd);
}
if (thneed->record & 2) {
printf("IOCTL_KGSL_GPU_COMMAND: flags: 0x%lx context_id: %u timestamp: %u\n",
cmd->flags,
cmd->context_id, cmd->timestamp);
}
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
if (thneed->record & 2) {
printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
}
if (thneed->record & 1) {
struct kgsl_gpuobj_sync_obj *new_objs = (struct kgsl_gpuobj_sync_obj *)malloc(sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count);
memcpy(new_objs, objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count);
thneed->syncobjs.push_back(std::make_pair(cmd->count, new_objs));
}
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
if (thneed->record & 2) {
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d timestamp: %d timeout: %d\n",
cmd->context_id, cmd->timestamp, cmd->timeout);
}
} else if (request == IOCTL_KGSL_SETPROPERTY) {
if (thneed->record & 2) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes);
if (thneed->record & 4) {
hexdump((uint32_t *)prop->value, prop->sizebytes);
if (prop->type == KGSL_PROP_PWR_CONSTRAINT) {
struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value;
hexdump((uint32_t *)constraint->data, constraint->size);
}
}
}
}
}
int ret = my_ioctl(filedes, request, argp);
if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno);
return ret;
}
}
GPUMalloc::GPUMalloc(int size, int fd) {
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = size;
alloc.flags = 0x10000a00;
int ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
base = (uint64_t)addr;
remaining = size;
}
void *GPUMalloc::alloc(int size) {
if (size > remaining) return NULL;
remaining -= size;
void *ret = (void*)base;
base += (size+0xff) & (~0xFF);
return ret;
}
CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) {
thneed = lthneed;
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
memcpy(cmds, (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*2);
memcpy(objs, (void *)cmd->objlist, sizeof(struct kgsl_command_object)*1);
memcpy(&cache, cmd, sizeof(cache));
cache.cmdlist = (uint64_t)cmds;
cache.objlist = (uint64_t)objs;
for (int i = 0; i < cmd->numcmds; i++) {
void *nn = thneed->ram->alloc(cmds[i].size);
memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size);
cmds[i].gpuaddr = (uint64_t)nn;
}
for (int i = 0; i < cmd->numobjs; i++) {
void *nn = thneed->ram->alloc(objs[i].size);
memset(nn, 0, objs[i].size);
objs[i].gpuaddr = (uint64_t)nn;
}
}
void CachedCommand::exec(bool wait) {
cache.timestamp = ++thneed->timestamp;
int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (wait) {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = cache.context_id;
wait.timestamp = cache.timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(thneed->fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
if (thneed->record & 2) printf("exec %d wait %d after %lu us\n", ret, wret, (te-tb)/1000);
} else {
if (thneed->record & 2) printf("CachedCommand::exec got %d\n", ret);
}
assert(ret == 0);
}
Thneed::Thneed() {
assert(g_fd != -1);
fd = g_fd;
ram = new GPUMalloc(0x40000, fd);
record = 1;
timestamp = -1;
g_thneed = this;
}
void Thneed::stop() {
record = 0;
}
//#define SAVE_LOG
void Thneed::execute(float **finputs, float *foutput) {
#ifdef SAVE_LOG
char fn[0x100];
snprintf(fn, sizeof(fn), "/tmp/thneed_log_%d", timestamp);
FILE *f = fopen(fn, "wb");
#endif
// ****** copy inputs
for (int idx = 0; idx < inputs.size(); ++idx) {
size_t sz;
clGetMemObjectInfo(inputs[idx], CL_MEM_SIZE, sizeof(sz), &sz, NULL);
#ifdef SAVE_LOG
fwrite(&sz, 1, sizeof(sz), f);
fwrite(finputs[idx], 1, sz, f);
#endif
if (record & 2) printf("copying %lu -- %p -> %p\n", sz, finputs[idx], inputs[idx]);
clEnqueueWriteBuffer(command_queue, inputs[idx], CL_TRUE, 0, sz, finputs[idx], 0, NULL, NULL);
}
// ****** set power constraint
struct kgsl_device_constraint_pwrlevel pwrlevel;
pwrlevel.level = KGSL_CONSTRAINT_PWR_MAX;
struct kgsl_device_constraint constraint;
constraint.type = KGSL_CONSTRAINT_PWRLEVEL;
constraint.context_id = context_id;
constraint.data = (void*)&pwrlevel;
constraint.size = sizeof(pwrlevel);
struct kgsl_device_getproperty prop;
prop.type = KGSL_PROP_PWR_CONSTRAINT;
prop.value = (void*)&constraint;
prop.sizebytes = sizeof(constraint);
int ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
// ****** run commands
int i = 0;
for (auto it = cmds.begin(); it != cmds.end(); ++it) {
