Cleanup ubloxd message parsing (#20664)

* use kaitai to generate parsers

* add scons flag to generate parsers

* add outer layer ephemeris parsing

* create ephemeris packet at the right time

* parse subframe 1 and 2

* add more fields

* add generated files to release

* fix signs

* no cast

* add unordered map include

* add exception handling

* small cleanup

* parse iono data

* cleanup
albatross
Willem Melching 2021-04-14 16:17:30 +02:00 committed by GitHub
parent 343fea2bf9
commit eacacb8fba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 3404 additions and 547 deletions

View File

@ -13,6 +13,10 @@ AddOption('--test',
action='store_true',
help='build test files')
AddOption('--kaitai',
action='store_true',
help='Regenerate kaitai struct parsers')
AddOption('--asan',
action='store_true',
help='turn on ASAN')
@ -181,6 +185,7 @@ env = Environment(
"#phonelibs/snpe/include",
"#phonelibs/nanovg",
"#phonelibs/qrcode",
"#phonelibs",
"#selfdrive/boardd",
"#selfdrive/common",
"#selfdrive/camerad",

View File

@ -2,3 +2,5 @@ Import('env')
env.Library('json11', ['json11/json11.cpp'])
env.Append(CPPPATH=[Dir('json11')])
env.Library('kaitai', ['kaitai/kaitaistream.cpp'], CPPDEFINES=['KS_STR_ENCODING_NONE'])

View File

@ -0,0 +1,16 @@
#ifndef KAITAI_CUSTOM_DECODER_H
#define KAITAI_CUSTOM_DECODER_H
#include <string>
namespace kaitai {
class custom_decoder {
public:
virtual ~custom_decoder() {};
virtual std::string decode(std::string src) = 0;
};
}
#endif

View File

@ -0,0 +1,189 @@
#ifndef KAITAI_EXCEPTIONS_H
#define KAITAI_EXCEPTIONS_H
#include <kaitai/kaitaistream.h>
#include <string>
#include <stdexcept>
// We need to use "noexcept" in virtual destructor of our exceptions
// subclasses. Different compilers have different ideas on how to
// achieve that: C++98 compilers prefer `throw()`, C++11 and later
// use `noexcept`. We define KS_NOEXCEPT macro for that.
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
#define KS_NOEXCEPT noexcept
#else
#define KS_NOEXCEPT throw()
#endif
namespace kaitai {
/**
* Common ancestor for all error originating from Kaitai Struct usage.
* Stores KSY source path, pointing to an element supposedly guilty of
* an error.
*/
class kstruct_error: public std::runtime_error {
public:
kstruct_error(const std::string what, const std::string src_path):
std::runtime_error(src_path + ": " + what),
m_src_path(src_path)
{
}
virtual ~kstruct_error() KS_NOEXCEPT {};
protected:
const std::string m_src_path;
};
/**
* Error that occurs when default endianness should be decided with
* a switch, but nothing matches (although using endianness expression
* implies that there should be some positive result).
*/
class undecided_endianness_error: public kstruct_error {
public:
undecided_endianness_error(const std::string src_path):
kstruct_error("unable to decide on endianness for a type", src_path)
{
}
virtual ~undecided_endianness_error() KS_NOEXCEPT {};
};
/**
* Common ancestor for all validation failures. Stores pointer to
* KaitaiStream IO object which was involved in an error.
*/
class validation_failed_error: public kstruct_error {
public:
validation_failed_error(const std::string what, kstream* io, const std::string src_path):
kstruct_error("at pos " + kstream::to_string(static_cast<int>(io->pos())) + ": validation failed: " + what, src_path),
m_io(io)
{
}
// "at pos #{io.pos}: validation failed: #{msg}"
virtual ~validation_failed_error() KS_NOEXCEPT {};
protected:
kstream* m_io;
};
/**
* Signals validation failure: we required "actual" value to be equal to
* "expected", but it turned out that it's not.
*/
template<typename T>
class validation_not_equal_error: public validation_failed_error {
public:
validation_not_equal_error<T>(const T& expected, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not equal", io, src_path),
m_expected(expected),
m_actual(actual)
{
}
// "not equal, expected #{expected.inspect}, but got #{actual.inspect}"
virtual ~validation_not_equal_error<T>() KS_NOEXCEPT {};
protected:
const T& m_expected;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be greater
* than or equal to "min", but it turned out that it's not.
*/
template<typename T>
class validation_less_than_error: public validation_failed_error {
public:
validation_less_than_error<T>(const T& min, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not in range", io, src_path),
m_min(min),
m_actual(actual)
{
}
// "not in range, min #{min.inspect}, but got #{actual.inspect}"
virtual ~validation_less_than_error<T>() KS_NOEXCEPT {};
protected:
const T& m_min;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be less
* than or equal to "max", but it turned out that it's not.
*/
template<typename T>
class validation_greater_than_error: public validation_failed_error {
public:
validation_greater_than_error<T>(const T& max, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not in range", io, src_path),
m_max(max),
m_actual(actual)
{
}
// "not in range, max #{max.inspect}, but got #{actual.inspect}"
virtual ~validation_greater_than_error<T>() KS_NOEXCEPT {};
protected:
const T& m_max;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be from
* the list, but it turned out that it's not.
*/
template<typename T>
class validation_not_any_of_error: public validation_failed_error {
public:
validation_not_any_of_error<T>(const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not any of the list", io, src_path),
m_actual(actual)
{
}
// "not any of the list, got #{actual.inspect}"
virtual ~validation_not_any_of_error<T>() KS_NOEXCEPT {};
protected:
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to match
* the expression, but it turned out that it doesn't.
*/
template<typename T>
class validation_expr_error: public validation_failed_error {
public:
validation_expr_error<T>(const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not matching the expression", io, src_path),
m_actual(actual)
{
}
// "not matching the expression, got #{actual.inspect}"
virtual ~validation_expr_error<T>() KS_NOEXCEPT {};
protected:
const T& m_actual;
};
}
#endif

