openpilot v0.7.6 release

Vehicle Researcher 2020-05-31 13:22:49 -07:00
parent 2d659de09c
commit 4fd2b0e730
733 changed files with 6097 additions and 211199 deletions

2
.gitignore vendored
View File

@ -57,6 +57,8 @@ panda_jungle
.coverage*
coverage.xml
cppcheck_report.txt
htmlcov
pandaextra
.mypy_cache/

View File

@ -2,7 +2,7 @@
Our software is open source so you can solve your own problems without needing help from others. And if you solve a problem and are so kind, you can upstream it for the rest of the world to use.
Most open source development activity is coordinated through our [Discord](https://discord.comma.ai). A lot of documentation is available on our [medium](https://medium.com/@comma_ai/)
Most open source development activity is coordinated through our [Discord](https://discord.comma.ai). A lot of documentation is available on our [medium](https://medium.com/@comma_ai/).
## Getting Started
@ -18,7 +18,7 @@ You can test your changes on your machine by running `run_docker_tests.sh`. This
### Automated Testing
All PRs are automatically checked by Github Actions. Check out `.github/workflows/` for what Github Actions runs. Any new tests sould be added to Github Actions.
All PRs and commits are automatically checked by Github Actions. Check out `.github/workflows/` for what Github Actions runs. Any new tests sould be added to Github Actions.
### Code Style and Linting
@ -48,3 +48,4 @@ Modules that are in seperate repositories include:
* laika
* opendbc
* panda
* rednose

View File

@ -72,7 +72,7 @@ Supported Cars
| Honda | Civic Sedan/Coupe 2016-18 | Honda Sensing | openpilot | 0mph | 12mph |
| Honda | Civic Sedan/Coupe 2019-20 | Honda Sensing | Stock | 0mph | 2mph<sup>2</sup> |
| Honda | CR-V 2015-16 | Touring | openpilot | 25mph<sup>1</sup> | 12mph |
| Honda | CR-V 2017-19 | Honda Sensing | Stock | 0mph | 12mph |
| Honda | CR-V 2017-20 | Honda Sensing | Stock | 0mph | 12mph |
| Honda | CR-V Hybrid 2017-2019 | Honda Sensing | Stock | 0mph | 12mph |
| Honda | Fit 2018-19 | Honda Sensing | openpilot | 25mph<sup>1</sup> | 12mph |
| Honda | HR-V 2019 | Honda Sensing | openpilot | 25mph<sup>1</sup> | 12mph |
@ -91,6 +91,7 @@ Supported Cars
| Lexus | RX 2016-17 | All | Stock<sup>3</sup>| 0mph | 0mph |
| Lexus | RX 2020 | All | openpilot | 0mph | 0mph |
| Lexus | RX Hybrid 2016-19 | All | Stock<sup>3</sup>| 0mph | 0mph |
| Lexus | RX Hybrid 2020 | All | openpilot | 0mph | 0mph |
| Toyota | Avalon 2016 | TSS-P | Stock<sup>3</sup>| 20mph<sup>1</sup> | 0mph |
| Toyota | Avalon 2017-18 | All | Stock<sup>3</sup>| 20mph<sup>1</sup> | 0mph |
| Toyota | Camry 2018-20 | All | Stock | 0mph<sup>4</sup> | 0mph |
@ -114,7 +115,7 @@ Supported Cars
| Toyota | Rav4 Hybrid 2016 | TSS-P | Stock<sup>3</sup>| 0mph | 0mph |
| Toyota | Rav4 Hybrid 2017-18 | All | Stock<sup>3</sup>| 0mph | 0mph |
| Toyota | Rav4 Hybrid 2019-20 | All | openpilot | 0mph | 0mph |
| Toyota | Sienna 2018 | All | Stock<sup>3</sup>| 0mph | 0mph |
| Toyota | Sienna 2018-20 | All | Stock<sup>3</sup>| 0mph | 0mph |
<sup>1</sup>[Comma Pedal](https://community.comma.ai/wiki/index.php/Comma_Pedal) is used to provide stop-and-go capability to some of the openpilot-supported cars that don't currently support stop-and-go. Here is how to [build a Comma Pedal](https://medium.com/@jfrux/comma-pedal-building-with-macrofab-6328bea791e8). ***NOTE: The Comma Pedal is not officially supported by [comma](https://comma.ai).*** <br />
<sup>2</sup>2019 Honda Civic 1.6L Diesel Sedan does not have ALC below 12mph. <br />
@ -135,34 +136,32 @@ Community Maintained Cars and Features
| Chrysler | Pacifica Hybrid 2017-18 | Adaptive Cruise | Stock | 0mph | 9mph |
| Chrysler | Pacifica Hybrid 2019-20 | Adaptive Cruise | Stock | 0mph | 39mph |
| Genesis | G80 2018<sup>2</sup> | All | Stock | 0mph | 0mph |
| Genesis | G90 2018<sup>2</sup> | All | Stock | 0mph | 0mph |
| GMC | Acadia Denali 2018<sup>3</sup>| Adaptive Cruise | openpilot | 0mph | 7mph |
| Genesis | G90 2018 | All | Stock | 0mph | 0mph |
| GMC | Acadia Denali 2018<sup>2</sup>| Adaptive Cruise | openpilot | 0mph | 7mph |
| Holden | Astra 2017<sup>1</sup> | Adaptive Cruise | openpilot | 0mph | 7mph |
| Hyundai | Elantra 2017-19<sup>2</sup> | SCC + LKAS | Stock | 19mph | 34mph |
| Hyundai | Genesis 2015-16<sup>2</sup> | SCC + LKAS | Stock | 19mph | 37mph |
| Hyundai | Ioniq 2017<sup>2</sup> | SCC + LKAS | Stock | 0mph | 32mph |
| Hyundai | Ioniq 2019 EV<sup>2</sup> | SCC + LKAS | Stock | 0mph | 32mph |
| Hyundai | Kona 2017-19<sup>2</sup> | SCC + LKAS | Stock | 22mph | 0mph |
| Hyundai | Kona 2019 EV<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Hyundai | Palisade 2020<sup>2</sup> | All | Stock | 0mph | 0mph |
| Hyundai | Santa Fe 2019<sup>2</sup> | All | Stock | 0mph | 0mph |
| Hyundai | Sonata 2020<sup>2</sup> | All | Stock | 0mph | 0mph |
| Hyundai | Santa Fe 2019 | All | Stock | 0mph | 0mph |
| Hyundai | Sonata 2019-20 | All | Stock | 0mph | 0mph |
| Jeep | Grand Cherokee 2016-18 | Adaptive Cruise | Stock | 0mph | 9mph |
| Jeep | Grand Cherokee 2019 | Adaptive Cruise | Stock | 0mph | 39mph |
| Kia | Forte 2018<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Kia | Forte 2018-19<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Kia | Optima 2017<sup>2</sup> | SCC + LKAS/LDWS | Stock | 0mph | 32mph |
| Kia | Optima 2019<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Kia | Sorento 2018<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Kia | Stinger 2018<sup>2</sup> | SCC + LKAS | Stock | 0mph | 0mph |
| Nissan | Leaf 2019 | Propilot | Stock | 0mph | 0mph |
| Nissan | X-Trail 2018 | Propilot | Stock | 0mph | 0mph |
| Nissan | Leaf 2018-19<sup>2</sup> | Propilot | Stock | 0mph | 0mph |
| Nissan | Rogue 2019<sup>2</sup> | Propilot | Stock | 0mph | 0mph |
| Nissan | X-Trail 2017<sup>2</sup> | Propilot | Stock | 0mph | 0mph |
| Subaru | Crosstrek 2018-19 | EyeSight | Stock | 0mph | 0mph |
| Subaru | Impreza 2018-20 | EyeSight | Stock | 0mph | 0mph |
| Volkswagen| Golf 2016-19<sup>3</sup> | Driver Assistance | Stock | 0mph | 0mph |
| Volkswagen| Golf 2015-19 | Driver Assistance | Stock | 0mph | 0mph |
<sup>1</sup>Requires a [panda](https://comma.ai/shop/products/panda-obd-ii-dongle) and [community built giraffe](https://zoneos.com/volt/). ***NOTE: disconnecting the ASCM disables Automatic Emergency Braking (AEB).*** <br />
<sup>2</sup>Requires a [panda](https://comma.ai/shop/products/panda-obd-ii-dongle) and open sourced [Hyundai giraffe](https://github.com/commaai/neo/tree/master/giraffe/hyundai), designed for the 2019 Sante Fe; pinout may differ for other Hyundai and Kia models. <br />
<sup>3</sup>Requires a [custom connector](https://community.comma.ai/wiki/index.php/Volkswagen#Integration_at_R242_Camera) for the [car harness](https://comma.ai/shop/products/car-harness) <br />
<sup>2</sup>May require a custom connector for the developer [car harness](https://comma.ai/shop/products/car-harness) <br />
Although it's not upstream, there's a community of people getting openpilot to run on Tesla's [here](https://tinkla.us/)
@ -328,6 +327,7 @@ NO WARRANTY EXPRESSED OR IMPLIED.**
<img src="https://d1qb2nb5cznatu.cloudfront.net/startups/i/1061157-bc7e9bf3b246ece7322e6ffe653f6af8-medium_jpg.jpg?buster=1458363130" width="75"></img> <img src="https://cdn-images-1.medium.com/max/1600/1*C87EjxGeMPrkTuVRVWVg4w.png" width="225"></img>
[![openpilot tests](https://github.com/commaai/openpilot/workflows/openpilot%20tests/badge.svg)](https://github.com/commaai/openpilot/actions)
[![Total alerts](https://img.shields.io/lgtm/alerts/g/commaai/openpilot.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/commaai/openpilot/alerts/)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/commaai/openpilot.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/commaai/openpilot/context:python)
[![Language grade: C/C++](https://img.shields.io/lgtm/grade/cpp/g/commaai/openpilot.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/commaai/openpilot/context:cpp)

View File

@ -1,3 +1,11 @@
Version 0.7.6 (2020-06-05)
========================
* White panda is deprecated, upgrade to comma two or black panda
* 2017 Nissan X-Trail, 2018-19 Leaf and 2019 Rogue support thanks to avolmensky!
* 2017 Mazda CX-5 support in dashcam mode thanks to Jafaral!
* Huge CPU savings in modeld by using thneed!
* Lots of code cleanup and refactors
Version 0.7.5 (2020-05-13)
========================
* Right-Hand Drive support for both driving and driver monitoring!
@ -5,7 +13,6 @@ Version 0.7.5 (2020-05-13)
* New driver monitoring model: overall improvement on comma two
* Driver camera preview in settings to improve mounting position
* Added support for many Hyundai, Kia, Genesis models thanks to xx979xx!
* 2019 Nissan X-Trail and 2018 Nissan Leaf support thanks to avolmensky!
* Improved lateral tuning for 2020 Toyota Rav 4 (hybrid)
Version 0.7.4 (2020-03-20)

View File

@ -43,10 +43,9 @@ if arch == "aarch64" or arch == "larch64":
]
if arch == "larch64":
cpppath += ["#phonelibs/capnp-cpp/include"]
libpath += ["#phonelibs/snpe/larch64"]
libpath += ["#phonelibs/libyuv/larch64/lib"]
libpath += ["#external/capnparm/lib", "/usr/lib/aarch64-linux-gnu"]
libpath += ["/usr/lib/aarch64-linux-gnu"]
cflags = ["-DQCOM2", "-mcpu=cortex-a57"]
cxxflags = ["-DQCOM2", "-mcpu=cortex-a57"]
rpath = ["/usr/local/lib"]
@ -62,14 +61,11 @@ else:
"PATH": "#external/bin:" + os.environ['PATH'],
}
cpppath = [
"#phonelibs/capnp-cpp/include",
"#phonelibs/zmq/x64/include",
"#external/tensorflow/include",
]
if arch == "Darwin":
libpath = [
"#phonelibs/capnp-cpp/mac/lib",
"#phonelibs/libyuv/mac/lib",
"#cereal",
"#selfdrive/common",
@ -78,11 +74,8 @@ else:
]
else:
libpath = [
"#phonelibs/capnp-cpp/x64/lib",
"#phonelibs/snpe/x86_64-linux-clang",
"#phonelibs/zmq/x64/lib",
"#phonelibs/libyuv/x64/lib",
"#external/zmq/lib",
"#external/tensorflow/lib",
"#cereal",
"#selfdrive/common",
@ -90,8 +83,7 @@ else:
"/usr/local/lib",
]
rpath = ["phonelibs/capnp-cpp/x64/lib",
"phonelibs/zmq/x64/lib",
rpath = [
"external/tensorflow/lib",
"cereal",
"selfdrive/common"]
@ -114,11 +106,9 @@ env = Environment(
"-g",
"-fPIC",
"-O2",
"-Werror=implicit-function-declaration",
"-Werror=incompatible-pointer-types",
"-Werror=int-conversion",
"-Werror=return-type",
"-Werror=format-extra-args",
"-Werror",
"-Wno-deprecated-register",
"-Wno-inconsistent-missing-override",
] + cflags + ccflags_asan,
CPPPATH=cpppath + [
@ -128,7 +118,6 @@ env = Environment(
"#phonelibs/libyuv/include",
"#phonelibs/openmax/include",
"#phonelibs/json11",
"#phonelibs/eigen",
"#phonelibs/curl/include",
#"#phonelibs/opencv/include", # use opencv4 instead
"#phonelibs/libgralloc/include",
@ -189,10 +178,7 @@ def abspath(x):
return x[0].path.rsplit("/", 1)[1][:-3]
# still needed for apks
if arch == 'larch64':
zmq = 'zmq'
else:
zmq = FindFile("libzmq.a", libpath)
zmq = 'zmq'
Export('env', 'arch', 'zmq', 'SHARED', 'webcam')
# cereal and messaging are shared with the system
@ -238,11 +224,12 @@ SConscript(['selfdrive/proclogd/SConscript'])
SConscript(['selfdrive/ui/SConscript'])
SConscript(['selfdrive/loggerd/SConscript'])
SConscript(['selfdrive/locationd/SConscript'])
SConscript(['selfdrive/locationd/models/SConscript'])
if arch == "aarch64":
SConscript(['selfdrive/logcatd/SConscript'])
SConscript(['selfdrive/sensord/SConscript'])
SConscript(['selfdrive/clocksd/SConscript'])
SConscript(['selfdrive/locationd/SConscript'])
SConscript(['selfdrive/locationd/kalman/SConscript'])
SConscript(['tools/lib/index_log/SConscript'])
else:
SConscript(['tools/lib/index_log/SConscript'])

Binary file not shown.

View File

@ -1,3 +1,4 @@
comment: false
coverage:
status:
project:

View File

@ -22,10 +22,10 @@ def get_imei(slot):
if slot not in ("0", "1"):
raise ValueError("SIM slot must be 0 or 1")
ret = parse_service_call_string(service_call(["iphonesubinfo", "3" ,"i32", str(slot)]))
ret = parse_service_call_string(service_call(["iphonesubinfo", "3" , "i32", str(slot)]))
if not ret:
# allow non android to be identified differently
ret = "%015d" % random.randint(0, 1<<32)
ret = "%015d" % random.randint(0, 1 << 32)
return ret
def get_serial():
@ -132,6 +132,7 @@ def get_network_type():
def get_network_strength(network_type):
network_strength = NetworkStrength.unknown
# from SignalStrength.java
def get_lte_level(rsrp, rssnr):
INT_MAX = 2147483647

View File

@ -39,4 +39,3 @@ def api_get(endpoint, method='GET', timeout=None, access_token=None, **params):
headers['User-Agent'] = "openpilot-" + version
return requests.request(method, backend+endpoint, timeout=timeout, headers = headers, params=params)

View File

@ -13,7 +13,7 @@ def get_installed_apks():
ret = {}
for x in dat:
if x.startswith("package:"):
v,k = x.split("package:")[1].split("=")
v, k = x.split("package:")[1].split("=")
ret[k] = v
return ret

View File

@ -8,4 +8,3 @@ if ANDROID:
else:
PERSIST = os.path.join(BASEDIR, "persist")
PARAMS = os.path.join(BASEDIR, "persist", "params")

View File

@ -44,7 +44,8 @@ class AutoMoveTempdir():
def close(self):
os.rename(self._path, self._target_path)
def __enter__(self): return self
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
if type is None:
@ -63,7 +64,8 @@ class NamedTemporaryDir():
def close(self):
shutil.rmtree(self._path)
def __enter__(self): return self
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()

View File

@ -68,8 +68,11 @@ class SwagErrorFilter(logging.Filter):
def filter(self, record):
return record.levelno < logging.ERROR
_tmpfunc = lambda: 0
_srcfile = os.path.normcase(_tmpfunc.__code__.co_filename)
def _tmpfunc():
return 0
def _srcfile():
return os.path.normcase(_tmpfunc.__code__.co_filename)
class SwagLogger(logging.Logger):
def __init__(self):

View File

@ -6,13 +6,13 @@ def print_cpu_usage(first_proc, last_proc):
r = 0
procs = [
("selfdrive.controls.controlsd", 59.46),
("./_modeld", 48.94),
("./_modeld", 6.75),
("./loggerd", 28.49),
("selfdrive.controls.plannerd", 19.77),
("selfdrive.controls.radard", 9.54),
("./_ui", 9.54),
("./camerad", 7.07),
("selfdrive.locationd.locationd", 7.13),
("selfdrive.locationd.locationd", 27.46),
("./_sensord", 6.17),
("selfdrive.controls.dmonitoringd", 5.48),
("./boardd", 3.63),

View File

@ -6,6 +6,7 @@ def clip(x, lo, hi):
def interp(x, xp, fp):
N = len(xp)
def get_interp(xv):
hi = 0
while hi < N and xv > xp[hi]:
@ -14,8 +15,8 @@ def interp(x, xp, fp):
return fp[-1] if hi == N and xv > xp[low] else (
fp[0] if hi == 0 else
(xv - xp[low]) * (fp[hi] - fp[low]) / (xp[hi] - xp[low]) + fp[low])
return [get_interp(v) for v in x] if hasattr(
x, '__iter__') else get_interp(x)
return [get_interp(v) for v in x] if hasattr(x, '__iter__') else get_interp(x)
def mean(x):
return sum(x) / len(x)

View File

@ -22,10 +22,7 @@ file in place without messing with <params_dir>/d.
"""
import time
import os
import string
import binascii
import errno
import sys
import shutil
import fcntl
import tempfile
@ -198,7 +195,8 @@ class DBReader(DBAccessor):
finally:
lock.release()
def __exit__(self, type, value, traceback): pass
def __exit__(self, type, value, traceback):
pass
class DBWriter(DBAccessor):
@ -401,22 +399,3 @@ def put_nonblocking(key, val):
t = threading.Thread(target=f, args=(key, val))
t.start()
return t
if __name__ == "__main__":
params = Params()
if len(sys.argv) > 2:
params.put(sys.argv[1], sys.argv[2])
else:
for k in keys:
pp = params.get(k)
if pp is None:
print("%s is None" % k)
elif all(chr(c) in string.printable for c in pp):
print("%s = %s" % (k, pp))
else:
print("%s = %s" % (k, binascii.hexlify(pp)))
# Test multiprocess:
# seq 0 100000 | xargs -P20 -I{} python common/params.py DongleId {} && sleep 0.05
# while python common/params.py DongleId; do sleep 0.05; done

View File

@ -43,4 +43,3 @@ class Profiler():
else:
print("%30s: %9.2f percent: %3.0f" % (n, ms*1000.0, ms/self.tot*100))
print("Iter clock: %2.6f TOTAL: %2.2f" % (self.tot/self.iter, self.tot))

View File

@ -40,7 +40,7 @@ class Spinner():
self.close()
class FakeSpinner():
class FakeSpinner(Spinner):
def __init__(self):
pass

View File

@ -32,7 +32,7 @@ class RunningStat():
self.S_last = 0.
else:
self.M = self.M_last + (new_data - self.M_last) / self.n
self.S = self.S_last + (new_data - self.M_last) * (new_data - self.M);
self.S = self.S_last + (new_data - self.M_last) * (new_data - self.M)
self.M_last = self.M
self.S_last = self.S
@ -64,7 +64,7 @@ class RunningStatFilter():
_std_last = self.raw_stat.std()
self.raw_stat.push_data(new_data)
_delta_std = self.raw_stat.std() - _std_last
if _delta_std<=0:
if _delta_std <= 0:
self.filtered_stat.push_data(new_data)
else:
pass

View File

@ -6,4 +6,3 @@ def phone_only(x):
return x
else:
return nottest(x)

View File

@ -43,7 +43,7 @@ class TextWindow():
self.close()
class FakeTextWindow():
class FakeTextWindow(TextWindow):
def __init__(self, s):
pass
@ -59,6 +59,9 @@ class FakeTextWindow():
def update(self, _):
pass
def close(self):
pass
def __exit__(self, type, value, traceback):
pass

View File

@ -25,4 +25,3 @@ class Timeout:
def __exit__(self, exc_type, exc_val, exc_tb):
signal.alarm(0)