if (record & 2) printf("run %2d: ", i);
(*it)->exec((++i) == cmds.size());
}
// ****** sync objects
for (auto it = syncobjs.begin(); it != syncobjs.end(); ++it) {
struct kgsl_gpuobj_sync cmd;
cmd.objs = (uint64_t)it->second;
cmd.obj_len = it->first * sizeof(struct kgsl_gpuobj_sync_obj);
cmd.count = it->first;
ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd);
assert(ret == 0);
}
// ****** copy outputs
size_t sz;
clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
if (record & 2) printf("copying %lu for output %p -> %p\n", sz, output, foutput);
clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL);
#ifdef SAVE_LOG
fwrite(&sz, 1, sizeof(sz), f);
fwrite(foutput, 1, sz, f);
fclose(f);
#endif
// ****** unset power constraint
constraint.type = KGSL_CONSTRAINT_NONE;
constraint.data = NULL;
constraint.size = 0;
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
}
cl_int (*my_clSetKernelArg)(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) = NULL;
cl_int clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
if (my_clSetKernelArg == NULL) my_clSetKernelArg = reinterpret_cast<decltype(my_clSetKernelArg)>(dlsym(RTLD_NEXT, "REAL_clSetKernelArg"));
if (arg_value != NULL) {
g_args[std::make_pair(kernel, arg_index)] = std::string((char*)arg_value, arg_size);
}
cl_int ret = my_clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
cl_int (*my_clEnqueueNDRangeKernel)(cl_command_queue, cl_kernel, cl_uint, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *) = NULL;
cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
if (my_clEnqueueNDRangeKernel == NULL) my_clEnqueueNDRangeKernel = reinterpret_cast<decltype(my_clEnqueueNDRangeKernel)>(dlsym(RTLD_NEXT, "REAL_clEnqueueNDRangeKernel"));
Thneed *thneed = g_thneed;
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
char name[0x100];
clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(name), name, NULL);
cl_uint num_args;
clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL);
if (thneed != NULL && thneed->record & 1) {
thneed->command_queue = command_queue;
for (int i = 0; i < num_args; i++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
std::string arg = g_args[std::make_pair(kernel, i)];
if (strcmp(arg_name, "input") == 0 && strcmp(name, "zero_pad_image_float") == 0) {
cl_mem mem;
memcpy(&mem, (void*)arg.data(), sizeof(mem));
thneed->inputs.push_back(mem);
}
if (strcmp(arg_name, "output") == 0 && strcmp(name, "image2d_to_buffer_float") == 0) {
cl_mem mem;
memcpy(&mem, (void*)arg.data(), sizeof(mem));
thneed->output = mem;
}
}
}
if (thneed != NULL && thneed->record & 4) {
// extreme debug
printf("%s -- %p\n", name, kernel);
for (int i = 0; i < num_args; i++) {
char arg_type[0x100];
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_type), arg_type, NULL);
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
std::string arg = g_args[std::make_pair(kernel, i)];
printf(" %s %s", arg_type, arg_name);
void *arg_value = (void*)arg.data();
int arg_size = arg.size();
if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (strcmp(arg_type, "float") == 0) {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
}
printf("\n");
}
}
cl_int ret = my_clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
return ret;
}
void *dlsym(void *handle, const char *symbol) {
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen-0x2d4);
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)clSetKernelArg;
} else {
return my_dlsym(handle, symbol);
}
}

View File

@ -0,0 +1,50 @@
#pragma once
#include <stdint.h>
#include "include/msm_kgsl.h"
#include <vector>
#include <CL/cl.h>
class Thneed;
class GPUMalloc {
public:
GPUMalloc(int size, int fd);
void *alloc(int size);
private:
uint64_t base;
int remaining;
};
class CachedCommand {
public:
CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd);
void exec(bool wait);
private:
struct kgsl_gpu_command cache;
struct kgsl_command_object cmds[2];
struct kgsl_command_object objs[1];
Thneed *thneed;
};
class Thneed {
public:
Thneed();
void stop();
void execute(float **finputs, float *foutput);
std::vector<cl_mem> inputs;
cl_mem output;
cl_command_queue command_queue;
int context_id;
// protected?
int record;
int timestamp;
GPUMalloc *ram;
std::vector<CachedCommand *> cmds;
std::vector<std::pair<int, struct kgsl_gpuobj_sync_obj *> > syncobjs;
int fd;
};