View File

@ -0,0 +1,689 @@
#include <kaitai/kaitaistream.h>
#if defined(__APPLE__)
#include <machine/endian.h>
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#define __BYTE_ORDER BYTE_ORDER
#define __BIG_ENDIAN BIG_ENDIAN
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#elif defined(_MSC_VER) // !__APPLE__
#include <stdlib.h>
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#define __BYTE_ORDER __LITTLE_ENDIAN
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#else // !__APPLE__ or !_MSC_VER
#include <endian.h>
#include <byteswap.h>
#endif
#include <iostream>
#include <vector>
#include <stdexcept>
kaitai::kstream::kstream(std::istream* io) {
m_io = io;
init();
}
kaitai::kstream::kstream(std::string& data): m_io_str(data) {
m_io = &m_io_str;
init();
}
void kaitai::kstream::init() {
exceptions_enable();
align_to_byte();
}
void kaitai::kstream::close() {
// m_io->close();
}
void kaitai::kstream::exceptions_enable() const {
m_io->exceptions(
std::istream::eofbit |
std::istream::failbit |
std::istream::badbit
);
}
// ========================================================================
// Stream positioning
// ========================================================================
bool kaitai::kstream::is_eof() const {
if (m_bits_left > 0) {
return false;
}
char t;
m_io->exceptions(
std::istream::badbit
);
m_io->get(t);
if (m_io->eof()) {
m_io->clear();
exceptions_enable();
return true;
} else {
m_io->unget();
exceptions_enable();
return false;
}
}
void kaitai::kstream::seek(uint64_t pos) {
m_io->seekg(pos);
}
uint64_t kaitai::kstream::pos() {
return m_io->tellg();
}
uint64_t kaitai::kstream::size() {
std::iostream::pos_type cur_pos = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type len = m_io->tellg();
m_io->seekg(cur_pos);
return len;
}
// ========================================================================
// Integer numbers
// ========================================================================
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t kaitai::kstream::read_s1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
int16_t kaitai::kstream::read_s2be() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4be() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8be() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
int16_t kaitai::kstream::read_s2le() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4le() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8le() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t kaitai::kstream::read_u1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2be() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2le() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ========================================================================
// Floating point numbers
// ========================================================================
// ........................................................................
// Big-endian
// ........................................................................
float kaitai::kstream::read_f4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ........................................................................
// Little-endian
// ........................................................................
float kaitai::kstream::read_f4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ========================================================================
// Unaligned bit values
// ========================================================================
void kaitai::kstream::align_to_byte() {
m_bits_left = 0;
m_bits = 0;
}
uint64_t kaitai::kstream::read_bits_int_be(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits <<= 8;
m_bits |= b;
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// shift mask to align with highest bits available in @bits
int shift_bits = m_bits_left - n;
mask <<= shift_bits;
// derive reading result
uint64_t res = (m_bits & mask) >> shift_bits;
// clear top bits that we've just read => AND with 1s
m_bits_left -= n;
mask = get_mask_ones(m_bits_left);
m_bits &= mask;
return res;
}
// Deprecated, use read_bits_int_be() instead.