View File

@ -59,7 +59,7 @@ def vp_from_ke(m):
The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T
"""
return (m[0, 0]/m[2,0], m[1,0]/m[2,0])
return (m[0, 0]/m[2, 0], m[1, 0]/m[2, 0])
def vp_from_rpy(rpy):
@ -81,10 +81,10 @@ def normalize(img_pts, intrinsics=eon_intrinsics):
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1))))
img_pts_normalized = img_pts.dot(intrinsics_inv.T)
img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
return img_pts_normalized[:,:2].reshape(input_shape)
return img_pts_normalized[:, :2].reshape(input_shape)
def denormalize(img_pts, intrinsics=eon_intrinsics):
@ -93,13 +93,13 @@ def denormalize(img_pts, intrinsics=eon_intrinsics):
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1))))
img_pts_denormalized = img_pts.dot(intrinsics.T)
img_pts_denormalized[img_pts_denormalized[:,0] > W] = np.nan
img_pts_denormalized[img_pts_denormalized[:,0] < 0] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] > H] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] < 0] = np.nan
return img_pts_denormalized[:,:2].reshape(input_shape)
img_pts_denormalized[img_pts_denormalized[:, 0] > W] = np.nan
img_pts_denormalized[img_pts_denormalized[:, 0] < 0] = np.nan
img_pts_denormalized[img_pts_denormalized[:, 1] > H] = np.nan
img_pts_denormalized[img_pts_denormalized[:, 1] < 0] = np.nan
return img_pts_denormalized[:, :2].reshape(input_shape)
def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef):
@ -124,10 +124,10 @@ def img_from_device(pt_device):
pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device)
# This function should never return negative depths
pt_view[pt_view[:,2] < 0] = np.nan
pt_view[pt_view[:, 2] < 0] = np.nan
pt_img = pt_view/pt_view[:,2:3]
return pt_img.reshape(input_shape)[:,:2]
pt_img = pt_view/pt_view[:, 2:3]
return pt_img.reshape(input_shape)[:, :2]
def get_camera_frame_from_calib_frame(camera_frame_from_road_frame):
@ -145,4 +145,3 @@ def pretransform_from_calib(calib):
camera_frame_from_road_frame = np.dot(eon_intrinsics, view_frame_from_road_frame)
camera_frame_from_calib_frame = get_camera_frame_from_calib_frame(camera_frame_from_road_frame)
return np.linalg.inv(camera_frame_from_calib_frame)

View File

@ -18,9 +18,9 @@ def geodetic2ecef(geodetic, radians=False):
geodetic = np.atleast_2d(geodetic)
ratio = 1.0 if radians else (np.pi / 180.0)
lat = ratio*geodetic[:,0]
lon = ratio*geodetic[:,1]
alt = geodetic[:,2]
lat = ratio*geodetic[:, 0]
lon = ratio*geodetic[:, 1]
alt = geodetic[:, 2]
xi = np.sqrt(1 - esq * np.sin(lat)**2)
x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
@ -52,7 +52,7 @@ def ecef2geodetic(ecef, radians=False):
S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
Q = np.sqrt(1 + 2 * esq * esq * P)
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
@ -78,6 +78,8 @@ class LocalCoord():
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
[np.cos(lat), 0, -np.sin(lat)]])
self.ecef2ned_matrix = self.ned2ecef_matrix.T
self.ecef_from_ned_matrix = self.ned2ecef_matrix
self.ned_from_ecef_matrix = self.ecef2ned_matrix
@classmethod
def from_geodetic(cls, init_geodetic):

View File

@ -130,9 +130,9 @@ def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
def get_model_frame(snu_full, camera_frame_from_model_frame, size):
idxs = camera_frame_from_model_frame.dot(np.column_stack([np.tile(np.arange(size[0]), size[1]),
np.tile(np.arange(size[1]), (size[0],1)).T.flatten(),
np.tile(np.arange(size[1]), (size[0], 1)).T.flatten(),
np.ones(size[0] * size[1])]).T).T.astype(int)
calib_flat = snu_full[idxs[:,1], idxs[:,0]]
calib_flat = snu_full[idxs[:, 1], idxs[:, 0]]
if len(snu_full.shape) == 3:
calib = calib_flat.reshape((size[1], size[0], 3))
elif len(snu_full.shape) == 2:

View File

@ -13,11 +13,11 @@ Supports both x2y and y_from_x format (y_from_x preferred!).
def euler2quat(eulers):
eulers = array(eulers)
if len(eulers.shape) > 1:
output_shape = (-1,4)
output_shape = (-1, 4)
else:
output_shape = (4,)
eulers = np.atleast_2d(eulers)
gamma, theta, psi = eulers[:,0], eulers[:,1], eulers[:,2]
gamma, theta, psi = eulers[:, 0], eulers[:, 1], eulers[:, 2]
q0 = np.cos(gamma / 2) * np.cos(theta / 2) * np.cos(psi / 2) + \
np.sin(gamma / 2) * np.sin(theta / 2) * np.sin(psi / 2)
@ -30,7 +30,7 @@ def euler2quat(eulers):
quats = array([q0, q1, q2, q3]).T
for i in range(len(quats)):
if quats[i,0] < 0:
if quats[i, 0] < 0:
quats[i] = -quats[i]
return quats.reshape(output_shape)
@ -38,11 +38,11 @@ def euler2quat(eulers):
def quat2euler(quats):
quats = array(quats)
if len(quats.shape) > 1:
output_shape = (-1,3)
output_shape = (-1, 3)
else:
output_shape = (3,)
quats = np.atleast_2d(quats)
q0, q1, q2, q3 = quats[:,0], quats[:,1], quats[:,2], quats[:,3]
q0, q1, q2, q3 = quats[:, 0], quats[:, 1], quats[:, 2], quats[:, 3]
gamma = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2))
theta = np.arcsin(2 * (q0 * q2 - q3 * q1))
@ -101,7 +101,7 @@ def rot2quat(rots):
q = np.empty((len(rots), 4))
for i in range(len(rots)):
_, eigvecs = linalg.eigh(K3[i].T)
eigvecs = eigvecs[:,3:]
eigvecs = eigvecs[:, 3:]
q[i, 0] = eigvecs[-1]
q[i, 1:] = -eigvecs[:-1].flatten()
if q[i, 0] < 0:
@ -124,8 +124,8 @@ def rot2euler(rots):
quats_from_rotations = rot2quat
quat_from_rot = rot2quat
rotations_from_quats = quat2rot
rot_from_quat= quat2rot
rot_from_quat= quat2rot
rot_from_quat = quat2rot
rot_from_quat = quat2rot
euler_from_rot = rot2euler
euler_from_quat = quat2euler
rot_from_euler = euler2rot
@ -154,9 +154,9 @@ def rot_matrix(roll, pitch, yaw):
cr, sr = np.cos(roll), np.sin(roll)
cp, sp = np.cos(pitch), np.sin(pitch)
cy, sy = np.cos(yaw), np.sin(yaw)
rr = array([[1,0,0],[0, cr,-sr],[0, sr, cr]])
rp = array([[cp,0,sp],[0, 1,0],[-sp, 0, cp]])
ry = array([[cy,-sy,0],[sy, cy,0],[0, 0, 1]])
rr = array([[1, 0, 0], [0, cr, -sr], [0, sr, cr]])
rp = array([[cp, 0, sp], [0, 1, 0], [-sp, 0, cp]])
ry = array([[cy, -sy, 0], [sy, cy, 0], [0, 0, 1]])
return ry.dot(rp.dot(rr))

View File

@ -11,4 +11,7 @@ extraction:
- "export PATH=$PWD/external/bin:$PATH"
index:
build_command: "python3 $(which scons)"
javascript:
index:
filters:
- exclude: "*"

View File

@ -1,11 +1,4 @@
Import('env')
def static_library(lib_dir, header_dir):
env.Append(LIBPATH=[Dir(lib_dir)])
env.Append(CPPPATH=[Dir(header_dir)])
env.Library('json11', ['json11/json11.cpp'])
env.Append(CPPPATH=[Dir('json11')])
static_library('zmq/aarch64-linux/lib', 'zmq/aarch64-linux/include')
static_library('capnp-cpp/aarch64-linux/lib', 'capnp-cpp/aarch64-linux/include')

View File

@ -1,26 +0,0 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -1,502 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@ -1,52 +0,0 @@
Minpack Copyright Notice (1999) University of Chicago. All rights reserved
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
3. The end-user documentation included with the
redistribution, if any, must include the following
acknowledgment:
"This product includes software developed by the
University of Chicago, as Operator of Argonne National
Laboratory.
Alternately, this acknowledgment may appear in the software
itself, if and wherever such third-party acknowledgments
normally appear.
4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
BE CORRECTED.
5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGES.

View File

@ -1,373 +0,0 @@
Mozilla Public License Version 2.0
==================================
1. Definitions
--------------
1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.
1.5. "Incompatible With Secondary Licenses"
means
(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.
1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or
(b) any new file in Source Code Form that contains any Covered
Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants and Conditions
--------------------------------
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
(a) for any code that a Contributor has removed from Covered Software;
or
(b) for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities
-------------------
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and
(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
---------------------------------------------------
If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination
--------------
5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
************************************************************************
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
************************************************************************
************************************************************************
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *
* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party's negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
************************************************************************
8. Litigation
-------------
Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party's ability to bring
cross-claims or counter-claims.
9. Miscellaneous
----------------
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License
---------------------------
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
-------------------------------------------
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
---------------------------------------------------------
This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

View File

@ -1,18 +0,0 @@
Eigen is primarily MPL2 licensed. See COPYING.MPL2 and these links:
http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/2.0/FAQ.html
Some files contain third-party code under BSD or LGPL licenses, whence the other
COPYING.* files here.
All the LGPL code is either LGPL 2.1-only, or LGPL 2.1-or-later.
For this reason, the COPYING.LGPL file contains the LGPL 2.1 text.
If you want to guarantee that the Eigen code that you are #including is licensed
under the MPL2 and possibly more permissive licenses (like BSD), #define this
preprocessor symbol:
EIGEN_MPL2_ONLY
For example, with most compilers, you could add this to your project CXXFLAGS:
-DEIGEN_MPL2_ONLY
This will cause a compilation error to be generated if you #include any code that is
LGPL licensed.

View File

@ -1,19 +0,0 @@
include(RegexUtils)
test_escape_string_as_regex()
file(GLOB Eigen_directory_files "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_directory_files})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src")
list(APPEND Eigen_directory_files_to_install ${f})
endif()
endforeach(f ${Eigen_directory_files})
install(FILES
${Eigen_directory_files_to_install}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel
)
install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel FILES_MATCHING PATTERN "*.h")

View File

@ -1,41 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLESKY_MODULE_H
#define EIGEN_CHOLESKY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Cholesky_Module Cholesky module
*
*
*
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are also accessible via the following methods:
* - MatrixBase::llt()
* - MatrixBase::ldlt()
* - SelfAdjointView::llt()
* - SelfAdjointView::ldlt()
*
* \code
* #include <Eigen/Cholesky>
* \endcode
*/
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/misc/lapacke.h"
#include "src/Cholesky/LLT_LAPACKE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLESKY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,48 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
#define EIGEN_CHOLMODSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <cholmod.h>
}
/** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module
*
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the two following main factorization classes:
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
*
* For the sake of completeness, this module also propose the two following classes:
* - class CholmodSimplicialLLT
* - class CholmodSimplicialLDLT
* Note that these classes does not bring any particular advantage compared to the built-in
* SimplicialLLT and SimplicialLDLT factorization classes.
*
* \code
* #include <Eigen/CholmodSupport>
* \endcode
*
* In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies.
* The dependencies depend on how cholmod has been compiled.
* For a cmake based project, you can use our FindCholmod.cmake module to help you in this task.
*
*/
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H

View File

@ -1,516 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CORE_H
#define EIGEN_CORE_H
// first thing Eigen does: stop the compiler from committing suicide
#include "src/Core/util/DisableStupidWarnings.h"
// Handle NVCC/CUDA/SYCL
#if defined(__CUDACC__) || defined(__SYCL_DEVICE_ONLY__)
// Do not try asserts on CUDA and SYCL!
#ifndef EIGEN_NO_DEBUG
#define EIGEN_NO_DEBUG
#endif
#ifdef EIGEN_INTERNAL_DEBUGGING
#undef EIGEN_INTERNAL_DEBUGGING
#endif
#ifdef EIGEN_EXCEPTIONS
#undef EIGEN_EXCEPTIONS
#endif
// All functions callable from CUDA code must be qualified with __device__
#ifdef __CUDACC__
// Do not try to vectorize on CUDA and SYCL!
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#define EIGEN_DEVICE_FUNC __host__ __device__
// We need math_functions.hpp to ensure that that EIGEN_USING_STD_MATH macro
// works properly on the device side
#include <math_functions.hpp>
#else
#define EIGEN_DEVICE_FUNC
#endif
#else
#define EIGEN_DEVICE_FUNC
#endif
// When compiling CUDA device code with NVCC, pull in math functions from the
// global namespace. In host mode, and when device doee with clang, use the
// std versions.
#if defined(__CUDA_ARCH__) && defined(__NVCC__)
#define EIGEN_USING_STD_MATH(FUNC) using ::FUNC;
#else
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
#endif
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(EIGEN_EXCEPTIONS) && !defined(EIGEN_USE_SYCL)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
#include "src/Core/util/Macros.h"
// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6)
#pragma GCC optimize ("-fno-ipa-cp-clone")
#endif
#include <complex>
// this include file manages BLAS and MKL related macros
// and inclusion of their respective header files
#include "src/Core/util/MKL_support.h"
// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into
// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks
#if EIGEN_MAX_ALIGN_BYTES==0
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
#if EIGEN_COMP_MSVC
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
#if (EIGEN_COMP_MSVC >= 1500) // 2008 or later
// Remember that usage of defined() in a #define is undefined by the standard.
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#else
// Remember that usage of defined() in a #define is undefined by the standard
#if (defined __SSE2__) && ( (!EIGEN_COMP_GNUC) || EIGEN_COMP_ICC || EIGEN_GNUC_AT_LEAST(4,2) )
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
#endif
#endif
#ifndef EIGEN_DONT_VECTORIZE
#if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
// Defines symbols for compile-time detection of which instructions are
// used.
// EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_SSE
#define EIGEN_VECTORIZE_SSE2
// Detect sse3/ssse3/sse4:
// gcc and icc defines __SSE3__, ...
// there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
// want to force the use of those instructions with msvc.
#ifdef __SSE3__
#define EIGEN_VECTORIZE_SSE3
#endif
#ifdef __SSSE3__
#define EIGEN_VECTORIZE_SSSE3
#endif
#ifdef __SSE4_1__
#define EIGEN_VECTORIZE_SSE4_1
#endif
#ifdef __SSE4_2__
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX__
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX2__
#define EIGEN_VECTORIZE_AVX2
#endif
#ifdef __FMA__
#define EIGEN_VECTORIZE_FMA
#endif
#if defined(__AVX512F__) && defined(EIGEN_ENABLE_AVX512)
#define EIGEN_VECTORIZE_AVX512
#define EIGEN_VECTORIZE_AVX2
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_FMA
#ifdef __AVX512DQ__
#define EIGEN_VECTORIZE_AVX512DQ
#endif
#endif
// include files
// This extern "C" works around a MINGW-w64 compilation issue
// https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
// In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
// However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
// with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
// notice that since these are C headers, the extern "C" is theoretically needed anyways.
extern "C" {
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#if EIGEN_COMP_ICC >= 1110
#include <immintrin.h>
#else
#include <mmintrin.h>
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef EIGEN_VECTORIZE_SSE3
#include <pmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
#include <tmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_1
#include <smmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#if defined(EIGEN_VECTORIZE_AVX) || defined(EIGEN_VECTORIZE_AVX512)
#include <immintrin.h>
#endif
#endif
} // end extern "C"
#elif defined __VSX__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_VSX
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif defined __ALTIVEC__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ALTIVEC
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif (defined __ARM_NEON) || (defined __ARM_NEON__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#elif (defined __s390x__ && defined __VEC__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ZVECTOR
#include <vecintrin.h>
#endif
#endif
#if defined(__F16C__) && !defined(EIGEN_COMP_CLANG)
// We can use the optimized fp16 to float and float to fp16 conversion routines
#define EIGEN_HAS_FP16_C
#endif
#if defined __CUDACC__
#define EIGEN_VECTORIZE_CUDA
#include <vector_types.h>
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
#define EIGEN_HAS_CUDA_FP16
#endif
#endif
#if defined EIGEN_HAS_CUDA_FP16
#include <host_defines.h>
#include <cuda_fp16.h>
#endif
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
#define EIGEN_HAS_OPENMP
#endif
#ifdef EIGEN_HAS_OPENMP
#include <omp.h>
#endif
// MSVC for windows mobile does not have the errno.h file
#if !(EIGEN_COMP_MSVC && EIGEN_OS_WINCE) && !EIGEN_COMP_ARM
#define EIGEN_HAS_ERRNO
#endif
#ifdef EIGEN_HAS_ERRNO
#include <cerrno>
#endif
#include <cstddef>
#include <cstdlib>
#include <cmath>
#include <cassert>
#include <functional>
#include <iosfwd>
#include <cstring>
#include <string>
#include <limits>
#include <climits> // for CHAR_BIT
// for min/max:
#include <algorithm>
// for std::is_nothrow_move_assignable
#ifdef EIGEN_INCLUDE_TYPE_TRAITS
#include <type_traits>
#endif
// for outputting debug info
#ifdef EIGEN_DEBUG_ASSIGN
#include <iostream>
#endif
// required for __cpuid, needs to be included after cmath
#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE
#include <intrin.h>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
inline static const char *SimdInstructionSetsInUse(void) {
#if defined(EIGEN_VECTORIZE_AVX512)
return "AVX512, FMA, AVX2, AVX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_AVX)
return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_2)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_1)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
#elif defined(EIGEN_VECTORIZE_SSSE3)
return "SSE, SSE2, SSE3, SSSE3";
#elif defined(EIGEN_VECTORIZE_SSE3)
return "SSE, SSE2, SSE3";
#elif defined(EIGEN_VECTORIZE_SSE2)
return "SSE, SSE2";
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
return "AltiVec";
#elif defined(EIGEN_VECTORIZE_VSX)
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#elif defined(EIGEN_VECTORIZE_ZVECTOR)
return "S390X ZVECTOR";
#else
return "None";
#endif
}
} // end namespace Eigen
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT
// This will generate an error message:
#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information
#endif
namespace Eigen {
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
// ensure QNX/QCC support
using std::size_t;
// gcc 4.6.0 wants std:: for ptrdiff_t
using std::ptrdiff_t;
}
/** \defgroup Core_Module Core module
* This is the main module of Eigen providing dense matrix and vector support
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
* and much more...
*
* \code
* #include <Eigen/Core>
* \endcode
*/
#include "src/Core/util/Constants.h"
#include "src/Core/util/Meta.h"
#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/StaticAssert.h"
#include "src/Core/util/XprHelper.h"
#include "src/Core/util/Memory.h"
#include "src/Core/NumTraits.h"
#include "src/Core/MathFunctions.h"
#include "src/Core/GenericPacketMath.h"
#include "src/Core/MathFunctionsImpl.h"
#if defined EIGEN_VECTORIZE_AVX512
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/AVX/PacketMath.h"
#include "src/Core/arch/AVX512/PacketMath.h"
#include "src/Core/arch/AVX512/MathFunctions.h"
#elif defined EIGEN_VECTORIZE_AVX
// Use AVX for floats and doubles, SSE for integers
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/AVX/PacketMath.h"
#include "src/Core/arch/AVX/MathFunctions.h"
#include "src/Core/arch/AVX/Complex.h"
#include "src/Core/arch/AVX/TypeCasting.h"
#elif defined EIGEN_VECTORIZE_SSE
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/TypeCasting.h"
#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
#include "src/Core/arch/AltiVec/PacketMath.h"
#include "src/Core/arch/AltiVec/MathFunctions.h"
#include "src/Core/arch/AltiVec/Complex.h"
#elif defined EIGEN_VECTORIZE_NEON
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/MathFunctions.h"
#include "src/Core/arch/NEON/Complex.h"
#elif defined EIGEN_VECTORIZE_ZVECTOR
#include "src/Core/arch/ZVector/PacketMath.h"
#include "src/Core/arch/ZVector/MathFunctions.h"
#include "src/Core/arch/ZVector/Complex.h"
#endif
// Half float support
#include "src/Core/arch/CUDA/Half.h"
#include "src/Core/arch/CUDA/PacketMathHalf.h"
#include "src/Core/arch/CUDA/TypeCasting.h"
#if defined EIGEN_VECTORIZE_CUDA
#include "src/Core/arch/CUDA/PacketMath.h"
#include "src/Core/arch/CUDA/MathFunctions.h"
#endif
#include "src/Core/arch/Default/Settings.h"
#include "src/Core/functors/TernaryFunctors.h"
#include "src/Core/functors/BinaryFunctors.h"
#include "src/Core/functors/UnaryFunctors.h"
#include "src/Core/functors/NullaryFunctors.h"
#include "src/Core/functors/StlFunctors.h"
#include "src/Core/functors/AssignmentFunctors.h"
// Specialized functors to enable the processing of complex numbers
// on CUDA devices
#include "src/Core/arch/CUDA/Complex.h"
#include "src/Core/IO.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/EigenBase.h"
#include "src/Core/Product.h"
#include "src/Core/CoreEvaluators.h"
#include "src/Core/AssignEvaluator.h"
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
// at least confirmed with Doxygen 1.5.5 and 1.5.6
#include "src/Core/Assign.h"
#endif
#include "src/Core/ArrayBase.h"
#include "src/Core/util/BlasUtil.h"
#include "src/Core/DenseStorage.h"
#include "src/Core/NestByValue.h"
// #include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/PlainObjectBase.h"
#include "src/Core/Matrix.h"
#include "src/Core/Array.h"
#include "src/Core/CwiseTernaryOp.h"
#include "src/Core/CwiseBinaryOp.h"
#include "src/Core/CwiseUnaryOp.h"
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/CwiseUnaryView.h"
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/Dot.h"
#include "src/Core/StableNorm.h"
#include "src/Core/Stride.h"
#include "src/Core/MapBase.h"
#include "src/Core/Map.h"
#include "src/Core/Ref.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/Redux.h"
#include "src/Core/Visitor.h"
#include "src/Core/Fuzzy.h"
#include "src/Core/Swap.h"
#include "src/Core/CommaInitializer.h"
#include "src/Core/GeneralProduct.h"
#include "src/Core/Solve.h"
#include "src/Core/Inverse.h"
#include "src/Core/SolverBase.h"
#include "src/Core/PermutationMatrix.h"
#include "src/Core/Transpositions.h"
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/Parallelizer.h"
#include "src/Core/ProductEvaluators.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/SolveTriangular.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
#include "src/Core/products/SelfadjointMatrixVector.h"
#include "src/Core/products/SelfadjointMatrixMatrix.h"
#include "src/Core/products/SelfadjointProduct.h"
#include "src/Core/products/SelfadjointRank2Update.h"
#include "src/Core/products/TriangularMatrixVector.h"
#include "src/Core/products/TriangularMatrixMatrix.h"
#include "src/Core/products/TriangularSolverMatrix.h"
#include "src/Core/products/TriangularSolverVector.h"
#include "src/Core/BandMatrix.h"
#include "src/Core/CoreIterators.h"
#include "src/Core/ConditionEstimator.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
#include "src/Core/VectorwiseOp.h"
#include "src/Core/Random.h"
#include "src/Core/Replicate.h"
#include "src/Core/Reverse.h"
#include "src/Core/ArrayWrapper.h"
#ifdef EIGEN_USE_BLAS
#include "src/Core/products/GeneralMatrixMatrix_BLAS.h"
#include "src/Core/products/GeneralMatrixVector_BLAS.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h"
#include "src/Core/products/SelfadjointMatrixMatrix_BLAS.h"
#include "src/Core/products/SelfadjointMatrixVector_BLAS.h"
#include "src/Core/products/TriangularMatrixMatrix_BLAS.h"
#include "src/Core/products/TriangularMatrixVector_BLAS.h"
#include "src/Core/products/TriangularSolverMatrix_BLAS.h"
#endif // EIGEN_USE_BLAS
#ifdef EIGEN_USE_MKL_VML
#include "src/Core/Assign_MKL.h"
#endif
#include "src/Core/GlobalFunctions.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CORE_H