uint64_t kaitai::kstream::read_bits_int(int n) {
return read_bits_int_be(n);
}
uint64_t kaitai::kstream::read_bits_int_le(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int_le: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits |= (static_cast<uint64_t>(b) << m_bits_left);
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// derive reading result
uint64_t res = m_bits & mask;
// remove bottom bits that we've just read by shifting
m_bits >>= n;
m_bits_left -= n;
return res;
}
uint64_t kaitai::kstream::get_mask_ones(int n) {
if (n == 64) {
return 0xFFFFFFFFFFFFFFFF;
} else {
return ((uint64_t) 1 << n) - 1;
}
}
// ========================================================================
// Byte arrays
// ========================================================================
std::string kaitai::kstream::read_bytes(std::streamsize len) {
std::vector<char> result(len);
// NOTE: streamsize type is signed, negative values are only *supposed* to not be used.
// http://en.cppreference.com/w/cpp/io/streamsize
if (len < 0) {
throw std::runtime_error("read_bytes: requested a negative amount");
}
if (len > 0) {
m_io->read(&result[0], len);
}
return std::string(result.begin(), result.end());
}
std::string kaitai::kstream::read_bytes_full() {
std::iostream::pos_type p1 = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type p2 = m_io->tellg();
size_t len = p2 - p1;
// Note: this requires a std::string to be backed with a
// contiguous buffer. Officially, it's a only requirement since
// C++11 (C++98 and C++03 didn't have this requirement), but all
// major implementations had contiguous buffers anyway.
std::string result(len, ' ');
m_io->seekg(p1);
m_io->read(&result[0], len);
return result;
}
std::string kaitai::kstream::read_bytes_term(char term, bool include, bool consume, bool eos_error) {
std::string result;
std::getline(*m_io, result, term);
if (m_io->eof()) {
// encountered EOF
if (eos_error) {
throw std::runtime_error("read_bytes_term: encountered EOF");
}
} else {
// encountered terminator
if (include)
result.push_back(term);
if (!consume)
m_io->unget();
}
return result;
}
std::string kaitai::kstream::ensure_fixed_contents(std::string expected) {
std::string actual = read_bytes(expected.length());
if (actual != expected) {
// NOTE: I think printing it outright is not best idea, it could contain non-ascii charactes like backspace and beeps and whatnot. It would be better to print hexlified version, and also to redirect it to stderr.
throw std::runtime_error("ensure_fixed_contents: actual data does not match expected data");
}
return actual;
}
std::string kaitai::kstream::bytes_strip_right(std::string src, char pad_byte) {
std::size_t new_len = src.length();
while (new_len > 0 && src[new_len - 1] == pad_byte)
new_len--;
return src.substr(0, new_len);
}
std::string kaitai::kstream::bytes_terminate(std::string src, char term, bool include) {
std::size_t new_len = 0;
std::size_t max_len = src.length();
while (new_len < max_len && src[new_len] != term)
new_len++;
if (include && new_len < max_len)
new_len++;
return src.substr(0, new_len);
}
// ========================================================================
// Byte array processing
// ========================================================================
std::string kaitai::kstream::process_xor_one(std::string data, uint8_t key) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++)
result[i] = data[i] ^ key;
return result;
}
std::string kaitai::kstream::process_xor_many(std::string data, std::string key) {
size_t len = data.length();
size_t kl = key.length();
std::string result(len, ' ');
size_t ki = 0;
for (size_t i = 0; i < len; i++) {
result[i] = data[i] ^ key[ki];
ki++;
if (ki >= kl)
ki = 0;
}
return result;
}
std::string kaitai::kstream::process_rotate_left(std::string data, int amount) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++) {
uint8_t bits = data[i];
result[i] = (bits << amount) | (bits >> (8 - amount));
}
return result;
}
#ifdef KS_ZLIB
#include <zlib.h>
std::string kaitai::kstream::process_zlib(std::string data) {
int ret;
unsigned char *src_ptr = reinterpret_cast<unsigned char*>(&data[0]);
std::stringstream dst_strm;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK)
throw std::runtime_error("process_zlib: inflateInit error");
strm.next_in = src_ptr;
strm.avail_in = data.length();
unsigned char outbuffer[ZLIB_BUF_SIZE];
std::string outstring;
// get the decompressed bytes blockwise using repeated calls to inflate
do {
strm.next_out = reinterpret_cast<Bytef*>(outbuffer);
strm.avail_out = sizeof(outbuffer);
ret = inflate(&strm, 0);
if (outstring.size() < strm.total_out)
outstring.append(reinterpret_cast<char*>(outbuffer), strm.total_out - outstring.size());
} while (ret == Z_OK);
if (ret != Z_STREAM_END) { // an error occurred that was not EOF
std::ostringstream exc_msg;
exc_msg << "process_zlib: error #" << ret << "): " << strm.msg;
throw std::runtime_error(exc_msg.str());
}
if (inflateEnd(&strm) != Z_OK)
throw std::runtime_error("process_zlib: inflateEnd error");
return outstring;
}
#endif
// ========================================================================
// Misc utility methods
// ========================================================================
int kaitai::kstream::mod(int a, int b) {
if (b <= 0)
throw std::invalid_argument("mod: divisor b <= 0");
int r = a % b;
if (r < 0)
r += b;
return r;
}
#include <stdio.h>
std::string kaitai::kstream::to_string(int val) {
// if int is 32 bits, "-2147483648" is the longest string representation
// => 11 chars + zero => 12 chars
// if int is 64 bits, "-9223372036854775808" is the longest
// => 20 chars + zero => 21 chars
char buf[25];
int got_len = snprintf(buf, sizeof(buf), "%d", val);
// should never happen, but check nonetheless
if (got_len > sizeof(buf))
throw std::invalid_argument("to_string: integer is longer than string buffer");
return std::string(buf);
}
#include <algorithm>
std::string kaitai::kstream::reverse(std::string val) {
std::reverse(val.begin(), val.end());
return val;
}
uint8_t kaitai::kstream::byte_array_min(const std::string val) {
uint8_t min = 0xff; // UINT8_MAX
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur < min) {
min = cur;
}
}
return min;
}
uint8_t kaitai::kstream::byte_array_max(const std::string val) {
uint8_t max = 0; // UINT8_MIN
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur > max) {
max = cur;
}
}
return max;
}
// ========================================================================
// Other internal methods
// ========================================================================
#ifndef KS_STR_DEFAULT_ENCODING
#define KS_STR_DEFAULT_ENCODING "UTF-8"
#endif
#ifdef KS_STR_ENCODING_ICONV
#include <iconv.h>
#include <cerrno>
#include <stdexcept>
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
iconv_t cd = iconv_open(KS_STR_DEFAULT_ENCODING, src_enc.c_str());
if (cd == (iconv_t) -1) {
if (errno == EINVAL) {
throw std::runtime_error("bytes_to_str: invalid encoding pair conversion requested");
} else {
throw std::runtime_error("bytes_to_str: error opening iconv");
}
}
size_t src_len = src.length();
size_t src_left = src_len;
// Start with a buffer length of double the source length.
size_t dst_len = src_len * 2;
std::string dst(dst_len, ' ');
size_t dst_left = dst_len;
char *src_ptr = &src[0];
char *dst_ptr = &dst[0];
while (true) {
size_t res = iconv(cd, &src_ptr, &src_left, &dst_ptr, &dst_left);
if (res == (size_t) -1) {
if (errno == E2BIG) {
// dst buffer is not enough to accomodate whole string
// enlarge the buffer and try again
size_t dst_used = dst_len - dst_left;
dst_left += dst_len;
dst_len += dst_len;
dst.resize(dst_len);
// dst.resize might have allocated destination buffer in another area
// of memory, thus our previous pointer "dst" will be invalid; re-point
// it using "dst_used".
dst_ptr = &dst[dst_used];
} else {
throw std::runtime_error("bytes_to_str: iconv error");
}
} else {
// conversion successful
dst.resize(dst_len - dst_left);
break;
}
}
if (iconv_close(cd) != 0) {
throw std::runtime_error("bytes_to_str: iconv close error");
}
return dst;
}
#elif defined(KS_STR_ENCODING_NONE)
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
return src;
}
#else
#error Need to decide how to handle strings: please define one of: KS_STR_ENCODING_ICONV, KS_STR_ENCODING_NONE
#endif