View File

@ -1,7 +0,0 @@
#include "Core"
#include "LU"
#include "Cholesky"
#include "QR"
#include "SVD"
#include "Geometry"
#include "Eigenvalues"

View File

@ -1,2 +0,0 @@
#include "Dense"
#include "Sparse"

View File

@ -1,57 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EIGENVALUES_MODULE_H
#define EIGEN_EIGENVALUES_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
#include "LU"
#include "Geometry"
/** \defgroup Eigenvalues_Module Eigenvalues module
*
*
*
* This module mainly provides various eigenvalue solvers.
* This module also provides some MatrixBase methods, including:
* - MatrixBase::eigenvalues(),
* - MatrixBase::operatorNorm()
*
* \code
* #include <Eigen/Eigenvalues>
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
#include "src/Eigenvalues/HessenbergDecomposition.h"
#include "src/Eigenvalues/ComplexSchur.h"
#include "src/Eigenvalues/ComplexEigenSolver.h"
#include "src/Eigenvalues/RealQZ.h"
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/misc/lapacke.h"
#include "src/Eigenvalues/RealSchur_LAPACKE.h"
#include "src/Eigenvalues/ComplexSchur_LAPACKE.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_EIGENVALUES_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,62 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GEOMETRY_MODULE_H
#define EIGEN_GEOMETRY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SVD"
#include "LU"
#include <limits>
/** \defgroup Geometry_Module Geometry module
*
* This module provides support for:
* - fixed-size homogeneous transformations
* - translation, scaling, 2D and 3D rotations
* - \link Quaternion quaternions \endlink
* - cross products (\ref MatrixBase::cross, \ref MatrixBase::cross3)
* - orthognal vector generation (\ref MatrixBase::unitOrthogonal)
* - some linear components: \link ParametrizedLine parametrized-lines \endlink and \link Hyperplane hyperplanes \endlink
* - \link AlignedBox axis aligned bounding boxes \endlink
* - \link umeyama least-square transformation fitting \endlink
*
* \code
* #include <Eigen/Geometry>
* \endcode
*/
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_GEOMETRY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,30 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOUSEHOLDER_MODULE_H
#define EIGEN_HOUSEHOLDER_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Householder_Module Householder module
* This module provides Householder transformations.
*
* \code
* #include <Eigen/Householder>
* \endcode
*/
#include "src/Householder/Householder.h"
#include "src/Householder/HouseholderSequence.h"
#include "src/Householder/BlockHouseholder.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_HOUSEHOLDER_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,48 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
*
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
* Those solvers are accessible via the following classes:
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - LeastSquaresConjugateGradient for rectangular least-square problems,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteLUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
\code
#include <Eigen/IterativeLinearSolvers>
\endcode
*/
#include "src/IterativeLinearSolvers/SolveWithGuess.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
#include "src/IterativeLinearSolvers/IncompleteCholesky.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H

View File

@ -1,33 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_JACOBI_MODULE_H
#define EIGEN_JACOBI_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Jacobi_Module Jacobi module
* This module provides Jacobi and Givens rotations.
*
* \code
* #include <Eigen/Jacobi>
* \endcode
*
* In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation:
* - MatrixBase::applyOnTheLeft()
* - MatrixBase::applyOnTheRight().
*/
#include "src/Jacobi/Jacobi.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_JACOBI_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,46 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LU_MODULE_H
#define EIGEN_LU_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup LU_Module LU module
* This module includes %LU decomposition and related notions such as matrix inversion and determinant.
* This module defines the following MatrixBase methods:
* - MatrixBase::inverse()
* - MatrixBase::determinant()
*
* \code
* #include <Eigen/LU>
* \endcode
*/
#include "src/misc/Kernel.h"
#include "src/misc/Image.h"
#include "src/LU/FullPivLU.h"
#include "src/LU/PartialPivLU.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/misc/lapacke.h"
#include "src/LU/PartialPivLU_LAPACKE.h"
#endif
#include "src/LU/Determinant.h"
#include "src/LU/InverseImpl.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/LU/arch/Inverse_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,35 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
* This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis).
* It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

View File

@ -1,73 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup OrderingMethods_Module OrderingMethods module
*
* This module is currently for internal use only
*
* It defines various built-in and external ordering methods for sparse matrices.
* They are typically used to reduce the number of elements during
* the sparse matrix decomposition (LLT, LU, QR).
* Precisely, in a preprocessing step, a permutation matrix P is computed using
* those ordering methods and applied to the columns of the matrix.
* Using for instance the sparse Cholesky decomposition, it is expected that
* the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
*
*
* Usage :
* \code
* #include <Eigen/OrderingMethods>
* \endcode
*
* A simple usage is as a template parameter in the sparse decomposition classes :
*
* \code
* SparseLU<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* \code
* SparseQR<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* It is possible as well to call directly a particular ordering method for your own purpose,
* \code
* AMDOrdering<int> ordering;
* PermutationMatrix<Dynamic, Dynamic, int> perm;
* SparseMatrix<double> A;
* //Fill the matrix ...
*
* ordering(A, perm); // Call AMD
* \endcode
*
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code
* // Call the ordering on the pattern of the lower triangular matrix A
* ordering(A.selfadjointView<Lower>(), perm);
* \endcode
*/
#ifndef EIGEN_MPL2_ONLY
#include "src/OrderingMethods/Amd.h"
#endif
#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H

View File

@ -1,48 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
#define EIGEN_PASTIXSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <pastix_nompi.h>
#include <pastix.h>
}
#ifdef complex
#undef complex
#endif
/** \ingroup Support_modules
* \defgroup PaStiXSupport_Module PaStiXSupport module
*
* This module provides an interface to the <a href="http://pastix.gforge.inria.fr/">PaSTiX</a> library.
* PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver.
* It provides the two following main factorization classes:
* - class PastixLLT : a supernodal, parallel LLt Cholesky factorization.
* - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
* - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern).
*
* \code
* #include <Eigen/PaStiXSupport>
* \endcode
*
* In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies.
* The dependencies depend on how PaSTiX has been compiled.
* For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task.
*
*/
#include "src/PaStiXSupport/PaStiXSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PASTIXSUPPORT_MODULE_H

View File

@ -1,35 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
#define EIGEN_PARDISOSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include <mkl_pardiso.h>
/** \ingroup Support_modules
* \defgroup PardisoSupport_Module PardisoSupport module
*
* This module brings support for the Intel(R) MKL PARDISO direct sparse solvers.
*
* \code
* #include <Eigen/PardisoSupport>
* \endcode
*
* In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies.
* See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration.
*
*/
#include "src/PardisoSupport/PardisoSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PARDISOSUPPORT_MODULE_H

View File

@ -1,47 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QR_MODULE_H
#define EIGEN_QR_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
/** \defgroup QR_Module QR module
*
*
*
* This module provides various QR decompositions
* This module also provides some MatrixBase methods, including:
* - MatrixBase::householderQr()
* - MatrixBase::colPivHouseholderQr()
* - MatrixBase::fullPivHouseholderQr()
*
* \code
* #include <Eigen/QR>
* \endcode
*/
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
#include "src/QR/CompleteOrthogonalDecomposition.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/misc/lapacke.h"
#include "src/QR/HouseholderQR_LAPACKE.h"
#include "src/QR/ColPivHouseholderQR_LAPACKE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,40 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QTMALLOC_MODULE_H
#define EIGEN_QTMALLOC_MODULE_H
#include "Core"
#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
#include "src/Core/util/DisableStupidWarnings.h"
void *qMalloc(std::size_t size)
{
return Eigen::internal::aligned_malloc(size);
}
void qFree(void *ptr)
{
Eigen::internal::aligned_free(ptr);
}
void *qRealloc(void *ptr, std::size_t size)
{
void* newPtr = Eigen::internal::aligned_malloc(size);
memcpy(newPtr, ptr, size);
Eigen::internal::aligned_free(ptr);
return newPtr;
}
#include "src/Core/util/ReenableStupidWarnings.h"
#endif
#endif // EIGEN_QTMALLOC_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,34 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPQRSUPPORT_MODULE_H
#define EIGEN_SPQRSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SuiteSparseQR.hpp"
/** \ingroup Support_modules
* \defgroup SPQRSupport_Module SuiteSparseQR module
*
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
*
* \code
* #include <Eigen/SPQRSupport>
* \endcode
*
* In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...).
* For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules
*
*/
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/SPQRSupport/SuiteSparseQRSupport.h"
#endif

View File

@ -1,47 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SVD_MODULE_H
#define EIGEN_SVD_MODULE_H
#include "QR"
#include "Householder"
#include "Jacobi"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SVD_Module SVD module
*
*
*
* This module provides SVD decomposition for matrices (both real and complex).
* Two decomposition algorithms are provided:
* - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
* - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems.
* These decompositions are accessible via the respective classes and following MatrixBase methods:
* - MatrixBase::jacobiSvd()
* - MatrixBase::bdcSvd()
*
* \code
* #include <Eigen/SVD>
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"
#include "src/SVD/BDCSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#include "src/misc/lapacke.h"
#include "src/SVD/JacobiSVD_LAPACKE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -1,36 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_MODULE_H
#define EIGEN_SPARSE_MODULE_H
/** \defgroup Sparse_Module Sparse meta-module
*
* Meta-module including all related modules:
* - \ref SparseCore_Module
* - \ref OrderingMethods_Module
* - \ref SparseCholesky_Module
* - \ref SparseLU_Module
* - \ref SparseQR_Module
* - \ref IterativeLinearSolvers_Module
*
\code
#include <Eigen/Sparse>
\endcode
*/
#include "SparseCore"
#include "OrderingMethods"
#ifndef EIGEN_MPL2_ONLY
#include "SparseCholesky"
#endif
#include "SparseLU"
#include "SparseQR"
#include "IterativeLinearSolvers"
#endif // EIGEN_SPARSE_MODULE_H

View File

@ -1,45 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSECHOLESKY_MODULE_H
#define EIGEN_SPARSECHOLESKY_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup SparseCholesky_Module SparseCholesky module
*
* This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are accessible via the following classes:
* - SimplicialLLt,
* - SimplicialLDLt
*
* Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module.
*
* \code
* #include <Eigen/SparseCholesky>
* \endcode
*/
#ifdef EIGEN_MPL2_ONLY
#error The SparseCholesky module has nothing to offer in MPL2 only mode
#endif
#include "src/SparseCholesky/SimplicialCholesky.h"
#ifndef EIGEN_MPL2_ONLY
#include "src/SparseCholesky/SimplicialCholesky_impl.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECHOLESKY_MODULE_H

View File

@ -1,69 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSECORE_MODULE_H
#define EIGEN_SPARSECORE_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include <vector>
#include <map>
#include <cstdlib>
#include <cstring>
#include <algorithm>
/**
* \defgroup SparseCore_Module SparseCore module
*
* This module provides a sparse matrix representation, and basic associated matrix manipulations
* and operations.
*
* See the \ref TutorialSparse "Sparse tutorial"
*
* \code
* #include <Eigen/SparseCore>
* \endcode
*
* This module depends on: Core.
*/
#include "src/SparseCore/SparseUtil.h"
#include "src/SparseCore/SparseMatrixBase.h"
#include "src/SparseCore/SparseAssign.h"
#include "src/SparseCore/CompressedStorage.h"
#include "src/SparseCore/AmbiVector.h"
#include "src/SparseCore/SparseCompressedBase.h"
#include "src/SparseCore/SparseMatrix.h"
#include "src/SparseCore/SparseMap.h"
#include "src/SparseCore/MappedSparseMatrix.h"
#include "src/SparseCore/SparseVector.h"
#include "src/SparseCore/SparseRef.h"
#include "src/SparseCore/SparseCwiseUnaryOp.h"
#include "src/SparseCore/SparseCwiseBinaryOp.h"
#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseDot.h"
#include "src/SparseCore/SparseRedux.h"
#include "src/SparseCore/SparseView.h"
#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
#include "src/SparseCore/SparseSparseProductWithPruning.h"
#include "src/SparseCore/SparseProduct.h"
#include "src/SparseCore/SparseDenseProduct.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/TriangularSolver.h"
#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseFuzzy.h"
#include "src/SparseCore/SparseSolverBase.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECORE_MODULE_H

View File

@ -1,46 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/**
* \defgroup SparseLU_Module SparseLU module
* This module defines a supernodal factorization of general sparse matrices.
* The code is fully optimized for supernode-panel updates with specialized kernels.
* Please, see the documentation of the SparseLU class for more details.
*/
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU_gemm_kernel.h"
#include "src/SparseLU/SparseLU_Structs.h"
#include "src/SparseLU/SparseLU_SupernodalMatrix.h"
#include "src/SparseLU/SparseLUImpl.h"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseLU/SparseLU_Memory.h"
#include "src/SparseLU/SparseLU_heap_relax_snode.h"
#include "src/SparseLU/SparseLU_relax_snode.h"
#include "src/SparseLU/SparseLU_pivotL.h"
#include "src/SparseLU/SparseLU_panel_dfs.h"
#include "src/SparseLU/SparseLU_kernel_bmod.h"
#include "src/SparseLU/SparseLU_panel_bmod.h"
#include "src/SparseLU/SparseLU_column_dfs.h"
#include "src/SparseLU/SparseLU_column_bmod.h"
#include "src/SparseLU/SparseLU_copy_to_ucol.h"
#include "src/SparseLU/SparseLU_pruneL.h"
#include "src/SparseLU/SparseLU_Utils.h"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

View File

@ -1,37 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEQR_MODULE_H
#define EIGEN_SPARSEQR_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SparseQR_Module SparseQR module
* \brief Provides QR decomposition for sparse matrices
*
* This module provides a simplicial version of the left-looking Sparse QR decomposition.
* The columns of the input matrix should be reordered to limit the fill-in during the
* decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end.
* See the \link OrderingMethods_Module OrderingMethods\endlink module for the list
* of built-in and external ordering methods.
*
* \code
* #include <Eigen/SparseQR>
* \endcode
*
*
*/
#include "OrderingMethods"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseQR/SparseQR.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif

View File

@ -1,27 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDDEQUE_MODULE_H
#define EIGEN_STDDEQUE_MODULE_H
#include "Core"
#include <deque>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdDeque.h"
#endif
#endif // EIGEN_STDDEQUE_MODULE_H

View File

@ -1,26 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDLIST_MODULE_H
#define EIGEN_STDLIST_MODULE_H
#include "Core"
#include <list>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdList.h"
#endif
#endif // EIGEN_STDLIST_MODULE_H

View File

@ -1,27 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDVECTOR_MODULE_H
#define EIGEN_STDVECTOR_MODULE_H
#include "Core"
#include <vector>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdVector.h"
#endif
#endif // EIGEN_STDVECTOR_MODULE_H

View File

@ -1,64 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
#define EIGEN_SUPERLUSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#ifdef EMPTY
#define EIGEN_EMPTY_WAS_ALREADY_DEFINED
#endif
typedef int int_t;
#include <slu_Cnames.h>
#include <supermatrix.h>
#include <slu_util.h>
// slu_util.h defines a preprocessor token named EMPTY which is really polluting,
// so we remove it in favor of a SUPERLU_EMPTY token.
// If EMPTY was already defined then we don't undef it.
#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
#elif defined(EMPTY)
# undef EMPTY
#endif
#define SUPERLU_EMPTY (-1)
namespace Eigen { struct SluMatrix; }
/** \ingroup Support_modules
* \defgroup SuperLUSupport_Module SuperLUSupport module
*
* This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
* It provides the following factorization class:
* - class SuperLU: a supernodal sequential LU factorization.
* - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
*
* \warning This wrapper requires at least versions 4.0 of SuperLU. The 3.x versions are not supported.
*
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
*
* \code
* #include <Eigen/SuperLUSupport>
* \endcode
*
* In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
* The dependencies depend on how superlu has been compiled.
* For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
*
*/
#include "src/SuperLUSupport/SuperLUSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H

View File

@ -1,40 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
#define EIGEN_UMFPACKSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <umfpack.h>
}
/** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module
*
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the following factorization class:
* - class UmfPackLU: a multifrontal sequential LU factorization.
*
* \code
* #include <Eigen/UmfPackSupport>
* \endcode
*
* In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
* The dependencies depend on how umfpack has been compiled.
* For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
*
*/
#include "src/UmfPackSupport/UmfPackSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_UMFPACKSUPPORT_MODULE_H