View File

@ -0,0 +1,268 @@
#ifndef KAITAI_STREAM_H
#define KAITAI_STREAM_H
// Kaitai Struct runtime API version: x.y.z = 'xxxyyyzzz' decimal
#define KAITAI_STRUCT_VERSION 9000L
#include <istream>
#include <sstream>
#include <stdint.h>
#include <sys/types.h>
namespace kaitai {
/**
* Kaitai Stream class (kaitai::kstream) is an implementation of
* <a href="https://doc.kaitai.io/stream_api.html">Kaitai Struct stream API</a>
* for C++/STL. It's implemented as a wrapper over generic STL std::istream.
*
* It provides a wide variety of simple methods to read (parse) binary
* representations of primitive types, such as integer and floating
* point numbers, byte arrays and strings, and also provides stream
* positioning / navigation methods with unified cross-language and
* cross-toolkit semantics.
*
* Typically, end users won't access Kaitai Stream class manually, but would
* describe a binary structure format using .ksy language and then would use
* Kaitai Struct compiler to generate source code in desired target language.
* That code, in turn, would use this class and API to do the actual parsing
* job.
*/
class kstream {
public:
/**
* Constructs new Kaitai Stream object, wrapping a given std::istream.
* \param io istream object to use for this Kaitai Stream
*/
kstream(std::istream* io);
/**
* Constructs new Kaitai Stream object, wrapping a given in-memory data
* buffer.
* \param data data buffer to use for this Kaitai Stream
*/
kstream(std::string& data);
void close();
/** @name Stream positioning */
//@{
/**
* Check if stream pointer is at the end of stream. Note that the semantics
* are different from traditional STL semantics: one does *not* need to do a
* read (which will fail) after the actual end of the stream to trigger EOF
* flag, which can be accessed after that read. It is sufficient to just be
* at the end of the stream for this method to return true.
* \return "true" if we are located at the end of the stream.
*/
bool is_eof() const;
/**
* Set stream pointer to designated position.
* \param pos new position (offset in bytes from the beginning of the stream)
*/
void seek(uint64_t pos);
/**
* Get current position of a stream pointer.
* \return pointer position, number of bytes from the beginning of the stream
*/
uint64_t pos();
/**
* Get total size of the stream in bytes.
* \return size of the stream in bytes
*/
uint64_t size();
//@}
/** @name Integer numbers */
//@{
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t read_s1();
// ........................................................................
// Big-endian
// ........................................................................
int16_t read_s2be();
int32_t read_s4be();
int64_t read_s8be();
// ........................................................................
// Little-endian
// ........................................................................
int16_t read_s2le();
int32_t read_s4le();
int64_t read_s8le();
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t read_u1();
// ........................................................................
// Big-endian
// ........................................................................
uint16_t read_u2be();
uint32_t read_u4be();
uint64_t read_u8be();
// ........................................................................
// Little-endian
// ........................................................................
uint16_t read_u2le();
uint32_t read_u4le();
uint64_t read_u8le();
//@}
/** @name Floating point numbers */
//@{
// ........................................................................
// Big-endian
// ........................................................................
float read_f4be();
double read_f8be();
// ........................................................................
// Little-endian
// ........................................................................
float read_f4le();
double read_f8le();
//@}
/** @name Unaligned bit values */
//@{
void align_to_byte();
uint64_t read_bits_int_be(int n);
uint64_t read_bits_int(int n);
uint64_t read_bits_int_le(int n);
//@}
/** @name Byte arrays */
//@{
std::string read_bytes(std::streamsize len);
std::string read_bytes_full();
std::string read_bytes_term(char term, bool include, bool consume, bool eos_error);
std::string ensure_fixed_contents(std::string expected);
static std::string bytes_strip_right(std::string src, char pad_byte);
static std::string bytes_terminate(std::string src, char term, bool include);
static std::string bytes_to_str(std::string src, std::string src_enc);
//@}
/** @name Byte array processing */
//@{
/**
* Performs a XOR processing with given data, XORing every byte of input with a single
* given value.
* @param data data to process
* @param key value to XOR with
* @return processed data
*/
static std::string process_xor_one(std::string data, uint8_t key);
/**
* Performs a XOR processing with given data, XORing every byte of input with a key
* array, repeating key array many times, if necessary (i.e. if data array is longer
* than key array).
* @param data data to process
* @param key array of bytes to XOR with
* @return processed data
*/
static std::string process_xor_many(std::string data, std::string key);
/**
* Performs a circular left rotation shift for a given buffer by a given amount of bits,
* using groups of 1 bytes each time. Right circular rotation should be performed
* using this procedure with corrected amount.
* @param data source data to process
* @param amount number of bits to shift by
* @return copy of source array with requested shift applied
*/
static std::string process_rotate_left(std::string data, int amount);
#ifdef KS_ZLIB
/**
* Performs an unpacking ("inflation") of zlib-compressed data with usual zlib headers.
* @param data data to unpack
* @return unpacked data
* @throws IOException
*/
static std::string process_zlib(std::string data);
#endif
//@}
/**
* Performs modulo operation between two integers: dividend `a`
* and divisor `b`. Divisor `b` is expected to be positive. The
* result is always 0 <= x <= b - 1.
*/
static int mod(int a, int b);
/**
* Converts given integer `val` to a decimal string representation.
* Should be used in place of std::to_string() (which is available only
* since C++11) in older C++ implementations.
*/
static std::string to_string(int val);
/**
* Reverses given string `val`, so that the first character becomes the
* last and the last one becomes the first. This should be used to avoid
* the need of local variables at the caller.
*/
static std::string reverse(std::string val);
/**
* Finds the minimal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return minimal byte in byte array as integer
*/
static uint8_t byte_array_min(const std::string val);
/**
* Finds the maximal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return maximal byte in byte array as integer
*/
static uint8_t byte_array_max(const std::string val);
private:
std::istream* m_io;
std::istringstream m_io_str;
int m_bits_left;
uint64_t m_bits;
void init();
void exceptions_enable() const;
static uint64_t get_mask_ones(int n);
static const int ZLIB_BUF_SIZE = 128 * 1024;
};
}
#endif

View File

@ -0,0 +1,20 @@
#ifndef KAITAI_STRUCT_H
#define KAITAI_STRUCT_H
#include <kaitai/kaitaistream.h>
namespace kaitai {
class kstruct {
public:
kstruct(kstream *_io) { m__io = _io; }
virtual ~kstruct() {}
protected:
kstream *m__io;
public:
kstream *_io() { return m__io; }
};
}
#endif

View File

@ -283,6 +283,10 @@ selfdrive/locationd/SConscript
selfdrive/locationd/ubloxd.cc
selfdrive/locationd/ublox_msg.cc
selfdrive/locationd/ublox_msg.h
selfdrive/locationd/generated/ubx.cpp
selfdrive/locationd/generated/ubx.h
selfdrive/locationd/generated/gps.cpp
selfdrive/locationd/generated/gps.h
selfdrive/locationd/locationd.py
selfdrive/locationd/paramsd.py
@ -448,6 +452,9 @@ phonelibs/qpoases/**
phonelibs/qrcode/*.cc
phonelibs/qrcode/*.hpp
phonelibs/kaitai/*.h
phonelibs/kaitai/*.cpp
phonelibs/libyuv/include/**
phonelibs/libyuv/lib/**
phonelibs/libyuv/larch64/**

View File

@ -1,5 +1,12 @@
Import('env', 'common', 'cereal', 'messaging')
loc_libs = [cereal, messaging, 'zmq', common, 'capnp', 'kj', 'pthread']
loc_libs = [cereal, messaging, 'zmq', common, 'capnp', 'kj', 'kaitai', 'pthread']
env.Program("ubloxd", ["ubloxd.cc", "ublox_msg.cc"], LIBS=loc_libs)
if GetOption('kaitai'):
generated = Dir('generated').srcnode().abspath
cmd = f"kaitai-struct-compiler --target cpp_stl --outdir {generated} $SOURCES"
env.Command(['generated/ubx.cpp', 'generated/ubx.h'], 'ubx.ksy', cmd)
env.Command(['generated/gps.cpp', 'generated/gps.h'], 'gps.ksy', cmd)
env.Program("ubloxd", ["ubloxd.cc", "ublox_msg.cc", "generated/ubx.cpp", "generated/gps.cpp"], LIBS=loc_libs)