View File

@ -1,669 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
namespace Eigen {
namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
// PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
}
/** \ingroup Cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT()
: m_matrix(),
m_transpositions(),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LDLT()
*/
explicit LDLT(Index size)
: m_matrix(size, size),
m_transpositions(size),
m_temporary(size),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Constructor with decomposition
*
* This calculates the decomposition for the input \a matrix.
*
* \sa LDLT(Index size)
*/
template<typename InputType>
explicit LDLT(const EigenBase<InputType>& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
*
* \sa LDLT(const EigenBase&)
*/
template<typename InputType>
explicit LDLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** Clear any existing decomposition
* \sa rankUpdate(w,sigma)
*/
void setZero()
{
m_isInitialized = false;
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the permutation matrix P as a transposition sequence.
*/
inline const TranspositionType& transpositionsP() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_transpositions;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<const MatrixType> vectorD() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix.diagonal();
}
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
}
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
*
* \note_about_checking_solutions
*
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
*/
template<typename Rhs>
inline const Solve<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LDLT, Rhs>(*this, b.derived());
}
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
template<typename InputType>
LDLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the LDLT decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
template <typename Derived>
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
/** \returns the internal LDLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLDLT() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LDLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_info;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
TranspositionType m_transpositions;
TmpMatrixType m_temporary;
internal::SignMatrix m_sign;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<int UpLo> struct ldlt_inplace;
template<> struct ldlt_inplace<Lower>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename TranspositionType::StorageIndex IndexType;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
bool found_zero_pivot = false;
bool ret = true;
if (size <= 1)
{
transpositions.setIdentity();
if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
else sign = ZeroSign;
return true;
}
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
// the lower triangular part
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(Index i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
}
if(NumTraits<Scalar>::IsComplex)
mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
}
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index rs = size - k - 1;
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if(k>0)
{
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
// was smaller than the cutoff value. However, since LDLT is not rank-revealing
// we should only make sure that we do not introduce INF or NaN values.
// Remark that LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
bool pivot_is_valid = (abs(realAkk) > RealScalar(0));
if(k==0 && !pivot_is_valid)
{
// The entire diagonal is zero, there is nothing more to do
// except filling the transpositions, and checking whether the matrix is zero.
sign = ZeroSign;
for(Index j = 0; j<size; ++j)
{
transpositions.coeffRef(j) = IndexType(j);
ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all();
}
return ret;
}
if((rs>0) && pivot_is_valid)
A21 /= realAkk;
if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
else if(!pivot_is_valid) found_zero_pivot = true;
if (sign == PositiveSemiDef) {
if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite;
} else if (sign == ZeroSign) {
if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef;
else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
}
}
return ret;
}
// Reference for the algorithm: Davis and Hager, "Multiple Rank
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
// Trivial rearrangements of their computations (Timothy E. Holy)
// allow their algorithm to work for rank-1 updates even if the
// original matrix is not of full rank.
// Here only rank-1 updates are implemented, to reduce the
// requirement for intermediate storage and improve accuracy
template<typename MatrixType, typename WDerived>
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
{
using numext::isfinite;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
const Index size = mat.rows();
eigen_assert(mat.cols() == size && w.size()==size);
RealScalar alpha = 1;
// Apply the update
for (Index j = 0; j < size; j++)
{
// Check for termination due to an original decomposition of low-rank
if (!(isfinite)(alpha))
break;
// Update the diagonal terms
RealScalar dj = numext::real(mat.coeff(j,j));
Scalar wj = w.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*alpha + swj2;
mat.coeffRef(j,j) += swj2/alpha;
alpha += swj2/dj;
// Update the terms of L
Index rs = size-j-1;
w.tail(rs) -= wj * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
}
return true;
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
{
// Apply the permutation to the input w
tmp = transpositions * w;
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
}
};
template<> struct ldlt_inplace<Upper>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
}
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
};
} // end namespace internal
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
template<typename InputType>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_transpositions.resize(size);
m_isInitialized = false;
m_temporary.resize(size);
m_sign = internal::ZeroSign;
m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue;
m_isInitialized = true;
return *this;
}
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
* \param w a vector to be incorporated into the decomposition.
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
* \sa setZero()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
{
typedef typename TranspositionType::StorageIndex IndexType;
const Index size = w.rows();
if (m_isInitialized)
{
eigen_assert(m_matrix.rows()==size);
}
else
{
m_matrix.resize(size,size);
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
m_transpositions.coeffRef(i) = IndexType(i);
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
}
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType, int _UpLo>
template<typename RhsType, typename DstType>
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
eigen_assert(rhs.rows() == rows());
// dst = P b
dst = m_transpositions * rhs;
// dst = L^-1 (P b)
matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
// more precisely, use pseudo-inverse of D (see bug 241)
using std::abs;
const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
// as motivated by LAPACK's xGELSS:
// RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and leads to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vecD.size(); ++i)
{
if(abs(vecD(i)) > tolerance)
dst.row(i) /= vecD(i);
else
dst.row(i).setZero();
}
// dst = L^-T (D^-1 L^-1 P b)
matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = m_transpositions.transpose() * dst;
}
#endif
/** \internal use x = ldlt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows() == bAndX.rows());
bAndX = this->solve(bAndX);
return true;
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
MatrixType res(size,size);
// P
res.setIdentity();
res = transpositionsP() * res;
// L^* P
res = matrixU() * res;
// D(L^*P)
res = vectorD().real().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
res = transpositionsP().transpose() * res;
return res;
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa MatrixBase::ldlt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
return LDLT<PlainObject,UpLo>(m_matrix);
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa SelfAdjointView::ldlt()
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
return LDLT<PlainObject>(derived());
}
} // end namespace Eigen
#endif // EIGEN_LDLT_H

View File

@ -1,534 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace Eigen {
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
/** \ingroup Cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
explicit LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
template<typename InputType>
explicit LLT(const EigenBase<InputType>& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
* \c MatrixType is a Eigen::Ref.
*
* \sa LLT(const EigenBase&)
*/
template<typename InputType>
explicit LLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
*/
template<typename Rhs>
inline const Solve<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LLT, Rhs>(*this, b.derived());
}
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
template<typename InputType>
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the Cholesky decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<typename Scalar, int UpLo> struct llt_inplace;
template<typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::ColXpr ColXpr;
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
Index n = mat.cols();
eigen_assert(mat.rows()==n && vec.size()==n);
TempVectorType temp;
if(sigma>0)
{
// This version is based on Givens rotations.
// It is faster than the other one below, but only works for updates,
// i.e., for sigma > 0
temp = sqrt(sigma) * vec;
for(Index i=0; i<n; ++i)
{
JacobiRotation<Scalar> g;
g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
Index rs = n-i-1;
if(rs>0)
{
ColXprSegment x(mat.col(i).tail(rs));
TempVecSegment y(temp.tail(rs));
apply_rotation_in_the_plane(x, y, g);
}
}
}
else
{
temp = vec;
RealScalar beta = 1;
for(Index j=0; j<n; ++j)
{
RealScalar Ljj = numext::real(mat.coeff(j,j));
RealScalar dj = numext::abs2(Ljj);
Scalar wj = temp.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*beta + swj2;
RealScalar x = dj + swj2/beta;
if (x<=RealScalar(0))
return j;
RealScalar nLjj = sqrt(x);
mat.coeffRef(j,j) = nLjj;
beta += swj2/dj;
// Update the terms of L
Index rs = n-j-1;
if(rs)
{
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
}
}
}
return -1;
}
template<typename Scalar> struct llt_inplace<Scalar, Lower>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static Index unblocked(MatrixType& mat)
{
using std::sqrt;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = numext::real(mat.coeff(k,k));
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 /= x;
}
return -1;
}
template<typename MatrixType>
static Index blocked(MatrixType& m)
{
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = (std::min)(blockSize, size-k);
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
}
return -1;
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template<typename Scalar> struct llt_inplace<Scalar, Upper>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
* \returns a reference to *this
*
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template<typename MatrixType, int _UpLo>
template<typename InputType>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
/** Performs a rank one update (or dowdate) of the current decomposition.
* If A = LL^* before the rank one update,
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size()==m_matrix.cols());
eigen_assert(m_isInitialized);
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
m_info = NumericalIssue;
else
m_info = Success;
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
dst = rhs;
solveInPlace(dst);
}
#endif
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}
} // end namespace Eigen
#endif // EIGEN_LLT_H

View File

@ -1,99 +0,0 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to LAPACKe
* LLt decomposition based on LAPACKE_?potrf function.
********************************************************************************
*/
#ifndef EIGEN_LLT_LAPACKE_H
#define EIGEN_LLT_LAPACKE_H
namespace Eigen {
namespace internal {
template<typename Scalar> struct lapacke_llt;
#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \
template<> struct lapacke_llt<EIGTYPE> \
{ \
template<typename MatrixType> \
static inline Index potrf(MatrixType& m, char uplo) \
{ \
lapack_int matrix_order; \
lapack_int size, lda, info, StorageOrder; \
EIGTYPE* a; \
eigen_assert(m.rows()==m.cols()); \
/* Set up parameters for ?potrf */ \
size = convert_index<lapack_int>(m.rows()); \
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
a = &(m.coeffRef(0,0)); \
lda = convert_index<lapack_int>(m.outerStride()); \
\
info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \
info = (info==0) ? -1 : info>0 ? info-1 : size; \
return info; \
} \
}; \
template<> struct llt_inplace<EIGTYPE, Lower> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
}; \
template<> struct llt_inplace<EIGTYPE, Upper> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ \
Transpose<MatrixType> matt(mat); \
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
} \
};
EIGEN_LAPACKE_LLT(double, double, d)
EIGEN_LAPACKE_LLT(float, float, s)
EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z)
EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LLT_LAPACKE_H

View File

@ -1,639 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_H
#define EIGEN_CHOLMODSUPPORT_H
namespace Eigen {
namespace internal {
template<typename Scalar> struct cholmod_configure_matrix;
template<> struct cholmod_configure_matrix<double> {
template<typename CholmodType>
static void run(CholmodType& mat) {
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
};
template<> struct cholmod_configure_matrix<std::complex<double> > {
template<typename CholmodType>
static void run(CholmodType& mat) {
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
};
// Other scalar types are not yet suppotred by Cholmod
// template<> struct cholmod_configure_matrix<float> {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_REAL;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
//
// template<> struct cholmod_configure_matrix<std::complex<float> > {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_COMPLEX;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _StorageIndex>
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
{
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();
res.ncol = mat.cols();
res.p = mat.outerIndexPtr();
res.i = mat.innerIndexPtr();
res.x = mat.valuePtr();
res.z = 0;
res.sorted = 1;
if(mat.isCompressed())
{
res.packed = 1;
res.nz = 0;
}
else
{
res.packed = 0;
res.nz = mat.innerNonZeroPtr();
}
res.dtype = 0;
res.stype = -1;
if (internal::is_same<_StorageIndex,int>::value)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_StorageIndex,long>::value)
{
res.itype = CHOLMOD_LONG;
}
else
{
eigen_assert(false && "Index type not supported yet");
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>::run(res);
res.stype = 0;
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
return res;
}
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
* The data are not copied but shared. */
template<typename Derived>
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = (void*)(mat.derived().data());
res.z = 0;
internal::cholmod_configure_matrix<Scalar>::run(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template<typename Scalar, int Flags, typename StorageIndex>
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
}
enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
};
/** \ingroup CholmodSupport_Module
* \class CholmodBase
* \brief The base class for the direct Cholesky factorization of Cholmod
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
class CholmodBase : public SparseSolverBase<Derived>
{
protected:
typedef SparseSolverBase<Derived> Base;
using Base::derived;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
public:
CholmodBase()
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
{
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
cholmod_start(&m_cholmod);
}
explicit CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
{
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
cholmod_start(&m_cholmod);
compute(matrix);
}
~CholmodBase()
{
if(m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** Computes the sparse Cholesky decomposition of \a matrix */
Derived& compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
return derived();
}
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
if(m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
this->m_isInitialized = true;
this->m_info = Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
// If the factorization failed, minor is the column at which it did. On success minor == n.
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
m_factorizationIsOk = true;
}
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
* See the Cholmod user guide for details. */
cholmod_common& cholmod() { return m_cholmod; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref.
Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
cholmod_dense b_cd = viewAsCholmod(b_ref);
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
if(!x_cd)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
cholmod_free_dense(&x_cd, &m_cholmod);
}
/** \internal */
template<typename RhsDerived, typename DestDerived>
void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// note: cs stands for Cholmod Sparse
Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
cholmod_sparse b_cs = viewAsCholmod(b_ref);
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
if(!x_cs)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
cholmod_free_sparse(&x_cs, &m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
*
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
* \c d_ii = \a offset + \c d_ii
*
* The default is \a offset=0.
*
* \returns a reference to \c *this.
*/
Derived& setShift(const RealScalar& offset)
{
m_shiftOffset[0] = double(offset);
return derived();
}
/** \returns the determinant of the underlying matrix from the current factorization */
Scalar determinant() const
{
using std::exp;
return exp(logDeterminant());
}
/** \returns the log determinant of the underlying matrix from the current factorization */
Scalar logDeterminant() const
{
using std::log;
using numext::real;
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
RealScalar logDet = 0;
Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
if (m_cholmodFactor->is_super)
{
// Supernodal factorization stored as a packed list of dense column-major blocs,
// as described by the following structure:
// super[k] == index of the first column of the j-th super node
StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
// pi[k] == offset to the description of row indices
StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
// px[k] == offset to the respective dense block
StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
Index nb_super_nodes = m_cholmodFactor->nsuper;
for (Index k=0; k < nb_super_nodes; ++k)
{
StorageIndex ncols = super[k + 1] - super[k];
StorageIndex nrows = pi[k + 1] - pi[k];
Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
logDet += sk.real().log().sum();
}
}
else
{
// Simplicial factorization stored as standard CSC matrix.
StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
Index size = m_cholmodFactor->n;
for (Index k=0; k<size; ++k)
logDet += log(real( x[p[k]] ));
}
if (m_cholmodFactor->is_ll)
logDet *= 2.0;
return logDet;
};
template<typename Stream>
void dumpMemory(Stream& /*s*/)
{}
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
double m_shiftOffset[2];
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLLT
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLLT() : Base() { init(); }
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSimplicialLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLDLT
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLDLT() : Base() { init(); }
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSimplicialLDLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSupernodalLLT
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
* using the Cholmod library.
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSupernodalLLT() : Base() { init(); }
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSupernodalLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodDecomposition
* \brief A general Cholesky factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* This variant permits to change the underlying Cholesky method at runtime.
* On the other hand, it does not provide access to the result of the factorization.
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodDecomposition() : Base() { init(); }
CholmodDecomposition(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodDecomposition() {}
void setMode(CholmodMode mode)
{
switch(mode)
{
case CholmodAuto:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
break;
case CholmodSimplicialLLt:
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
break;
case CholmodSupernodalLLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
break;
case CholmodLDLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
break;
default:
break;
}
}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
}
};
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -1,325 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAY_H
#define EIGEN_ARRAY_H
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
*
* The %Array class is very similar to the Matrix class. It provides
* general-purpose one- and two-dimensional arrays. The difference between the
* %Array and the %Matrix class is primarily in the API: the API for the
* %Array class provides easy access to coefficient-wise operations, while the
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* See documentation of class Matrix for detailed information on the template parameters
* storage layout.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
typedef PlainObjectBase<Array> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
typedef typename Base::PlainObject PlainObject;
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
public:
using Base::base;
using Base::coeff;
using Base::coeffRef;
/**
* The usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill()
*/
/* This overload is needed because the usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
{
Base::setConstant(value);
return *this;
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other)
{
return Base::_set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
EIGEN_DEVICE_FUNC
Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
EIGEN_DEVICE_FUNC
Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
{
other.swap(*this);
return *this;
}
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(const T& x)
{
Base::_check_template_params();
Base::template _init1<T>(x);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
{
Base::_check_template_params();
this->template _init2<T0,T1>(val0, val1);
}
#else
/** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Array() instead.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(Index dim);
/** constructs an initialized 1x1 Array with the given coefficient */
Array(const Scalar& value);
/** constructs an uninitialized array with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size arrays. For fixed-size arrays,
* it is redundant to pass these parameters, so one should use the default constructor
* Array() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
m_storage.data()[3] = val3;
}
/** Copy constructor */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other)
{ }
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
: Base(other.derived())
{ }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN
#endif
private:
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct internal::matrix_swap_impl;
};
/** \defgroup arraytypedefs Global array typedefs
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
} // end namespace Eigen
#endif // EIGEN_ARRAY_H

View File

@ -1,226 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
namespace Eigen {
template<typename ExpressionType> class MatrixWrapper;
/** \class ArrayBase
* \ingroup Core_Module
*
* \brief Base class for all 1D and 2D array, and related expressions
*
* An array is similar to a dense vector or matrix. While matrices are mathematical
* objects with well defined linear algebra operators, an array is just a collection
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
* all operations applied to an array are performed coefficient wise. Furthermore,
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
* constructors allowing to easily write generic code working for both scalar values
* and arrays.
*
* This class is the base that is inherited by all array expression types.
*
* \tparam Derived is the derived type, e.g., an array or an expression type.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
*
* \sa class MatrixBase, \ref TopicClassHierarchy
*/
template<typename Derived> class ArrayBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef ArrayBase StorageBaseType;
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Base::PlainObject PlainObject;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
#define EIGEN_DOC_UNARY_ADDONS(X,Y)
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/ArrayCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# include "../plugins/ArrayCwiseBinaryOps.h"
# ifdef EIGEN_ARRAYBASE_PLUGIN
# include EIGEN_ARRAYBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_DOC_UNARY_ADDONS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const ArrayBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill() */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const Scalar &value)
{ Base::setConstant(value); return derived(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator+=(const Scalar& scalar);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator-=(const Scalar& scalar);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator*=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator/=(const ArrayBase<OtherDerived>& other);
public:
EIGEN_DEVICE_FUNC
ArrayBase<Derived>& array() { return *this; }
EIGEN_DEVICE_FUNC
const ArrayBase<Derived>& array() const { return *this; }
/** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
EIGEN_DEVICE_FUNC
MatrixWrapper<Derived> matrix() { return MatrixWrapper<Derived>(derived()); }
EIGEN_DEVICE_FUNC
const MatrixWrapper<const Derived> matrix() const { return MatrixWrapper<const Derived>(derived()); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
protected:
EIGEN_DEVICE_FUNC
ArrayBase() : Base() {}
private:
explicit ArrayBase(Index);
ArrayBase(Index,Index);
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
/** replaces \c *this by \c *this * \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
/** replaces \c *this by \c *this / \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_ARRAYBASE_H

View File

@ -1,207 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYWRAPPER_H
#define EIGEN_ARRAYWRAPPER_H
namespace Eigen {
/** \class ArrayWrapper
* \ingroup Core_Module
*
* \brief Expression of a mathematical vector or matrix as an array object
*
* This class is the return type of MatrixBase::array(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::array(), class MatrixWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<ArrayWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef ArrayXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
{
public:
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
using Base::coeffRef;
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_expression.coeffRef(index);
}
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& dst) const { dst = m_expression; }
const typename internal::remove_all<NestedExpressionType>::type&
EIGEN_DEVICE_FUNC
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.resize(rows,cols); }
protected:
NestedExpressionType m_expression;
};
/** \class MatrixWrapper
* \ingroup Core_Module
*
* \brief Expression of an array as a mathematical vector or matrix
*
* This class is the return type of ArrayBase::matrix(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::matrix(), class ArrayWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<MatrixWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef MatrixXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
{
public:
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
using Base::coeffRef;
EIGEN_DEVICE_FUNC
explicit inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_expression.coeffRef(index);
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<NestedExpressionType>::type&
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.resize(rows,cols); }
protected:
NestedExpressionType m_expression;
};
} // end namespace Eigen
#endif // EIGEN_ARRAYWRAPPER_H

View File

@ -1,90 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_H
#define EIGEN_ASSIGN_H
namespace Eigen {
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
::lazyAssign(const DenseBase<OtherDerived>& other)
{
enum{
SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
};
EIGEN_STATIC_ASSERT_LVALUE(Derived)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(rows() == other.rows() && cols() == other.cols());
internal::call_assignment_no_alias(derived(),other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
other.derived().evalTo(derived());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_ASSIGN_H

View File

@ -1,935 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
typedef typename DstEvaluator::XprType Dst;
typedef typename Dst::Scalar DstScalar;
enum {
DstFlags = DstEvaluator::Flags,
SrcFlags = SrcEvaluator::Flags
};
public:
enum {
DstAlignment = DstEvaluator::Alignment,
SrcAlignment = SrcEvaluator::Alignment,
DstHasDirectAccess = DstFlags & DirectAccessBit,
JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
};
private:
enum {
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime
};
// TODO distinguish between linear traversal and inner-traversals
typedef typename find_best_packet<DstScalar,Dst::SizeAtCompileTime>::type LinearPacketType;
typedef typename find_best_packet<DstScalar,InnerSize>::type InnerPacketType;
enum {
LinearPacketSize = unpacket_traits<LinearPacketType>::size,
InnerPacketSize = unpacket_traits<InnerPacketType>::size
};
public:
enum {
LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment,
InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment
};
private:
enum {
DstIsRowMajor = DstFlags&RowMajorBit,
SrcIsRowMajor = SrcFlags&RowMajorBit,
StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = bool(StorageOrdersAgree)
&& (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
&& bool(functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize
&& int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0
&& int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0
&& (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)),
MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = bool(MightVectorize) && MayLinearize && DstHasDirectAccess
&& (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess)
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize)))
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix
However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
};
public:
enum {
Traversal = int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize) ? int(LinearVectorizedTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
typedef typename conditional<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType>::type PacketType;
private:
enum {
ActualPacketSize = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize
: Vectorized ? InnerPacketSize
: 1,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize,
MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
&& int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)))
? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
#if EIGEN_UNALIGNED_VECTORIZE
: int(Traversal) == int(SliceVectorizedTraversal)
? ( bool(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling) )
#endif
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(LinearRequiredAlignment)
EIGEN_DEBUG_VAR(InnerRequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(LinearPacketSize)
EIGEN_DEBUG_VAR(InnerPacketSize)
EIGEN_DEBUG_VAR(ActualPacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_+1, Stop>::run(kernel, outer);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
{
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling
{
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel, outer);
}
};
template<typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template<typename Kernel,
int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;
/************************
*** Default traversal ***
************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel)
{
for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel &kernel,
Index start,
Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
Index start,
Index end)
#endif
{
for (Index index = start; index < end; ++index)
kernel.assignCoeff(index);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index size = kernel.size();
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment,
packetSize = unpacket_traits<PacketType>::size,
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment),
srcAlignment = Kernel::AssignmentTraits::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(kernel.dstDataPtr(), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { size = DstXprType::SizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
alignedSize = (size/packetSize)*packetSize };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
typedef typename Kernel::PacketType PacketType;
enum {
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index packetSize = unpacket_traits<PacketType>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::AssignmentTraits Traits;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime,
Traits::SrcAlignment, Traits::DstAlignment>::run(kernel, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index size = kernel.size();
for(Index i = 0; i < size; ++i)
kernel.assignCoeff(i);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
packetSize = unpacket_traits<PacketType>::size,
requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment),
alignable = packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar),
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = alignable ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment)
};
const Scalar *dst_ptr = kernel.dstDataPtr();
if((!bool(dstIsAligned)) && (UIntPtr(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligend-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel,DefaultTraversal,NoUnrolling>::run(kernel);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = numext::mini((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
#if EIGEN_UNALIGNED_VECTORIZE
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { size = DstXprType::InnerSizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
vectorizableSize = (size/packetSize)*packetSize };
for(Index outer = 0; outer < kernel.outerSize(); ++outer)
{
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, vectorizableSize, 0, 0>::run(kernel, outer);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, vectorizableSize, size>::run(kernel, outer);
}
}
};
#endif
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
{
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode,PacketType>(row,col));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode,PacketType>(index));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode,LoadMode,PacketType>(row, col);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const
{
return m_dstExpr.data();
}
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor &m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template<typename DstXprType,typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const Functor &/*func*/)
{
EIGEN_ONLY_USED_FOR_DEBUG(dst);
EIGEN_ONLY_USED_FOR_DEBUG(src);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}
template<typename DstXprType,typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::assign_op<T1,T2> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if(((dst.rows()!=dstRows) || (dst.cols()!=dstCols)))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}
template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template<typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template<typename DstShape, typename SrcShape> struct AssignmentKind;
// Assignement kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
// This is the main assignment class
template< typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
typename EnableIf = void>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition.
// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to "assume-aliasing" such that Assignment
// does not has to bother about these annoying details.
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(const Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// Deal with "assume-aliasing"
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<!evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
call_assignment_no_alias(dst, src, func);
}
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
call_assignment_no_alias(dst.expression(), src, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
enum {
NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
|| (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)
) && int(Dst::SizeAtCompileTime) != 1
};
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src)
{
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
{
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar);
Assignment<Dst,Src,Func>::run(dst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
{
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// forward declaration
template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);
// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
// NOTE The following two functions are templated to avoid their instanciation if not needed
// This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.addTo(dst);
}
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.subTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H

View File

@ -1,176 +0,0 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to Intel(R) MKL
* MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
********************************************************************************
*/
#ifndef EIGEN_ASSIGN_VML_H
#define EIGEN_ASSIGN_VML_H
namespace Eigen {
namespace internal {
template<typename Dst, typename Src>
class vml_assign_traits
{
private:
enum {
DstHasDirectAccess = Dst::Flags & DirectAccessBit,
SrcHasDirectAccess = Src::Flags & DirectAccessBit,
StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD
};
public:
enum {
EnableVml = MightEnableVml && LargeEnough,
Traversal = MightLinearize ? LinearTraversal : DefaultTraversal
};
};
#define EIGEN_PP_EXPAND(ARG) ARG
#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
#define EIGEN_VMLMODE_EXPAND_LA , VML_HA
#else
#define EIGEN_VMLMODE_EXPAND_LA , VML_LA
#endif
#define EIGEN_VMLMODE_EXPAND__
#define EIGEN_VMLMODE_PREFIX_LA vm
#define EIGEN_VMLMODE_PREFIX__ v
#define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_,VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested> \
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
&(src.nestedExpression().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
}; \
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA)
// EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested, typename Plain> \
struct Assignment<DstXprType, CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> >, assign_op<EIGENTYPE,EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.rhs().functor().m_other); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
{ \
VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \
&(src.lhs().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
};
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_VML_H

View File

@ -1,353 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BANDMATRIX_H
#define EIGEN_BANDMATRIX_H
namespace Eigen {
namespace internal {
template<typename Derived>
class BandMatrixBase : public EigenBase<Derived>
{
public:
enum {
Flags = internal::traits<Derived>::Flags,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
Supers = internal::traits<Derived>::Supers,
Subs = internal::traits<Derived>::Subs,
Options = internal::traits<Derived>::Options
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
typedef typename DenseMatrixType::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
typedef EigenBase<Derived> Base;
protected:
enum {
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
? 1 + Supers + Subs
: Dynamic,
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
};
public:
using Base::derived;
using Base::rows;
using Base::cols;
/** \returns the number of super diagonals */
inline Index supers() const { return derived().supers(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return derived().subs(); }
/** \returns an expression of the underlying coefficient matrix */
inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
/** \returns an expression of the underlying coefficient matrix */
inline CoefficientsType& coeffs() { return derived().coeffs(); }
/** \returns a vector expression of the \a i -th column,
* only the meaningful part is returned.
* \warning the internal storage must be column major. */
inline Block<CoefficientsType,Dynamic,1> col(Index i)
{
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
Index start = 0;
Index len = coeffs().rows();
if (i<=supers())
{
start = supers()-i;
len = (std::min)(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
}
else if (i>=rows()-subs())
len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
}
/** \returns a vector expression of the main diagonal */
inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
{ return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
/** \returns a vector expression of the main diagonal (const version) */
inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
{ return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
template<int Index> struct DiagonalIntReturnType {
enum {
ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
ActualIndex = ReturnOpposite ? -Index : Index,
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
? Dynamic
: (ActualIndex<0
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
};
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
typedef typename internal::conditional<Conjugate,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
BuildType>::type Type;
};
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
template<typename Dest> inline void evalTo(Dest& dst) const
{
dst.resize(rows(),cols());
dst.setZero();
dst.diagonal() = diagonal();
for (Index i=1; i<=supers();++i)
dst.diagonal(i) = diagonal(i);
for (Index i=1; i<=subs();++i)
dst.diagonal(-i) = diagonal(-i);
}
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(),cols());
evalTo(res);
return res;
}
protected:
inline Index diagonalLength(Index i) const
{ return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); }
};
/**
* \class BandMatrix
* \ingroup Core_Module
*
* \brief Represents a rectangular matrix with a banded storage
*
* \tparam _Scalar Numeric type, i.e. float, double, int
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
* \tparam _Supers Number of super diagonal
* \tparam _Subs Number of sub diagonal
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
public:
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
typedef typename internal::traits<BandMatrix>::StorageIndex StorageIndex;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
inline CoefficientsType& coeffs() { return m_coeffs; }
protected:
CoefficientsType m_coeffs;
internal::variable_if_dynamic<Index, Rows> m_rows;
internal::variable_if_dynamic<Index, Supers> m_supers;
internal::variable_if_dynamic<Index, Subs> m_subs;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper;
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::StorageIndex StorageIndex;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef _CoefficientsType CoefficientsType;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
public:
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::StorageIndex StorageIndex;
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
EIGEN_UNUSED_VARIABLE(cols);
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
protected:
const CoefficientsType& m_coeffs;
internal::variable_if_dynamic<Index, _Rows> m_rows;
internal::variable_if_dynamic<Index, _Supers> m_supers;
internal::variable_if_dynamic<Index, _Subs> m_subs;
};
/**
* \class TridiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \tparam Scalar Numeric type, i.e. float, double, int
* \tparam Size Number of rows and cols, or \b Dynamic
* \tparam Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::StorageIndex StorageIndex;
public:
explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
{ return Base::template diagonal<1>(); }
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
{ return Base::template diagonal<-1>(); }
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
{ return Base::template diagonal<-1>(); }
protected:
};
struct BandShape {};
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<> struct AssignmentKind<DenseShape,BandShape> { typedef EigenBase2EigenBase Kind; };
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BANDMATRIX_H

View File

@ -1,452 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLOCK_H
#define EIGEN_BLOCK_H
namespace Eigen {
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename ref_selector<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
// FIXME, this traits is rather specialized for dense object and it needs to be cleaned further
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags = (traits<XprType>::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit,
// FIXME DirectAccessBit should not be handled by expressions
//
// Alignment is needed by MapBase's assertions
// We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator
Alignment = 0
};
};
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
} // end namespace internal
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \tparam XprType the type of the expression in which we are taking a block
* \tparam BlockRows the number of rows of the block we are taking at compile time (optional)
* \tparam BlockCols the number of columns of the block we are taking at compile time (optional)
* \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or
* to set of columns of a column major matrix (optional). The parameter allows to determine
* at compile time whether aligned access is possible on the block expression.
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
: public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
{
typedef BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind> Impl;
public:
//typedef typename Impl::Base Base;
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
typedef typename internal::remove_all<XprType>::type NestedExpression;
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index i) : Impl(xpr,i)
{
eigen_assert( (i>=0) && (
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index startRow, Index startCol)
: Impl(xpr, startRow, startCol)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(startRow >= 0 && BlockRows >= 0 && startRow + BlockRows <= xpr.rows()
&& startCol >= 0 && BlockCols >= 0 && startCol + BlockCols <= xpr.cols());
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows
&& startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols);
}
};
// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense
// that must be specialized for direct and non-direct access...
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Dense>
: public internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel>
{
typedef internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel> Impl;
typedef typename XprType::StorageIndex StorageIndex;
public:
typedef Impl Base;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {}
EIGEN_DEVICE_FUNC
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols) {}
};
namespace internal {
/** \internal Internal implementation of dense Blocks in the general case. */
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class BlockImpl_dense
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel> >::type
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef typename internal::ref_selector<XprType>::non_const_type XprTypeNested;
public:
typedef typename internal::dense_xpr_base<BlockType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
// class InnerIterator; // FIXME apparently never used
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: m_xpr(xpr),
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
// and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
// all other cases are invalid.
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(BlockRows), m_blockCols(BlockCols)
{}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_blockRows.value(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_blockCols.value(); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_xpr.derived().coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const CoeffReturnType coeff(Index index) const
{
return m_xpr.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return m_xpr.template packet<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value());
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_xpr.template writePacket<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value(), val);
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
return m_xpr.template packet<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_xpr.template writePacket<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
EIGEN_DEVICE_FUNC inline const Scalar* data() const;
EIGEN_DEVICE_FUNC inline Index innerStride() const;
EIGEN_DEVICE_FUNC inline Index outerStride() const;
#endif
EIGEN_DEVICE_FUNC
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
XprType& nestedExpression() { return m_xpr; }
EIGEN_DEVICE_FUNC
StorageIndex startRow() const
{
return m_startRow.value();
}
EIGEN_DEVICE_FUNC
StorageIndex startCol() const
{
return m_startCol.value();
}
protected:
XprTypeNested m_xpr;
const internal::variable_if_dynamic<StorageIndex, (XprType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<StorageIndex, (XprType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<StorageIndex, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<StorageIndex, ColsAtCompileTime> m_blockCols;
};
/** \internal Internal implementation of dense Blocks in the direct access case.*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef typename internal::ref_selector<XprType>::non_const_type XprTypeNested;
enum {
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0
};
public:
typedef MapBase<BlockType> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor))
|| ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)
{
init();
}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)),
m_xpr(xpr), m_startRow(startRow), m_startCol(startCol)
{
init();
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols),
m_xpr(xpr), m_startRow(startRow), m_startCol(startCol)
{
init();
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
XprType& nestedExpression() { return m_xpr; }
/** \sa MapBase::innerStride() */
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.innerStride()
: m_xpr.outerStride();
}
/** \sa MapBase::outerStride() */
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return m_outerStride;
}
EIGEN_DEVICE_FUNC
StorageIndex startRow() const
{
return m_startRow.value();
}
EIGEN_DEVICE_FUNC
StorageIndex startCol() const
{
return m_startCol.value();
}
#ifndef __SUNPRO_CC
// FIXME sunstudio is not friendly with the above friend...
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
protected:
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal used by allowAligned() */
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
: Base(data, blockRows, blockCols), m_xpr(xpr)
{
init();
}
#endif
protected:
EIGEN_DEVICE_FUNC
void init()
{
m_outerStride = internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.outerStride()
: m_xpr.innerStride();
}
XprTypeNested m_xpr;
const internal::variable_if_dynamic<StorageIndex, (XprType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<StorageIndex, (XprType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
Index m_outerStride;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BLOCK_H

View File

@ -1,164 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
namespace Eigen {
namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct all_unroller<Derived, 0>
{
static inline bool run(const Derived &/*mat*/) { return true; }
};
template<typename Derived>
struct all_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct any_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct any_unroller<Derived, 0>
{
static inline bool run(const Derived & /*mat*/) { return false; }
};
template<typename Derived>
struct any_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
} // end namespace internal
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (!evaluator.coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (evaluator.coeff(i, j)) return true;
return false;
}
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
inline Eigen::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
/** \returns true is \c *this contains at least one Not A Number (NaN).
*
* \sa allFinite()
*/
template<typename Derived>
inline bool DenseBase<Derived>::hasNaN() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isNaN().any();
#else
return !((derived().array()==derived().array()).all());
#endif
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
*
* \sa hasNaN()
*/
template<typename Derived>
inline bool DenseBase<Derived>::allFinite() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isFinite().all();
#else
return !((derived()-derived()).hasNaN());
#endif
}
} // end namespace Eigen
#endif // EIGEN_ALLANDANY_H

View File

@ -1,160 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMMAINITIALIZER_H
#define EIGEN_COMMAINITIALIZER_H
namespace Eigen {
/** \class CommaInitializer
* \ingroup Core_Module
*
* \brief Helper class used by the comma initializer operator
*
* This class is internally used to implement the comma initializer feature. It is
* the return type of MatrixBase::operator<<, and most of the time this is the only
* way it is used.
*
* \sa \blank \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
*/
template<typename XprType>
struct CommaInitializer
{
typedef typename XprType::Scalar Scalar;
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const Scalar& s)
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
{
m_xpr.coeffRef(0,0) = s;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
{
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
}
/* Copy/Move constructor which transfers ownership. This is crucial in
* absence of return value optimization to avoid assertions during destruction. */
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
EIGEN_DEVICE_FUNC
inline CommaInitializer(const CommaInitializer& o)
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
// Mark original object as finished. In absence of R-value references we need to const_cast:
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
}
/* inserts a scalar value in the target matrix */
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const Scalar& s)
{
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = 1;
eigen_assert(m_row<m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==1);
m_xpr.coeffRef(m_row, m_col++) = s;
return *this;
}
/* inserts a matrix expression in the target matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
{
if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows))
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = other.rows();
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert((m_col + other.cols() <= m_xpr.cols())
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==other.rows());
m_xpr.template block<OtherDerived::RowsAtCompileTime, OtherDerived::ColsAtCompileTime>
(m_row, m_col, other.rows(), other.cols()) = other;
m_col += other.cols();
return *this;
}
EIGEN_DEVICE_FUNC
inline ~CommaInitializer()
#if defined VERIFY_RAISES_ASSERT && (!defined EIGEN_NO_ASSERTION_CHECKING) && defined EIGEN_EXCEPTIONS
EIGEN_EXCEPTION_SPEC(Eigen::eigen_assert_exception)
#endif
{
finished();
}
/** \returns the built matrix once all its coefficients have been set.
* Calling finished is 100% optional. Its purpose is to write expressions
* like this:
* \code
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
* \endcode
*/
EIGEN_DEVICE_FUNC
inline XprType& finished() {
eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0)
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
return m_xpr;
}
XprType& m_xpr; // target expression
Index m_row; // current row id
Index m_col; // current col id
Index m_currentBlockRows; // current block height
};
/** \anchor MatrixBaseCommaInitRef
* Convenient operator to set the coefficients of a matrix.
*
* The coefficients must be provided in a row major order and exactly match
* the size of the matrix. Otherwise an assertion is raised.
*
* Example: \include MatrixBase_set.cpp
* Output: \verbinclude MatrixBase_set.out
*
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
*
* \sa CommaInitializer::finished(), class CommaInitializer
*/
template<typename Derived>
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
{
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
}
/** \sa operator<<(const Scalar&) */
template<typename Derived>
template<typename OtherDerived>
inline CommaInitializer<Derived>
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
{
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
}
} // end namespace Eigen
#endif // EIGEN_COMMAINITIALIZER_H

View File

@ -1,175 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CONDITIONESTIMATOR_H
#define EIGEN_CONDITIONESTIMATOR_H
namespace Eigen {
namespace internal {
template <typename Vector, typename RealVector, bool IsComplex>
struct rcond_compute_sign {
static inline Vector run(const Vector& v) {
const RealVector v_abs = v.cwiseAbs();
return (v_abs.array() == static_cast<typename Vector::RealScalar>(0))
.select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
}
};
// Partial specialization to avoid elementwise division for real vectors.
template <typename Vector>
struct rcond_compute_sign<Vector, Vector, false> {
static inline Vector run(const Vector& v) {
return (v.array() < static_cast<typename Vector::RealScalar>(0))
.select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
}
};
/**
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
* \a matrix that implements .solve() and .adjoint().solve() methods.
*
* This function implements Algorithms 4.1 and 5.1 from
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
* which also forms the basis for the condition number estimators in
* LAPACK. Since at most 10 calls to the solve method of dec are
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
* needed to compute the inverse matrix explicitly.
*
* The most common usage is in estimating the condition number
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
* computed directly in O(n^2) operations.
*
* Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and
* LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec)
{
typedef typename Decomposition::MatrixType MatrixType;
typedef typename Decomposition::Scalar Scalar;
typedef typename Decomposition::RealScalar RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector;
const bool is_complex = (NumTraits<Scalar>::IsComplex != 0);
eigen_assert(dec.rows() == dec.cols());
const Index n = dec.rows();
if (n == 0)
return 0;
// Disable Index to float conversion warning
#ifdef __INTEL_COMPILER
#pragma warning push
#pragma warning ( disable : 2259 )
#endif
Vector v = dec.solve(Vector::Ones(n) / Scalar(n));
#ifdef __INTEL_COMPILER
#pragma warning pop
#endif
// lower_bound is a lower bound on
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
// and is the objective maximized by the ("super-") gradient ascent
// algorithm below.
RealScalar lower_bound = v.template lpNorm<1>();
if (n == 1)
return lower_bound;
// Gradient ascent algorithm follows: We know that the optimum is achieved at
// one of the simplices v = e_i, so in each iteration we follow a
// super-gradient to move towards the optimal one.
RealScalar old_lower_bound = lower_bound;
Vector sign_vector(n);
Vector old_sign_vector;
Index v_max_abs_index = -1;
Index old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k)
{
sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v);
if (k > 0 && !is_complex && sign_vector == old_sign_vector) {
// Break if the solution stagnated.
break;
}
// v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )|
v = dec.adjoint().solve(sign_vector);
v.real().cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
break;
}
// Move to the new simplex e_j, where j = v_max_abs_index.
v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j.
lower_bound = v.template lpNorm<1>();
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
break;
}
if (!is_complex) {
old_sign_vector = sign_vector;
}
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
// The following calculates an independent estimate of ||matrix||_1 by
// multiplying matrix by a vector with entries of slowly increasing
// magnitude and alternating sign:
// v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
// This improvement to Hager's algorithm above is due to Higham. It was
// added to make the algorithm more robust in certain corner cases where
// large elements in the matrix might otherwise escape detection due to
// exact cancellation (especially when op and op_adjoint correspond to a
// sequence of backsubstitutions and permutations), which could cause
// Hager's algorithm to vastly underestimate ||matrix||_1.
Scalar alternating_sign(RealScalar(1));
for (Index i = 0; i < n; ++i) {
// The static_cast is needed when Scalar is a complex and RealScalar implements expression templates
v[i] = alternating_sign * static_cast<RealScalar>(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1))));
alternating_sign = -alternating_sign;
}
v = dec.solve(v);
const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n));
return numext::maxi(lower_bound, alternate_lower_bound);
}
/** \brief Reciprocal condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU, LDLT, and LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar
rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec)
{
typedef typename Decomposition::RealScalar RealScalar;
eigen_assert(dec.rows() == dec.cols());
if (dec.rows() == 0) return RealScalar(1);
if (matrix_norm == RealScalar(0)) return RealScalar(0);
if (dec.rows() == 1) return RealScalar(1);
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0)
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
}
} // namespace internal
} // namespace Eigen
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,127 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COREITERATORS_H
#define EIGEN_COREITERATORS_H
namespace Eigen {
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/
namespace internal {
template<typename XprType, typename EvaluatorKind>
class inner_iterator_selector;
}
/** \class InnerIterator
* \brief An InnerIterator allows to loop over the element of any matrix expression.
*
* \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed.
*
* TODO: add a usage example
*/
template<typename XprType>
class InnerIterator
{
protected:
typedef internal::inner_iterator_selector<XprType, typename internal::evaluator_traits<XprType>::Kind> IteratorType;
typedef internal::evaluator<XprType> EvaluatorType;
typedef typename internal::traits<XprType>::Scalar Scalar;
public:
/** Construct an iterator over the \a outerId -th row or column of \a xpr */
InnerIterator(const XprType &xpr, const Index &outerId)
: m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize())
{}
/// \returns the value of the current coefficient.
EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); }
/** Increment the iterator \c *this to the next non-zero coefficient.
* Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView
*/
EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; }
/// \returns the column or row index of the current coefficient.
EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); }
/// \returns the row index of the current coefficient.
EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); }
/// \returns the column index of the current coefficient.
EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); }
/// \returns \c true if the iterator \c *this still references a valid coefficient.
EIGEN_STRONG_INLINE operator bool() const { return m_iter; }
protected:
EvaluatorType m_eval;
IteratorType m_iter;
private:
// If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template<typename T> InnerIterator(const EigenBase<T>&,Index outer);
};
namespace internal {
// Generic inner iterator implementation for dense objects
template<typename XprType>
class inner_iterator_selector<XprType, IndexBased>
{
protected:
typedef evaluator<XprType> EvaluatorType;
typedef typename traits<XprType>::Scalar Scalar;
enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize)
: m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize)
{}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner)
: m_eval.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; }
EIGEN_STRONG_INLINE Index index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const EvaluatorType& m_eval;
Index m_inner;
const Index m_outer;
const Index m_end;
};
// For iterator-based evaluator, inner-iterator is already implemented as
// evaluator<>::InnerIterator
template<typename XprType>
class inner_iterator_selector<XprType, IteratorBased>
: public evaluator<XprType>::InnerIterator
{
protected:
typedef typename evaluator<XprType>::InnerIterator Base;
typedef evaluator<XprType> EvaluatorType;
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/)
: Base(eval, outerId)
{}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COREITERATORS_H