View File

@ -0,0 +1,325 @@
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "gps.h"
#include "kaitai/exceptions.h"
gps_t::gps_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_tlm = 0;
m_how = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::_read() {
m_tlm = new tlm_t(m__io, this, m__root);
m_how = new how_t(m__io, this, m__root);
n_body = true;
switch (how()->subframe_id()) {
case 1: {
n_body = false;
m_body = new subframe_1_t(m__io, this, m__root);
break;
}
case 2: {
n_body = false;
m_body = new subframe_2_t(m__io, this, m__root);
break;
}
case 3: {
n_body = false;
m_body = new subframe_3_t(m__io, this, m__root);
break;
}
case 4: {
n_body = false;
m_body = new subframe_4_t(m__io, this, m__root);
break;
}
}
}
gps_t::~gps_t() {
_clean_up();
}
void gps_t::_clean_up() {
if (m_tlm) {
delete m_tlm; m_tlm = 0;
}
if (m_how) {
delete m_how; m_how = 0;
}
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
}
gps_t::subframe_1_t::subframe_1_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_af_0 = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_1_t::_read() {
m_week_no = m__io->read_bits_int_be(10);
m_code = m__io->read_bits_int_be(2);
m_sv_accuracy = m__io->read_bits_int_be(4);
m_sv_health = m__io->read_bits_int_be(6);
m_iodc_msb = m__io->read_bits_int_be(2);
m_l2_p_data_flag = m__io->read_bits_int_be(1);
m_reserved1 = m__io->read_bits_int_be(23);
m_reserved2 = m__io->read_bits_int_be(24);
m_reserved3 = m__io->read_bits_int_be(24);
m_reserved4 = m__io->read_bits_int_be(16);
m__io->align_to_byte();
m_t_gd = m__io->read_s1();
m_iodc_lsb = m__io->read_u1();
m_t_oc = m__io->read_u2be();
m_af_2 = m__io->read_s1();
m_af_1 = m__io->read_s2be();
m_af_0_sign = m__io->read_bits_int_be(1);
m_af_0_value = m__io->read_bits_int_be(21);
m_reserved5 = m__io->read_bits_int_be(2);
}
gps_t::subframe_1_t::~subframe_1_t() {
_clean_up();
}
void gps_t::subframe_1_t::_clean_up() {
}
int32_t gps_t::subframe_1_t::af_0() {
if (f_af_0)
return m_af_0;
m_af_0 = ((af_0_sign()) ? ((af_0_value() - (1 << 21))) : (af_0_value()));
f_af_0 = true;
return m_af_0;
}
gps_t::subframe_3_t::subframe_3_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_omega_dot = false;
f_idot = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_3_t::_read() {
m_c_ic = m__io->read_s2be();
m_omega_0 = m__io->read_s4be();
m_c_is = m__io->read_s2be();
m_i_0 = m__io->read_s4be();
m_c_rc = m__io->read_s2be();
m_omega = m__io->read_s4be();
m_omega_dot_sign = m__io->read_bits_int_be(1);
m_omega_dot_value = m__io->read_bits_int_be(23);
m__io->align_to_byte();
m_iode = m__io->read_u1();
m_idot_sign = m__io->read_bits_int_be(1);
m_idot_value = m__io->read_bits_int_be(13);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::subframe_3_t::~subframe_3_t() {
_clean_up();
}
void gps_t::subframe_3_t::_clean_up() {
}
int32_t gps_t::subframe_3_t::omega_dot() {
if (f_omega_dot)
return m_omega_dot;
m_omega_dot = ((omega_dot_sign()) ? ((omega_dot_value() - (1 << 23))) : (omega_dot_value()));
f_omega_dot = true;
return m_omega_dot;
}
int32_t gps_t::subframe_3_t::idot() {
if (f_idot)
return m_idot;
m_idot = ((idot_sign()) ? ((idot_value() - (1 << 13))) : (idot_value()));
f_idot = true;
return m_idot;
}
gps_t::subframe_4_t::subframe_4_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_4_t::_read() {
m_data_id = m__io->read_bits_int_be(2);
m_page_id = m__io->read_bits_int_be(6);
m__io->align_to_byte();
n_body = true;
switch (page_id()) {
case 56: {
n_body = false;
m_body = new ionosphere_data_t(m__io, this, m__root);
break;
}
}
}
gps_t::subframe_4_t::~subframe_4_t() {
_clean_up();
}
void gps_t::subframe_4_t::_clean_up() {
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
}
gps_t::subframe_4_t::ionosphere_data_t::ionosphere_data_t(kaitai::kstream* p__io, gps_t::subframe_4_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_4_t::ionosphere_data_t::_read() {
m_a0 = m__io->read_s1();
m_a1 = m__io->read_s1();
m_a2 = m__io->read_s1();
m_a3 = m__io->read_s1();
m_b0 = m__io->read_s1();
m_b1 = m__io->read_s1();
m_b2 = m__io->read_s1();
m_b3 = m__io->read_s1();
}
gps_t::subframe_4_t::ionosphere_data_t::~ionosphere_data_t() {
_clean_up();
}
void gps_t::subframe_4_t::ionosphere_data_t::_clean_up() {
}
gps_t::how_t::how_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::how_t::_read() {
m_tow_count = m__io->read_bits_int_be(17);
m_alert = m__io->read_bits_int_be(1);
m_anti_spoof = m__io->read_bits_int_be(1);
m_subframe_id = m__io->read_bits_int_be(3);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::how_t::~how_t() {
_clean_up();
}
void gps_t::how_t::_clean_up() {
}
gps_t::tlm_t::tlm_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::tlm_t::_read() {
m_magic = m__io->read_bytes(1);
if (!(magic() == std::string("\x8B", 1))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\x8B", 1), magic(), _io(), std::string("/types/tlm/seq/0"));
}
m_tlm = m__io->read_bits_int_be(14);
m_integrity_status = m__io->read_bits_int_be(1);
m_reserved = m__io->read_bits_int_be(1);
}
gps_t::tlm_t::~tlm_t() {
_clean_up();
}
void gps_t::tlm_t::_clean_up() {
}
gps_t::subframe_2_t::subframe_2_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_2_t::_read() {
m_iode = m__io->read_u1();
m_c_rs = m__io->read_s2be();
m_delta_n = m__io->read_s2be();
m_m_0 = m__io->read_s4be();
m_c_uc = m__io->read_s2be();
m_e = m__io->read_s4be();
m_c_us = m__io->read_s2be();
m_sqrt_a = m__io->read_u4be();
m_t_oe = m__io->read_u2be();
m_fit_interval_flag = m__io->read_bits_int_be(1);
m_aoda = m__io->read_bits_int_be(5);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::subframe_2_t::~subframe_2_t() {
_clean_up();
}
void gps_t::subframe_2_t::_clean_up() {
}