View File

@ -1,184 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
namespace Eigen {
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
// we must not inherit from traits<Lhs> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Lhs>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<
BinaryOp(
const typename Lhs::Scalar&,
const typename Rhs::Scalar&
)
>::type Scalar;
typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind,
BinaryOp>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::StorageIndex,
typename traits<Rhs>::StorageIndex>::type StorageIndex;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
Flags = cwise_promote_storage_order<typename traits<Lhs>::StorageKind,typename traits<Rhs>::StorageKind,_LhsNested::Flags & RowMajorBit,_RhsNested::Flags & RowMajorBit>::value
};
};
} // end namespace internal
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \tparam BinaryOp template functor implementing the operator
* \tparam LhsType the type of the left-hand side
* \tparam RhsType the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename LhsType, typename RhsType>
class CwiseBinaryOp :
public CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<RhsType>::StorageKind,
BinaryOp>::ret>,
internal::no_assignment_operator
{
public:
typedef typename internal::remove_all<BinaryOp>::type Functor;
typedef typename internal::remove_all<LhsType>::type Lhs;
typedef typename internal::remove_all<RhsType>::type Rhs;
typedef typename CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<Rhs>::StorageKind,
BinaryOp>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename internal::ref_selector<LhsType>::type LhsNested;
typedef typename internal::ref_selector<RhsType>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
: m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
{
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
return m_rhs.rows();
else
return m_lhs.rows();
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
return m_rhs.cols();
else
return m_lhs.cols();
}
/** \returns the left hand side nested expression */
EIGEN_DEVICE_FUNC
const _LhsNested& lhs() const { return m_lhs; }
/** \returns the right hand side nested expression */
EIGEN_DEVICE_FUNC
const _RhsNested& rhs() const { return m_rhs; }
/** \returns the functor representing the binary operation */
EIGEN_DEVICE_FUNC
const BinaryOp& functor() const { return m_functor; }
protected:
LhsNested m_lhs;
RhsNested m_rhs;
const BinaryOp m_functor;
};
// Generic API dispatcher
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl
: public internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_CWISE_BINARY_OP_H

View File

@ -1,866 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_NULLARY_OP_H
#define EIGEN_CWISE_NULLARY_OP_H
namespace Eigen {
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = traits<PlainObjectType>::Flags & RowMajorBit
};
};
} // namespace internal
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \tparam NullaryOp template functor implementing the operator
* \tparam PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* The functor NullaryOp must expose one of the following method:
<table class="manual">
<tr ><td>\c operator()() </td><td>if the procedural generation does not depend on the coefficient entries (e.g., random numbers)</td></tr>
<tr class="alt"><td>\c operator()(Index i)</td><td>if the procedural generation makes sense for vectors only and that it depends on the coefficient index \c i (e.g., linspace) </td></tr>
<tr ><td>\c operator()(Index i,Index j)</td><td>if the procedural generation depends on the matrix coordinates \c i, \c j (e.g., to generate a checkerboard with 0 and 1)</td></tr>
</table>
* It is also possible to expose the last two operators if the generation makes sense for matrices but can be optimized for vectors.
*
* See DenseBase::NullaryExpr(Index,const CustomNullaryOp&) for an example binding
* C++11 random number generators.
*
* A nullary expression can also be used to implement custom sophisticated matrix manipulations
* that cannot be covered by the existing set of natively supported matrix manipulations.
* See this \ref TopicCustomizing_NullaryExpr "page" for some examples and additional explanations
* on the behavior of CwiseNullaryOp.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr
*/
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type, internal::no_assignment_operator
{
public:
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
EIGEN_DEVICE_FUNC
CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp())
: m_rows(rows), m_cols(cols), m_functor(func)
{
eigen_assert(rows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
/** \returns the functor representing the nullary operation */
EIGEN_DEVICE_FUNC
const NullaryOp& functor() const { return m_functor; }
protected:
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
const NullaryOp m_functor;
};
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* Here is an example with C++11 random generators: \include random_cpp11.cpp
* Output: \verbinclude random_cpp11.out
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, PlainObject>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, PlainObject>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this DenseBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this DenseBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index size, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(const Scalar& value)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
}
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(Index,const Scalar&,const Scalar&)
*
* \sa LinSpaced(Index,Scalar,Scalar), setLinSpaced(Index,const Scalar&,const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
}
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(const Scalar&,const Scalar&)
*
* \sa LinSpaced(Scalar,Scalar)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
}
/**
* \brief Sets a linearly spaced vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced.cpp
* Output: \verbinclude DenseBase_LinSpaced.out
*
* For integer scalar types, an even spacing is possible if and only if the length of the range,
* i.e., \c high-low is a scalar multiple of \c size-1, or if \c size is a scalar multiple of the
* number of values \c high-low+1 (meaning each value can be repeated the same number of time).
* If one of these two considions is not satisfied, then \c high is lowered to the largest value
* satisfying one of this constraint.
* Here are some examples:
*
* Example: \include DenseBase_LinSpacedInt.cpp
* Output: \verbinclude DenseBase_LinSpacedInt.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
}
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isApproxToConstant
(const Scalar& val, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isApprox(self.coeff(i, j), val, prec))
return false;
return true;
}
/** This is just an alias for isApproxToConstant().
*
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isConstant
(const Scalar& val, const RealScalar& prec) const
{
return isApproxToConstant(val, prec);
}
/** Alias for setConstant(): sets all coefficients in this expression to \a val.
*
* \sa setConstant(), Constant(), class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
{
setConstant(val);
}
/** Sets all coefficients in this expression to value \a val.
*
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
{
return derived() = Constant(rows(), cols(), val);
}
/** Resizes to the given \a size, and sets all coefficients in this expression to the given value \a val.
*
* \only_for_vectors
*
* Example: \include Matrix_setConstant_int.cpp
* Output: \verbinclude Matrix_setConstant_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
{
resize(size);
return setConstant(val);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given value \a val.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param val the value to which all coefficients are set
*
* Example: \include Matrix_setConstant_int_int.cpp
* Output: \verbinclude Matrix_setConstant_int_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
{
resize(rows, cols);
return setConstant(val);
}
/**
* \brief Sets a linearly spaced vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_setLinSpaced.cpp
* Output: \verbinclude DenseBase_setLinSpaced.out
*
* For integer scalar types, do not miss the explanations on the definition
* of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink.
*
* \sa LinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar>(low,high,newSize));
}
/**
* \brief Sets a linearly spaced vector.
*
* The function fills \c *this with equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* For integer scalar types, do not miss the explanations on the definition
* of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink.
*
* \sa LinSpaced(Index,const Scalar&,const Scalar&), setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return setLinSpaced(size(), low, high);
}
// zero:
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa Zero(), Zero(Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(0));
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa Zero(), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index size)
{
return Constant(size, Scalar(0));
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa Zero(Index), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero()
{
return Constant(Scalar(0));
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
bool DenseBase<Derived>::isZero(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
*
* \only_for_vectors
*
* Example: \include Matrix_setZero_int.cpp
* Output: \verbinclude Matrix_setZero_int.out
*
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index newSize)
{
resize(newSize);
return setConstant(Scalar(0));
}
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setZero_int_int.cpp
* Output: \verbinclude Matrix_setZero_int_int.out
*
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(0));
}
// ones:
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int_int.cpp
* Output: \verbinclude MatrixBase_ones_int_int.out
*
* \sa Ones(), Ones(Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
*
* The parameter \a newSize is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int.cpp
* Output: \verbinclude MatrixBase_ones_int.out
*
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index newSize)
{
return Constant(newSize, Scalar(1));
}
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_ones.cpp
* Output: \verbinclude MatrixBase_ones.out
*
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones()
{
return Constant(Scalar(1));
}
/** \returns true if *this is approximately equal to the matrix where all coefficients
* are equal to 1, within the precision given by \a prec.
*
* Example: \include MatrixBase_isOnes.cpp
* Output: \verbinclude MatrixBase_isOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
bool DenseBase<Derived>::isOnes
(const RealScalar& prec) const
{
return isApproxToConstant(Scalar(1), prec);
}
/** Sets all coefficients in this expression to one.
*
* Example: \include MatrixBase_setOnes.cpp
* Output: \verbinclude MatrixBase_setOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
/** Resizes to the given \a newSize, and sets all coefficients in this expression to one.
*
* \only_for_vectors
*
* Example: \include Matrix_setOnes_int.cpp
* Output: \verbinclude Matrix_setOnes_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index newSize)
{
resize(newSize);
return setConstant(Scalar(1));
}
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setOnes_int_int.cpp
* Output: \verbinclude Matrix_setOnes_int_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(1));
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa Identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index rows, Index cols)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa Identity(Index,Index), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity()
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
{
for(Index i = 0; i < rows(); ++i)
{
if(i == j)
{
if(!internal::isApprox(self.coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
namespace internal {
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
struct setIdentity_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
return m = Derived::Identity(m.rows(), m.cols());
}
};
template<typename Derived>
struct setIdentity_impl<Derived, true>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
m.setZero();
const Index size = numext::mini(m.rows(), m.cols());
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
return m;
}
};
} // end namespace internal
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
{
return internal::setIdentity_impl<Derived>::run(derived());
}
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setIdentity_int_int.cpp
* Output: \verbinclude Matrix_setIdentity_int_int.out
*
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
{
derived().resize(rows, cols);
return setIdentity();
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* This variant is for fixed-size vector only.
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(),i);
}
/** \returns an expression of the X axis unit vector (1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
{ return Derived::Unit(0); }
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
{ return Derived::Unit(1); }
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
{ return Derived::Unit(2); }
/** \returns an expression of the W axis unit vector (0,0,0,1)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
{ return Derived::Unit(3); }
} // end namespace Eigen
#endif // EIGEN_CWISE_NULLARY_OP_H

View File

@ -1,197 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_TERNARY_OP_H
#define EIGEN_CWISE_TERNARY_OP_H
namespace Eigen {
namespace internal {
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct traits<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > {
// we must not inherit from traits<Arg1> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Arg1>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Arg1, Arg2, and Arg3 to have the same scalar type
// (see CwiseTernaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<TernaryOp(
const typename Arg1::Scalar&, const typename Arg2::Scalar&,
const typename Arg3::Scalar&)>::type Scalar;
typedef typename internal::traits<Arg1>::StorageKind StorageKind;
typedef typename internal::traits<Arg1>::StorageIndex StorageIndex;
typedef typename Arg1::Nested Arg1Nested;
typedef typename Arg2::Nested Arg2Nested;
typedef typename Arg3::Nested Arg3Nested;
typedef typename remove_reference<Arg1Nested>::type _Arg1Nested;
typedef typename remove_reference<Arg2Nested>::type _Arg2Nested;
typedef typename remove_reference<Arg3Nested>::type _Arg3Nested;
enum { Flags = _Arg1Nested::Flags & RowMajorBit };
};
} // end namespace internal
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3,
typename StorageKind>
class CwiseTernaryOpImpl;
/** \class CwiseTernaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise ternary operator is
* applied to two expressions
*
* \tparam TernaryOp template functor implementing the operator
* \tparam Arg1Type the type of the first argument
* \tparam Arg2Type the type of the second argument
* \tparam Arg3Type the type of the third argument
*
* This class represents an expression where a coefficient-wise ternary
* operator is applied to three expressions.
* It is the return type of ternary operators, by which we mean only those
* ternary operators where
* all three arguments are Eigen expressions.
* For example, the return type of betainc(matrix1, matrix2, matrix3) is a
* CwiseTernaryOp.
*
* Most of the time, this is the only way that it is used, so you typically
* don't have to name
* CwiseTernaryOp types explicitly.
*
* \sa MatrixBase::ternaryExpr(const MatrixBase<Argument2> &, const
* MatrixBase<Argument3> &, const CustomTernaryOp &) const, class CwiseBinaryOp,
* class CwiseUnaryOp, class CwiseNullaryOp
*/
template <typename TernaryOp, typename Arg1Type, typename Arg2Type,
typename Arg3Type>
class CwiseTernaryOp : public CwiseTernaryOpImpl<
TernaryOp, Arg1Type, Arg2Type, Arg3Type,
typename internal::traits<Arg1Type>::StorageKind>,
internal::no_assignment_operator
{
public:
typedef typename internal::remove_all<Arg1Type>::type Arg1;
typedef typename internal::remove_all<Arg2Type>::type Arg2;
typedef typename internal::remove_all<Arg3Type>::type Arg3;
typedef typename CwiseTernaryOpImpl<
TernaryOp, Arg1Type, Arg2Type, Arg3Type,
typename internal::traits<Arg1Type>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseTernaryOp)
typedef typename internal::ref_selector<Arg1Type>::type Arg1Nested;
typedef typename internal::ref_selector<Arg2Type>::type Arg2Nested;
typedef typename internal::ref_selector<Arg3Type>::type Arg3Nested;
typedef typename internal::remove_reference<Arg1Nested>::type _Arg1Nested;
typedef typename internal::remove_reference<Arg2Nested>::type _Arg2Nested;
typedef typename internal::remove_reference<Arg3Nested>::type _Arg3Nested;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CwiseTernaryOp(const Arg1& a1, const Arg2& a2,
const Arg3& a3,
const TernaryOp& func = TernaryOp())
: m_arg1(a1), m_arg2(a2), m_arg3(a3), m_functor(func) {
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3)
// The index types should match
EIGEN_STATIC_ASSERT((internal::is_same<
typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg2Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<
typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg3Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
eigen_assert(a1.rows() == a2.rows() && a1.cols() == a2.cols() &&
a1.rows() == a3.rows() && a1.cols() == a3.cols());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time
// optimizations
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
RowsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
RowsAtCompileTime == Dynamic)
return m_arg3.rows();
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
RowsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
RowsAtCompileTime == Dynamic)
return m_arg2.rows();
else
return m_arg1.rows();
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time
// optimizations
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
ColsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
ColsAtCompileTime == Dynamic)
return m_arg3.cols();
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
ColsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
ColsAtCompileTime == Dynamic)
return m_arg2.cols();
else
return m_arg1.cols();
}
/** \returns the first argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg1Nested& arg1() const { return m_arg1; }
/** \returns the first argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg2Nested& arg2() const { return m_arg2; }
/** \returns the third argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg3Nested& arg3() const { return m_arg3; }
/** \returns the functor representing the ternary operation */
EIGEN_DEVICE_FUNC
const TernaryOp& functor() const { return m_functor; }
protected:
Arg1Nested m_arg1;
Arg2Nested m_arg2;
Arg3Nested m_arg3;
const TernaryOp m_functor;
};
// Generic API dispatcher
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3,
typename StorageKind>
class CwiseTernaryOpImpl
: public internal::generic_xpr_base<
CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >::type {
public:
typedef typename internal::generic_xpr_base<
CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >::type Base;
};
} // end namespace Eigen
#endif // EIGEN_CWISE_TERNARY_OP_H

View File

@ -1,103 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
namespace Eigen {
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(const typename XprType::Scalar&)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & RowMajorBit
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \tparam UnaryOp template functor implementing the operator
* \tparam XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>, internal::no_assignment_operator
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
typedef typename internal::remove_all<XprType>::type NestedExpression;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Index rows() const { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Index cols() const { return m_xpr.cols(); }
/** \returns the functor representing the unary operation */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const UnaryOp& functor() const { return m_functor; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<XprTypeNested>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename internal::remove_all<XprTypeNested>::type&
nestedExpression() { return m_xpr; }
protected:
XprTypeNested m_xpr;
const UnaryOp m_functor;
};
// Generic API dispatcher
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl
: public internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_OP_H

View File

@ -1,128 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_VIEW_H
#define EIGEN_CWISE_UNARY_VIEW_H
namespace Eigen {
namespace internal {
template<typename ViewOp, typename MatrixType>
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
: traits<MatrixType>
{
typedef typename result_of<
ViewOp(const typename traits<MatrixType>::Scalar&)
>::type Scalar;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
? int(Dynamic)
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
? int(Dynamic)
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
};
};
}
template<typename ViewOp, typename MatrixType, typename StorageKind>
class CwiseUnaryViewImpl;
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \tparam ViewOp template functor implementing the view
* \tparam MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
template<typename ViewOp, typename MatrixType>
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
{
public:
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
explicit inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
/** \returns the functor representing unary operation */
const ViewOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<MatrixTypeNested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename internal::remove_reference<MatrixTypeNested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
MatrixTypeNested m_matrix;
ViewOp m_functor;
};
// Generic API dispatcher
template<typename ViewOp, typename XprType, typename StorageKind>
class CwiseUnaryViewImpl
: public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type Base;
};
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
{
public:
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
EIGEN_DEVICE_FUNC inline Scalar* data() { return &(this->coeffRef(0)); }
EIGEN_DEVICE_FUNC inline const Scalar* data() const { return &(this->coeff(0)); }
EIGEN_DEVICE_FUNC inline Index innerStride() const
{
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
EIGEN_DEVICE_FUNC inline Index outerStride() const
{
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_VIEW_H

View File

@ -1,611 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H
namespace Eigen {
namespace internal {
// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
// This dummy function simply aims at checking that at compile time.
static inline void check_DenseIndex_is_signed() {
EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
}
} // end namespace internal
/** \class DenseBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and arrays
*
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
* and related expression types). The common Eigen API for dense objects is contained in this class.
*
* \tparam Derived is the derived type, e.g., a matrix type or an expression.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public DenseCoeffsBase<Derived>
#else
: public DenseCoeffsBase<Derived,DirectWriteAccessors>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
/** Inner iterator type to iterate over the coefficients of a row or column.
* \sa class InnerIterator
*/
typedef Eigen::InnerIterator<Derived> InnerIterator;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/**
* \brief The type used to store indices
* \details This typedef is relevant for types that store multiple indices such as
* PermutationMatrix or Transpositions, otherwise it defaults to Eigen::Index
* \sa \blank \ref TopicPreprocessorDirectives, Eigen::Index, SparseMatrixBase.
*/
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
/** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc. */
typedef typename internal::traits<Derived>::Scalar Scalar;
/** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.
*
* It is an alias for the Scalar type */
typedef Scalar value_type;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseCoeffsBase<Derived> Base;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
using Base::y;
using Base::z;
using Base::w;
using Base::stride;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename Base::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
typedef typename internal::find_best_packet<Scalar,SizeAtCompileTime>::type PacketScalar;
enum { IsPlainObjectBase = 0 };
/** The plain matrix type corresponding to this expression.
* \sa PlainObject */
typedef Matrix<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainMatrix;
/** The plain array type corresponding to this expression.
* \sa PlainObject */
typedef Array<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainArray;
/** \brief The plain matrix or array type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainObject or const PlainObject&.
*/
typedef typename internal::conditional<internal::is_same<typename internal::traits<Derived>::XprKind,MatrixXpr >::value,
PlainMatrix, PlainArray>::type PlainObject;
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
EIGEN_DEVICE_FUNC
inline Index nonZeros() const { return size(); }
/** \returns the outer size.
*
* \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
* column-major matrix, and the number of rows for a row-major matrix. */
EIGEN_DEVICE_FUNC
Index outerSize() const
{
return IsVectorAtCompileTime ? 1
: int(IsRowMajor) ? this->rows() : this->cols();
}
/** \returns the inner size.
*
* \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
* column-major matrix, and the number of columns for a row-major matrix. */
EIGEN_DEVICE_FUNC
Index innerSize() const
{
return IsVectorAtCompileTime ? this->size()
: int(IsRowMajor) ? this->cols() : this->rows();
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
EIGEN_DEVICE_FUNC
void resize(Index newSize)
{
EIGEN_ONLY_USED_FOR_DEBUG(newSize);
eigen_assert(newSize == this->size()
&& "DenseBase::resize() does not actually allow to resize.");
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols)
{
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows == this->rows() && cols == this->cols()
&& "DenseBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
/** \internal \deprecated Represents a vector with linearly spaced coefficients that allows sequential access only. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar>,PlainObject> SequentialLinSpacedReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar>,PlainObject> RandomAccessLinSpacedReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const DenseBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const DenseBase& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator+=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator-=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const ReturnByValue<OtherDerived>& func);
/** \ínternal
* Copies \a other into *this without evaluating other. \returns a reference to *this.
* \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const Scalar& s);
/** \deprecated it now returns \c *this */
template<unsigned int Added,unsigned int Removed>
EIGEN_DEPRECATED
const Derived& flagged() const
{ return derived(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
typedef Transpose<Derived> TransposeReturnType;
EIGEN_DEVICE_FUNC
TransposeReturnType transpose();
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
EIGEN_DEVICE_FUNC
ConstTransposeReturnType transpose() const;
EIGEN_DEVICE_FUNC
void transposeInPlace();
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index size, const Scalar& value);
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(const Scalar& value);
EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType
LinSpaced(Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType
LinSpaced(const Scalar& low, const Scalar& high);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(Index size, const CustomNullaryOp& func);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(const CustomNullaryOp& func);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index size);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero();
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index size);
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones();
EIGEN_DEVICE_FUNC void fill(const Scalar& value);
EIGEN_DEVICE_FUNC Derived& setConstant(const Scalar& value);
EIGEN_DEVICE_FUNC Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC Derived& setLinSpaced(const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC Derived& setZero();
EIGEN_DEVICE_FUNC Derived& setOnes();
EIGEN_DEVICE_FUNC Derived& setRandom();
template<typename OtherDerived> EIGEN_DEVICE_FUNC
bool isApprox(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC
bool isMuchSmallerThan(const RealScalar& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived> EIGEN_DEVICE_FUNC
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
inline bool hasNaN() const;
inline bool allFinite() const;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator*=(const Scalar& other);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator/=(const Scalar& other);
typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*
* \warning Be carefull with eval() and the auto C++ keyword, as detailed in this \link TopicPitfalls_auto_keyword page \endlink.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE EvalReturnType eval() const
{
// Even though MSVC does not honor strong inlining when the return type
// is a dynamic matrix, we desperately need strong inlining for fixed
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
/** swaps *this with the expression \a other.
*
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(const DenseBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT(!OtherDerived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
eigen_assert(rows()==other.rows() && cols()==other.cols());
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** swaps *this with the matrix or array \a other.
*
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(PlainObjectBase<OtherDerived>& other)
{
eigen_assert(rows()==other.rows() && cols()==other.cols());
call_assignment(derived(), other.derived(), internal::swap_assign_op<Scalar>());
}
EIGEN_DEVICE_FUNC inline const NestByValue<Derived> nestByValue() const;
EIGEN_DEVICE_FUNC inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
EIGEN_DEVICE_FUNC inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> EIGEN_DEVICE_FUNC
inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
template<bool Enable> EIGEN_DEVICE_FUNC
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
EIGEN_DEVICE_FUNC Scalar sum() const;
EIGEN_DEVICE_FUNC Scalar mean() const;
EIGEN_DEVICE_FUNC Scalar trace() const;
EIGEN_DEVICE_FUNC Scalar prod() const;
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar minCoeff() const;
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar maxCoeff() const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
template<typename BinaryOp>
EIGEN_DEVICE_FUNC
Scalar redux(const BinaryOp& func) const;
template<typename Visitor>
EIGEN_DEVICE_FUNC
void visit(Visitor& func) const;
/** \returns a WithFormat proxy object allowing to print a matrix the with given
* format \a fmt.
*
* See class IOFormat for some examples.
*
* \sa class IOFormat, class WithFormat
*/
inline const WithFormat<Derived> format(const IOFormat& fmt) const
{
return WithFormat<Derived>(derived(), fmt);
}
/** \returns the unique coefficient of a 1x1 expression */
EIGEN_DEVICE_FUNC
CoeffReturnType value() const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(0,0);
}
bool all() const;
bool any() const;
Index count() const;
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_rowwise.cpp
* Output: \verbinclude MatrixBase_rowwise.out
*
* \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
*/
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC inline ConstRowwiseReturnType rowwise() const {
return ConstRowwiseReturnType(derived());
}
EIGEN_DEVICE_FUNC RowwiseReturnType rowwise();
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_colwise.cpp
* Output: \verbinclude MatrixBase_colwise.out
*
* \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
*/
EIGEN_DEVICE_FUNC inline ConstColwiseReturnType colwise() const {
return ConstColwiseReturnType(derived());
}
EIGEN_DEVICE_FUNC ColwiseReturnType colwise();
typedef CwiseNullaryOp<internal::scalar_random_op<Scalar>,PlainObject> RandomReturnType;
static const RandomReturnType Random(Index rows, Index cols);
static const RandomReturnType Random(Index size);
static const RandomReturnType Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
template<int RowFactor, int ColFactor>
EIGEN_DEVICE_FUNC
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
/**
* \return an expression of the replication of \c *this
*
* Example: \include MatrixBase_replicate_int_int.cpp
* Output: \verbinclude MatrixBase_replicate_int_int.out
*
* \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
*/
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC
const Replicate<Derived, Dynamic, Dynamic> replicate(Index rowFactor, Index colFactor) const
{
return Replicate<Derived, Dynamic, Dynamic>(derived(), rowFactor, colFactor);
}
typedef Reverse<Derived, BothDirections> ReverseReturnType;
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
EIGEN_DEVICE_FUNC ReverseReturnType reverse();
/** This is the const version of reverse(). */
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC ConstReverseReturnType reverse() const
{
return ConstReverseReturnType(derived());
}
EIGEN_DEVICE_FUNC void reverseInPlace();
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND)
# include "../plugins/BlockMethods.h"
# ifdef EIGEN_DENSEBASE_PLUGIN
# include EIGEN_DENSEBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& ) const
{
EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
}
protected:
/** Default constructor. Do nothing. */
EIGEN_DEVICE_FUNC DenseBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
}
private:
EIGEN_DEVICE_FUNC explicit DenseBase(int);
EIGEN_DEVICE_FUNC DenseBase(int,int);
template<typename OtherDerived> EIGEN_DEVICE_FUNC explicit DenseBase(const DenseBase<OtherDerived>&);
};
} // end namespace Eigen
#endif // EIGEN_DENSEBASE_H

View File

@ -1,681 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H
namespace Eigen {
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}
/** \brief Base class providing read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #ReadOnlyAccessors Constant indicating read-only access
*
* This class defines the \c operator() \c const function and friends, which can be used to read specific
* entries of a matrix or array.
*
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
* \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
// Explanation for this CoeffReturnType typedef.
// - This is the return type of the coeff() method.
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
const Scalar&,
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
>::type CoeffReturnType;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef EigenBase<Derived> Base;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::RowsAtCompileTime) == 1 ? 0
: int(Derived::ColsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::ColsAtCompileTime) == 1 ? 0
: int(Derived::RowsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? inner
: outer;
}
/** Short version: don't use this function, use
* \link operator()(Index,Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) const \endlink.
*
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
{
return coeff(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(Index,Index), operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameter \a index is in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) const \endlink.
*
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
coeff(Index index) const
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeff(index);
}
/** \returns the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** \returns the coefficient at given index.
*
* This is synonymous to operator[](Index) const.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
x() const { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
y() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
return (*this)[1];
}
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
z() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
return (*this)[2];
}
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
w() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
return (*this)[3];
}
/** \internal
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(row,col);
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \internal
* \returns the packet of coefficients starting at the given index. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(index);
}
protected:
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
// But some methods are only available in the DirectAccess case.
// So we add dummy methods here with these names, so that "using... " doesn't fail.
// It's not private so that the child class DenseBase can access them, and it's not public
// either since it's an implementation detail, so has to be protected.
void coeffRef();
void coeffRefByOuterInner();
void writePacket();
void writePacketByOuterInner();
void copyCoeff();
void copyCoeffByOuterInner();
void copyPacket();
void copyPacketByOuterInner();
void stride();
void innerStride();
void outerStride();
void rowStride();
void colStride();
};
/** \brief Base class providing read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #WriteAccessors Constant indicating read/write access
*
* This class defines the non-const \c operator() function and friends, which can be used to write specific
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
* defines the const variant for reading specific entries.
*
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::coeff;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::operator[];
using Base::operator();
using Base::x;
using Base::y;
using Base::z;
using Base::w;
/** Short version: don't use this function, use
* \link operator()(Index,Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) \endlink.
*
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeffRef(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRefByOuterInner(Index outer, Index inner)
{
return coeffRef(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) \endlink.
*
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRef(Index index)
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This is synonymous to operator[](Index).
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
x() { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
y()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
return (*this)[1];
}
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
z()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
return (*this)[2];
}
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
w()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
return (*this)[3];
}
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
* \c operator() .
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectWriteAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
* \c operator().
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
: public DenseCoeffsBase<Derived, WriteAccessors>
{
public:
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
namespace internal {
template<int Alignment, typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
static inline Index run(const Derived&)
{ return 0; }
};
template<int Alignment, typename Derived>
struct first_aligned_impl<Alignment, Derived, false>
{
static inline Index run(const Derived& m)
{
return internal::first_aligned<Alignment>(m.data(), m.size());
}
};
/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization.
*
* \tparam Alignment requested alignment in Bytes.
*
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
* documentation.
*/
template<int Alignment, typename Derived>
static inline Index first_aligned(const DenseBase<Derived>& m)
{
enum { ReturnZero = (int(evaluator<Derived>::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) };
return first_aligned_impl<Alignment, Derived, ReturnZero>::run(m.derived());
}
template<typename Derived>
static inline Index first_default_aligned(const DenseBase<Derived>& m)
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type DefaultPacketType;
return internal::first_aligned<int(unpacket_traits<DefaultPacketType>::alignment),Derived>(m);
}
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};
template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};
template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_DENSECOEFFSBASE_H

View File

@ -1,570 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010-2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXSTORAGE_H
#define EIGEN_MATRIXSTORAGE_H
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) X; EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
#else
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X)
#endif
namespace Eigen {
namespace internal {
struct constructor_without_unaligned_array_assert {};
template<typename T, int Size>
EIGEN_DEVICE_FUNC
void check_static_allocation_size()
{
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
#if EIGEN_STACK_ALLOCATION_LIMIT
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
#endif
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
: compute_default_alignment<T,Size>::value >
struct plain_array
{
T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#elif EIGEN_GNUC_AT_LEAST(4,7)
// GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned.
// See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
// Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
template<typename PtrType>
EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((internal::UIntPtr(array) & (sizemask)) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 8>
{
EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16>
{
EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 32>
{
EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 64>
{
EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
{
T array[1];
EIGEN_DEVICE_FUNC plain_array() {}
EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {}
};
} // end namespace internal
/** \internal
*
* \class DenseStorage
* \ingroup Core_Module
*
* \brief Stores the data of a matrix
*
* This class stores the data of fixed-size, dynamic-size or mixed matrices
* in a way as compact as possible.
*
* \sa Matrix
*/
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
// purely fixed-size matrix
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
{
internal::plain_array<T,Size,_Options> m_data;
public:
EIGEN_DEVICE_FUNC DenseStorage() {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
}
EIGEN_DEVICE_FUNC
explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
EIGEN_DEVICE_FUNC
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other) m_data = other.m_data;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols);
EIGEN_UNUSED_VARIABLE(size);
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
{
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {}
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return 0; }
EIGEN_DEVICE_FUNC T *data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
// dynamic-size matrix with fixed-size storage
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
m_cols = other.m_cols;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows() const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols() const {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_cols = other.m_cols;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows(void) const {return _Rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
void resize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// purely dynamic matrix.
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
{
T *m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*other.m_cols))
, m_rows(other.m_rows)
, m_cols(other.m_cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*m_cols)
internal::smart_copy(other.m_data, other.m_data+other.m_rows*other.m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
other.m_rows = 0;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
swap(m_cols, other.m_cols);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
void conservativeResize(Index size, Index rows, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols)
{
if(size != m_rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
{
T *m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0);
EIGEN_UNUSED_VARIABLE(rows);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(_Rows*other.m_cols))
, m_cols(other.m_cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*_Rows)
internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
: m_data(std::move(other.m_data))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT
{
using std::swap;
swap(m_data, other.m_data);
swap(m_cols, other.m_cols);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols)
{
if(size != _Rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
{
T *m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*_Cols))
, m_rows(other.m_rows)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*_Cols)
internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
{
other.m_data = nullptr;
other.m_rows = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
void conservativeResize(Index size, Index rows, Index)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_rows = rows;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index)
{
if(size != m_rows*_Cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_rows = rows;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
} // end namespace Eigen
#endif // EIGEN_MATRIX_H

View File

@ -1,257 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONAL_H
#define EIGEN_DIAGONAL_H
namespace Eigen {
/** \class Diagonal
* \ingroup Core_Module
*
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
*
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
* A positive value means a superdiagonal, a negative value means a subdiagonal.
* You can also use DynamicIndex so the index can be set at runtime.
*
* The matrix is not required to be square.
*
* This class represents an expression of the main diagonal, or any sub/super diagonal
* of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
* time this is the only way it is used.
*
* \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
*/
namespace internal {
template<typename MatrixType, int DiagIndex>
struct traits<Diagonal<MatrixType,DiagIndex> >
: traits<MatrixType>
{
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename MatrixType::StorageKind StorageKind;
enum {
RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
: DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
MatrixType::MaxColsAtCompileTime)
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
};
};
}
template<typename MatrixType, int _DiagIndex> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
{
public:
enum { DiagIndex = _DiagIndex };
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
EIGEN_DEVICE_FUNC
explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
EIGEN_DEVICE_FUNC
inline Index rows() const
{
return m_index.value()<0 ? numext::mini<Index>(m_matrix.cols(),m_matrix.rows()+m_index.value())
: numext::mini<Index>(m_matrix.rows(),m_matrix.cols()-m_index.value());
}
EIGEN_DEVICE_FUNC
inline Index cols() const { return 1; }
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return m_matrix.outerStride() + 1;
}
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return 0;
}
typedef typename internal::conditional<
internal::is_lvalue<MatrixType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.coeffRef(rowOffset(), colOffset())); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return &(m_matrix.coeffRef(rowOffset(), colOffset())); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.coeffRef(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index row, Index) const
{
return m_matrix.coeffRef(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index row, Index) const
{
return m_matrix.coeff(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index idx)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index idx) const
{
return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index idx) const
{
return m_matrix.coeff(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
}
EIGEN_DEVICE_FUNC
inline Index index() const
{
return m_index.value();
}
protected:
typename internal::ref_selector<MatrixType>::non_const_type m_matrix;
const internal::variable_if_dynamicindex<Index, DiagIndex> m_index;
private:
// some compilers may fail to optimize std::max etc in case of compile-time constants...
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
// trigger a compile-time error if someone try to call packet
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
};
/** \returns an expression of the main diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* Example: \include MatrixBase_diagonal.cpp
* Output: \verbinclude MatrixBase_diagonal.out
*
* \sa class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalReturnType
MatrixBase<Derived>::diagonal()
{
return DiagonalReturnType(derived());
}
/** This is the const version of diagonal(). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalReturnType
MatrixBase<Derived>::diagonal() const
{
return ConstDiagonalReturnType(derived());
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_int.cpp
* Output: \verbinclude MatrixBase_diagonal_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index)
{
return DiagonalDynamicIndexReturnType(derived(), index);
}
/** This is the const version of diagonal(Index). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index) const
{
return ConstDiagonalDynamicIndexReturnType(derived(), index);
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_template_int.cpp
* Output: \verbinclude MatrixBase_diagonal_template_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
template<int Index_>
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal()
{
return typename DiagonalIndexReturnType<Index_>::Type(derived());
}
/** This is the const version of diagonal<int>(). */
template<typename Derived>
template<int Index_>
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal() const
{
return typename ConstDiagonalIndexReturnType<Index_>::Type(derived());
}
} // end namespace Eigen
#endif // EIGEN_DIAGONAL_H

View File

@ -1,343 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
namespace Eigen {
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
class DiagonalBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
EIGEN_DEVICE_FUNC
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC
inline Derived& derived() { return *static_cast<Derived*>(this); }
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const { return derived(); }
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
inline Index rows() const { return diagonal().size(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return diagonal().size(); }
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
const Product<Derived,MatrixDerived,LazyProduct>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
return Product<Derived, MatrixDerived, LazyProduct>(derived(),matrix.derived());
}
typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> > InverseReturnType;
EIGEN_DEVICE_FUNC
inline const InverseReturnType
inverse() const
{
return InverseReturnType(diagonal().cwiseInverse());
}
EIGEN_DEVICE_FUNC
inline const DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >
operator*(const Scalar& scalar) const
{
return DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >(diagonal() * scalar);
}
EIGEN_DEVICE_FUNC
friend inline const DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >
operator*(const Scalar& scalar, const DiagonalBase& other)
{
return DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >(scalar * other.diagonal());
}
};
#endif
/** \class DiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
*
* \sa class DiagonalWrapper
*/
namespace internal {
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef DiagonalShape StorageKind;
enum {
Flags = LvalueBit | NoPreferredStorageOrderBit
};
};
}
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::StorageIndex StorageIndex;
#endif
protected:
DiagonalVectorType m_diagonal;
public:
/** const version of diagonal(). */
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
/** \returns a reference to the stored vector of diagonal coefficients. */
EIGEN_DEVICE_FUNC
inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
EIGEN_DEVICE_FUNC
explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
/** 3D constructor. */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
/** Copy constructor. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
#endif
/** generic constructor from expression of the diagonal coefficients */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
{}
/** Copy operator. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
{
m_diagonal = other.diagonal();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
DiagonalMatrix& operator=(const DiagonalMatrix& other)
{
m_diagonal = other.diagonal();
return *this;
}
#endif
/** Resizes to given size. */
EIGEN_DEVICE_FUNC
inline void resize(Index size) { m_diagonal.resize(size); }
/** Sets all coefficients to zero. */
EIGEN_DEVICE_FUNC
inline void setZero() { m_diagonal.setZero(); }
/** Resizes and sets all coefficients to zero. */
EIGEN_DEVICE_FUNC
inline void setZero(Index size) { m_diagonal.setZero(size); }
/** Sets this matrix to be the identity matrix of the current size. */
EIGEN_DEVICE_FUNC
inline void setIdentity() { m_diagonal.setOnes(); }
/** Sets this matrix to be the identity matrix of the given size. */
EIGEN_DEVICE_FUNC
inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
};
/** \class DiagonalWrapper
* \ingroup Core_Module
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
namespace internal {
template<typename _DiagonalVectorType>
struct traits<DiagonalWrapper<_DiagonalVectorType> >
{
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::StorageIndex StorageIndex;
typedef DiagonalShape StorageKind;
typedef typename traits<DiagonalVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
Flags = (traits<DiagonalVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
}
template<typename _DiagonalVectorType>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif
/** Constructor from expression of diagonal coefficients to wrap. */
EIGEN_DEVICE_FUNC
explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
EIGEN_DEVICE_FUNC
const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
typename DiagonalVectorType::Nested m_diagonal;
};
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template<typename Derived>
inline const DiagonalWrapper<const Derived>
MatrixBase<Derived>::asDiagonal() const
{
return DiagonalWrapper<const Derived>(derived());
}
/** \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
RealScalar absOnDiagonal = numext::abs(coeff(j,j));
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < j; ++i)
{
if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
namespace internal {
template<> struct storage_kind_to_shape<DiagonalShape> { typedef DiagonalShape Shape; };
struct Diagonal2Dense {};
template<> struct AssignmentKind<DenseShape,DiagonalShape> { typedef Diagonal2Dense Kind; };
// Diagonal matrix to Dense assignment
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense>
{
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.setZero();
dst.diagonal() = src.diagonal();
}
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.diagonal() += src.diagonal(); }
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.diagonal() -= src.diagonal(); }
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H

View File

@ -1,28 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
namespace Eigen {
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
inline const Product<Derived, DiagonalDerived, LazyProduct>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
{
return Product<Derived, DiagonalDerived, LazyProduct>(derived(),a_diagonal.derived());
}
} // end namespace Eigen
#endif // EIGEN_DIAGONALPRODUCT_H

View File

@ -1,315 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
namespace Eigen {
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
bool NeedToTranspose = T::IsVectorAtCompileTime
&& U::IsVectorAtCompileTime
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.template binaryExpr<conj_prod>(b).sum();
}
};
template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.transpose().template binaryExpr<conj_prod>(b).sum();
}
};
} // end namespace internal
/** \fn MatrixBase::dot
* \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG))
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
#endif
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself.
*
* \sa dot(), norm(), lpNorm()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return numext::real((*this).cwiseAbs2().sum());
}
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
*
* \sa lpNorm(), dot(), squaredNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
return numext::sqrt(squaredNorm());
}
/** \returns an expression of the quotient of \c *this by its own norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
typedef typename internal::nested_eval<Derived,2>::type _Nested;
_Nested n(derived());
RealScalar z = n.squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if(z>RealScalar(0))
return n / numext::sqrt(z);
else
return n;
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa norm(), normalized()
*/
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
RealScalar z = squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if(z>RealScalar(0))
derived() /= numext::sqrt(z);
}
/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow.
*
* \only_for_vectors
*
* This method is analogue to the normalized() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \sa stableNorm(), stableNormalize(), normalized()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::stableNormalized() const
{
typedef typename internal::nested_eval<Derived,3>::type _Nested;
_Nested n(derived());
RealScalar w = n.cwiseAbs().maxCoeff();
RealScalar z = (n/w).squaredNorm();
if(z>RealScalar(0))
return n / (numext::sqrt(z)*w);
else
return n;
}
/** Normalizes the vector while avoid underflow and overflow
*
* \only_for_vectors
*
* This method is analogue to the normalize() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa stableNorm(), stableNormalized(), normalize()
*/
template<typename Derived>
inline void MatrixBase<Derived>::stableNormalize()
{
RealScalar w = cwiseAbs().maxCoeff();
RealScalar z = (derived()/w).squaredNorm();
if(z>RealScalar(0))
derived() /= numext::sqrt(z)*w;
}
//---------- implementation of other norms ----------
namespace internal {
template<typename Derived, int p>
struct lpNorm_selector
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const MatrixBase<Derived>& m)
{
EIGEN_USING_STD_MATH(pow)
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const MatrixBase<Derived>& m)
{
if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0))
return RealScalar(0);
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of \c *this.
*
* In all cases, if \c *this is empty, then the value 0 is returned.
*
* \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
#else
MatrixBase<Derived>::RealScalar
#endif
MatrixBase<Derived>::lpNorm() const
{
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,2>::type nested(derived());
typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index i = 0; i < cols(); ++i)
{
if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
return false;
for(Index j = 0; j < i; ++j)
if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DOT_H

View File

@ -1,155 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EIGENBASE_H
#define EIGEN_EIGENBASE_H
namespace Eigen {
/** \class EigenBase
*
* Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
*
* In other words, an EigenBase object is an object that can be copied into a MatrixBase.
*
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
*
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived> struct EigenBase
{
// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
/** \brief The interface type of indices
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \deprecated Since Eigen 3.3, its usage is deprecated. Use Eigen::Index instead.
* \sa StorageIndex, \ref TopicPreprocessorDirectives.
*/
typedef Eigen::Index Index;
// FIXME is it needed?
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/** \returns a reference to the derived object */
EIGEN_DEVICE_FUNC
Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns a const reference to the derived object */
EIGEN_DEVICE_FUNC
const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
EIGEN_DEVICE_FUNC
inline const Derived& const_derived() const
{ return *static_cast<const Derived*>(this); }
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
EIGEN_DEVICE_FUNC
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
EIGEN_DEVICE_FUNC
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
EIGEN_DEVICE_FUNC
inline Index size() const { return rows() * cols(); }
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& dst) const
{ derived().evalTo(dst); }
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void addTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst += res;
}
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void subTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst -= res;
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC inline void applyThisOnTheRight(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = dst * this->derived();
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC inline void applyThisOnTheLeft(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = this->derived() * dst;
}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \brief Copies the generic expression \a other into *this.
*
* \details The expression must provide a (templated) evalTo(Derived& dst) const
* function which does the actual job. In practice, this allows any user to write
* its own special matrix without having to modify MatrixBase
*
* \returns a reference to *this.
*/
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_EIGENBASE_H

View File

@ -1,146 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FORCEALIGNEDACCESS_H
#define EIGEN_FORCEALIGNEDACCESS_H
namespace Eigen {
/** \class ForceAlignedAccess
* \ingroup Core_Module
*
* \brief Enforce aligned packet loads and stores regardless of what is requested
*
* \param ExpressionType the type of the object of which we are forcing aligned packet access
*
* This class is the return type of MatrixBase::forceAlignedAccess()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::forceAlignedAccess()
*/
namespace internal {
template<typename ExpressionType>
struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class ForceAlignedAccess
: public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<Aligned>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<Aligned>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
}
EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType& m_expression;
private:
ForceAlignedAccess& operator=(const ForceAlignedAccess&);
};
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(),class ForceAlignedAccess
*/
template<typename Derived>
inline const ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess() const
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(), class ForceAlignedAccess
*/
template<typename Derived>
inline ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess()
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
MatrixBase<Derived>::forceAlignedAccessIf() const
{
return derived(); // FIXME This should not work but apparently is never used
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
MatrixBase<Derived>::forceAlignedAccessIf()
{
return derived(); // FIXME This should not work but apparently is never used
}
} // end namespace Eigen
#endif // EIGEN_FORCEALIGNEDACCESS_H

View File

@ -1,155 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
namespace Eigen {
namespace internal
{
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
typename internal::nested_eval<Derived,2>::type nested(x);
typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
{
return x.matrix() == y.matrix();
}
};
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
} // end namespace Eigen
#endif // EIGEN_FUZZY_H

View File

@ -1,454 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H
namespace Eigen {
enum {
Large = 2,
Small = 3
};
namespace internal {
template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
(Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
value = is_large ? Large
: Size == 1 ? 1
: Small
};
};
template<typename Lhs, typename Rhs> struct product_type
{
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
Rows = traits<_Lhs>::RowsAtCompileTime,
MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
Cols = traits<_Rhs>::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
traits<_Rhs>::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
// is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
enum {
rows_select = product_size_category<Rows,MaxRows>::value,
cols_select = product_size_category<Cols,MaxCols>::value,
depth_select = product_size_category<Depth,MaxDepth>::value
};
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
public:
enum {
value = selector::ret,
ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
{
EIGEN_DEBUG_VAR(Rows);
EIGEN_DEBUG_VAR(Cols);
EIGEN_DEBUG_VAR(Depth);
EIGEN_DEBUG_VAR(rows_select);
EIGEN_DEBUG_VAR(cols_select);
EIGEN_DEBUG_VAR(depth_select);
EIGEN_DEBUG_VAR(value);
}
#endif
};
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
* Therefore we need a lower level meta selector.
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
*/
namespace internal {
template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_dense_selector;
} // end namespace internal
namespace internal {
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};
template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
enum {
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
PacketSize = internal::packet_traits<Scalar>::size
};
#if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
#else
// Some architectures cannot align on the stack,
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() {
return ForceAlignment
? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
: m_data.array;
}
#endif
};
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(rhs.transpose(), lhs.transpose(), destT, alpha);
}
};
template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
{
template<typename Lhs, typename Rhs, typename Dest>
static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef typename Dest::RealScalar RealScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
// make sure Dest is a compile-time vector type (bug 1166)
typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal
};
typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
if(!MightCannotUseDest)
{
// shortcut if we are sure to be able to use dest directly,
// this ease the compiler to generate cleaner and more optimzized code for most common cases
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhs.data(), actualRhs.innerStride()),
dest.data(), 1,
compatibleAlpha);
}
else
{
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhs.data(), actualRhs.innerStride()),
actualDestPtr, 1,
compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
}
}
}
};
template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhsPtr, 1),
dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
actualAlpha);
}
};
template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
// TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
typename nested_eval<Rhs,1>::type actual_rhs(rhs);
const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k);
}
};
template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum();
}
};
} // end namespace internal
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
*/
#ifndef __CUDACC__
template<typename Derived>
template<typename OtherDerived>
inline const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
// not be inlined since DenseStorage is an unwindable object for dynamic
// matrices and product types are holding a member to store the result.
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
return Product<Derived, OtherDerived>(derived(), other.derived());
}
#endif // __CUDACC__
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
* computed once at a time as requested. This might be useful in some extremely rare cases when only
* a small and no coherent fraction of the result's coefficients have to be computed.
*
* \warning This version of the matrix product can be much much slower. So use it only if you know
* what you are doing and that you measured a true speed improvement.
*
* \sa operator*(const MatrixBase&)
*/
template<typename Derived>
template<typename OtherDerived>
const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H

View File

@ -1,593 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H
namespace Eigen {
namespace internal {
/** \internal
* \file GenericPacketMath.h
*
* Default implementation for types not supported by the vectorization.
* In practice these functions are provided to make easier the writing
* of generic vectorized code.
*/
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif
struct default_packet_traits
{
enum {
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 1,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasBlend = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasLog1p = 0,
HasLog10 = 0,
HasPow = 0,
HasSin = 0,
HasCos = 0,
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0,
HasSinh = 0,
HasCosh = 0,
HasTanh = 0,
HasLGamma = 0,
HasDiGamma = 0,
HasZeta = 0,
HasPolygamma = 0,
HasErf = 0,
HasErfc = 0,
HasIGamma = 0,
HasIGammac = 0,
HasBetaInc = 0,
HasRound = 0,
HasFloor = 0,
HasCeil = 0,
HasSign = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
typedef T half;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0,
HasHalfPacket = 0
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
template<typename T> struct packet_traits<const T> : packet_traits<T> { };
template <typename Src, typename Tgt> struct type_casting_traits {
enum {
VectorizedCast = 0,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
/** \internal \returns static_cast<TgtType>(a) (coeff-wise) */
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) {
return static_cast<TgtPacket>(a);
}
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
padd(const Packet& a,
const Packet& b) { return a+b; }
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psub(const Packet& a,
const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnegate(const Packet& a) { return -a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pconj(const Packet& a) { return numext::conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmul(const Packet& a,
const Packet& b) { return a*b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pdiv(const Packet& a,
const Packet& b) { return a/b; }
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a,
const Packet& b) { return numext::mini(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a,
const Packet& b) { return numext::maxi(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabs(const Packet& a) { using std::abs; return abs(a); }
/** \internal \returns the phase angle of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
parg(const Packet& a) { using numext::arg; return arg(a); }
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pand(const Packet& a, const Packet& b) { return a & b; }
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
por(const Packet& a, const Packet& b) { return a | b; }
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pxor(const Packet& a, const Packet& b) { return a ^ b; }
/** \internal \returns the bitwise andnot of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(*a); }
/** \internal \returns a packet with elements of \a *from duplicated.
* For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and
* duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
* Currently, this function is only used for scalar * complex products.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from quadrupled.
* For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and
* replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]}
* Currently, this function is only used in matrix products.
* For packet-size smaller or equal to 4, this function is equivalent to pload1
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadquad(const typename unpacket_traits<Packet>::type* from)
{ return pload1<Packet>(from); }
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* a2 = pload1(a+2);
* a3 = pload1(a+3);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast2
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
a2 = pload1<Packet>(a+2);
a3 = pload1<Packet>(a+3);
}
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast4
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
}
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Packet> inline Packet
plset(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
{ return ploadu<Packet>(from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
{ pstore(to, from); }
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr)
{
#ifdef __CUDA_ARCH__
#if defined(__LP64__)
// 64-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
#else
// 32-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr));
#endif
#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC)
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the first element of a packet */
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
{ return a; }
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
preduxp(const Packet* vecs) { return vecs[0]; }
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux(const Packet& a)
{ return a; }
/** \internal \returns the sum of the elements of \a a by block of 4 elements.
* For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7}
* For packet-size smaller or equal to 4, this boils down to a noop.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline
typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>::type
predux_downto4(const Packet& a)
{ return a; }
/** \internal \returns the product of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
{ return a; }
/** \internal \returns the min of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
{ return a; }
/** \internal \returns the max of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
{ return a; }
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
{ return a; }
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a)
{
// FIXME: uncomment the following in case we drop the internal imag and real functions.
// using std::imag;
// using std::real;
return Packet(imag(a),real(a));
}
/**************************
* Special math functions
***************************/
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { using std::sin; return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { using std::cos; return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { using std::tan; return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { using std::asin; return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { using std::atan; return atan(a); }
/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psinh(const Packet& a) { using std::sinh; return sinh(a); }
/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcosh(const Packet& a) { using std::cosh; return cosh(a); }
/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptanh(const Packet& a) { using std::tanh; return tanh(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { using std::exp; return exp(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { using std::log; return log(a); }
/** \internal \returns the log1p of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog1p(const Packet& a) { return numext::log1p(a); }
/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog10(const Packet& a) { using std::log10; return log10(a); }
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); }
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet prsqrt(const Packet& a) {
return pdiv(pset1<Packet>(1), psqrt(a));
}
/** \internal \returns the rounded value of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pround(const Packet& a) { using numext::round; return round(a); }
/** \internal \returns the floor of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pfloor(const Packet& a) { using numext::floor; return floor(a); }
/** \internal \returns the ceil of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/
/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
pstore(to, pset1<Packet>(a));
}
/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmadd(const Packet& a,
const Packet& b,
const Packet& c)
{ return padd(pmul(a, b),c); }
/** \internal \returns a packet version of \a *from.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal copy the packet \a from to \a *to.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal \returns a packet version of \a *from.
* Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
* hardware if available to speedup the loading of data that won't be modified
* by the current computation.
*/
template<typename Packet, int LoadMode>
inline Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
{
return ploadt<Packet, LoadMode>(from);
}
/** \internal default implementation of palign() allowing partial specialization */
template<int Offset,typename PacketType>
struct palign_impl
{
// by default data are aligned, so there is nothing to be done :)
static inline void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements
* of \a first and \a Offset first elements of \a second.
*
* This function is currently only used to optimize matrix-vector products on unligned matrices.
* It takes 2 packets that represent a contiguous memory array, and returns a packet starting
* at the position \a Offset. For instance, for packets of 4 elements, we have:
* Input:
* - first = {f0,f1,f2,f3}
* - second = {s0,s1,s2,s3}
* Output:
* - if Offset==0 then {f0,f1,f2,f3}
* - if Offset==1 then {f1,f2,f3,s0}
* - if Offset==2 then {f2,f3,s0,s1}
* - if Offset==3 then {f3,s0,s1,s3}
*/
template<int Offset,typename PacketType>
inline void palign(PacketType& first, const PacketType& second)
{
palign_impl<Offset,PacketType>::run(first,second);
}
/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
// Eigen+CUDA does not support complexes.
#ifndef __CUDACC__
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
#endif
/***************************************************************************
* PacketBlock, that is a collection of N packets where the number of words
* in the packet is a multiple of N.
***************************************************************************/
template <typename Packet,int N=unpacket_traits<Packet>::size> struct PacketBlock {
Packet packet[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet,1>& /*kernel*/) {
// Nothing to do in the scalar case, i.e. a 1x1 matrix.
}
/***************************************************************************
* Selector, i.e. vector of N boolean values used to select (i.e. blend)
* words from 2 packets.
***************************************************************************/
template <size_t N> struct Selector {
bool select[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) {
return ifPacket.select[0] ? thenPacket : elsePacket;
}
/** \internal \returns \a a with the first coefficient replaced by the scalar b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pinsertfirst(const Packet& a, typename unpacket_traits<Packet>::type b)
{
// Default implementation based on pblend.
// It must be specialized for higher performance.
Selector<unpacket_traits<Packet>::size> mask;
mask.select[0] = true;
// This for loop should be optimized away by the compiler.
for(Index i=1; i<unpacket_traits<Packet>::size; ++i)
mask.select[i] = false;
return pblend(mask, pset1<Packet>(b), a);
}
/** \internal \returns \a a with the last coefficient replaced by the scalar b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pinsertlast(const Packet& a, typename unpacket_traits<Packet>::type b)
{
// Default implementation based on pblend.
// It must be specialized for higher performance.
Selector<unpacket_traits<Packet>::size> mask;
// This for loop should be optimized away by the compiler.
for(Index i=0; i<unpacket_traits<Packet>::size-1; ++i)
mask.select[i] = false;
mask.select[unpacket_traits<Packet>::size-1] = true;
return pblend(mask, pset1<Packet>(b), a);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERIC_PACKET_MATH_H

View File

@ -1,187 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_GLOBAL_FUNCTIONS_H
#ifdef EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
/** \returns an expression of the coefficient-wise DOC_OP of \a x
DOC_DETAILS
\sa <a href="group__CoeffwiseMathFunctions.html#cwisetable_##NAME">Math functions</a>, class CwiseUnaryOp
*/ \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
NAME(const Eigen::ArrayBase<Derived>& x);
#else
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
(NAME)(const Eigen::ArrayBase<Derived>& x) { \
return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \
}
#endif // EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \
} \
};
namespace Eigen
{
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op,inverse,\sa ArrayBase::inverse)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op,sine,\sa ArrayBase::sin)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op,cosine,\sa ArrayBase::cos)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op,absolute value,\sa ArrayBase::abs DOXCOMMA MatrixBase::cwiseAbs)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op,squared absolute value,\sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op,square root,\sa ArrayBase::sqrt DOXCOMMA MatrixBase::cwiseSqrt)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rsqrt,scalar_rsqrt_op,reciprocal square root,\sa ArrayBase::rsqrt)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign)
/** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent.
*
* \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar).
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
#ifdef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived,typename ScalarExponent>
inline const CwiseBinaryOp<internal::scalar_pow_op<Derived::Scalar,ScalarExponent>,Derived,Constant<ScalarExponent> >
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent);
#else
template<typename Derived,typename ScalarExponent>
inline typename internal::enable_if< !(internal::is_same<typename Derived::Scalar,ScalarExponent>::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent),
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,ScalarExponent,pow) >::type
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent) {
return x.derived().pow(exponent);
}
template<typename Derived>
inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename Derived::Scalar,pow)
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
return x.derived().pow(exponent);
}
#endif
/** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power.
*
* Example: \include Cwise_array_power_array.cpp
* Output: \verbinclude Cwise_array_power_array.out
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>(
x.derived(),
exponents.derived()
);
}
/** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power between a scalar and an array of exponents.
*
* \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar).
*
* Example: \include Cwise_scalar_power_array.cpp
* Output: \verbinclude Cwise_scalar_power_array.out
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
#ifdef EIGEN_PARSED_BY_DOXYGEN
template<typename Scalar,typename Derived>
inline const CwiseBinaryOp<internal::scalar_pow_op<Scalar,Derived::Scalar>,Constant<Scalar>,Derived>
pow(const Scalar& x,const Eigen::ArrayBase<Derived>& x);
#else
template<typename Scalar, typename Derived>
inline typename internal::enable_if< !(internal::is_same<typename Derived::Scalar,Scalar>::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar),
const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow) >::type
pow(const Scalar& x, const Eigen::ArrayBase<Derived>& exponents)
{
return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow)(
typename internal::plain_constant_type<Derived,Scalar>::type(exponents.rows(), exponents.cols(), x), exponents.derived() );
}
template<typename Derived>
inline const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow)
pow(const typename Derived::Scalar& x, const Eigen::ArrayBase<Derived>& exponents)
{
return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow)(
typename internal::plain_constant_type<Derived,typename Derived::Scalar>::type(exponents.rows(), exponents.cols(), x), exponents.derived() );
}
#endif
namespace internal
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
}
}
// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
#endif // EIGEN_GLOBAL_FUNCTIONS_H

View File

@ -1,225 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_IO_H
#define EIGEN_IO_H
namespace Eigen {
enum { DontAlignCols = 1 };
enum { StreamPrecision = -1,
FullPrecision = -2 };
namespace internal {
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
}
/** \class IOFormat
* \ingroup Core_Module
*
* \brief Stores a set of parameters controlling the way matrices are printed
*
* List of available parameters:
* - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
* The default is the special value \c StreamPrecision which means to use the
* stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
* \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
* type.
* - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
* allows to disable the alignment of columns, resulting in faster code.
* - \b coeffSeparator string printed between two coefficients of the same row
* - \b rowSeparator string printed between two rows
* - \b rowPrefix string printed at the beginning of each row
* - \b rowSuffix string printed at the end of each row
* - \b matPrefix string printed at the beginning of the matrix
* - \b matSuffix string printed at the end of the matrix
*
* Example: \include IOFormat.cpp
* Output: \verbinclude IOFormat.out
*
* \sa DenseBase::format(), class WithFormat
*/
struct IOFormat
{
/** Default constructor, see class IOFormat for the meaning of the parameters */
IOFormat(int _precision = StreamPrecision, int _flags = 0,
const std::string& _coeffSeparator = " ",
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
const std::string& _matPrefix="", const std::string& _matSuffix="")
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
{
// TODO check if rowPrefix, rowSuffix or rowSeparator contains a newline
// don't add rowSpacer if columns are not to be aligned
if((flags & DontAlignCols))
return;
int i = int(matSuffix.length())-1;
while (i>=0 && matSuffix[i]!='\n')
{
rowSpacer += ' ';
i--;
}
}
std::string matPrefix, matSuffix;
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
std::string coeffSeparator;
int precision;
int flags;
};
/** \class WithFormat
* \ingroup Core_Module
*
* \brief Pseudo expression providing matrix output with given format
*
* \tparam ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()
* and most of the time this is the only way it is used.
*
* See class IOFormat for some examples.
*
* \sa DenseBase::format(), class IOFormat
*/
template<typename ExpressionType>
class WithFormat
{
public:
WithFormat(const ExpressionType& matrix, const IOFormat& format)
: m_matrix(matrix), m_format(format)
{}
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
{
return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
}
protected:
typename ExpressionType::Nested m_matrix;
IOFormat m_format;
};
namespace internal {
// NOTE: This helper is kept for backward compatibility with previous code specializing
// this internal::significant_decimals_impl structure. In the future we should directly
// call digits10() which has been introduced in July 2016 in 3.3.
template<typename Scalar>
struct significant_decimals_impl
{
static inline int run()
{
return NumTraits<Scalar>::digits10();
}
};
/** \internal
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
{
if(_m.size() == 0)
{
s << fmt.matPrefix << fmt.matSuffix;
return s;
}
typename Derived::Nested m = _m;
typedef typename Derived::Scalar Scalar;
Index width = 0;
std::streamsize explicit_precision;
if(fmt.precision == StreamPrecision)
{
explicit_precision = 0;
}
else if(fmt.precision == FullPrecision)
{
if (NumTraits<Scalar>::IsInteger)
{
explicit_precision = 0;
}
else
{
explicit_precision = significant_decimals_impl<Scalar>::run();
}
}
else
{
explicit_precision = fmt.precision;
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
bool align_cols = !(fmt.flags & DontAlignCols);
if(align_cols)
{
// compute the largest width
for(Index j = 0; j < m.cols(); ++j)
for(Index i = 0; i < m.rows(); ++i)
{
std::stringstream sstr;
sstr.copyfmt(s);
sstr << m.coeff(i,j);
width = std::max<Index>(width, Index(sstr.str().length()));
}
}
s << fmt.matPrefix;
for(Index i = 0; i < m.rows(); ++i)
{
if (i)
s << fmt.rowSpacer;
s << fmt.rowPrefix;
if(width) s.width(width);
s << m.coeff(i, 0);
for(Index j = 1; j < m.cols(); ++j)
{
s << fmt.coeffSeparator;
if (width) s.width(width);
s << m.coeff(i, j);
}
s << fmt.rowSuffix;
if( i < m.rows() - 1)
s << fmt.rowSeparator;
}
s << fmt.matSuffix;
if(explicit_precision) s.precision(old_precision);
return s;
}
} // end namespace internal
/** \relates DenseBase
*
* Outputs the matrix, to the given stream.
*
* If you wish to print the matrix with a format different than the default, use DenseBase::format().
*
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
*
* \sa DenseBase::format()
*/
template<typename Derived>
std::ostream & operator <<
(std::ostream & s,
const DenseBase<Derived> & m)
{
return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
}
} // end namespace Eigen
#endif // EIGEN_IO_H

Some files were not shown because too many files have changed in this diff Show More