View File

@ -0,0 +1,359 @@
#ifndef GPS_H_
#define GPS_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class gps_t : public kaitai::kstruct {
public:
class subframe_1_t;
class subframe_3_t;
class subframe_4_t;
class how_t;
class tlm_t;
class subframe_2_t;
gps_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~gps_t();
class subframe_1_t : public kaitai::kstruct {
public:
subframe_1_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_1_t();
private:
bool f_af_0;
int32_t m_af_0;
public:
int32_t af_0();
private:
uint64_t m_week_no;
uint64_t m_code;
uint64_t m_sv_accuracy;
uint64_t m_sv_health;
uint64_t m_iodc_msb;
bool m_l2_p_data_flag;
uint64_t m_reserved1;
uint64_t m_reserved2;
uint64_t m_reserved3;
uint64_t m_reserved4;
int8_t m_t_gd;
uint8_t m_iodc_lsb;
uint16_t m_t_oc;
int8_t m_af_2;
int16_t m_af_1;
bool m_af_0_sign;
uint64_t m_af_0_value;
uint64_t m_reserved5;
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t week_no() const { return m_week_no; }
uint64_t code() const { return m_code; }
uint64_t sv_accuracy() const { return m_sv_accuracy; }
uint64_t sv_health() const { return m_sv_health; }
uint64_t iodc_msb() const { return m_iodc_msb; }
bool l2_p_data_flag() const { return m_l2_p_data_flag; }
uint64_t reserved1() const { return m_reserved1; }
uint64_t reserved2() const { return m_reserved2; }
uint64_t reserved3() const { return m_reserved3; }
uint64_t reserved4() const { return m_reserved4; }
int8_t t_gd() const { return m_t_gd; }
uint8_t iodc_lsb() const { return m_iodc_lsb; }
uint16_t t_oc() const { return m_t_oc; }
int8_t af_2() const { return m_af_2; }
int16_t af_1() const { return m_af_1; }
bool af_0_sign() const { return m_af_0_sign; }
uint64_t af_0_value() const { return m_af_0_value; }
uint64_t reserved5() const { return m_reserved5; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_3_t : public kaitai::kstruct {
public:
subframe_3_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_3_t();
private:
bool f_omega_dot;
int32_t m_omega_dot;
public:
int32_t omega_dot();
private:
bool f_idot;
int32_t m_idot;
public:
int32_t idot();
private:
int16_t m_c_ic;
int32_t m_omega_0;
int16_t m_c_is;
int32_t m_i_0;
int16_t m_c_rc;
int32_t m_omega;
bool m_omega_dot_sign;
uint64_t m_omega_dot_value;
uint8_t m_iode;
bool m_idot_sign;
uint64_t m_idot_value;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
int16_t c_ic() const { return m_c_ic; }
int32_t omega_0() const { return m_omega_0; }
int16_t c_is() const { return m_c_is; }
int32_t i_0() const { return m_i_0; }
int16_t c_rc() const { return m_c_rc; }
int32_t omega() const { return m_omega; }
bool omega_dot_sign() const { return m_omega_dot_sign; }
uint64_t omega_dot_value() const { return m_omega_dot_value; }
uint8_t iode() const { return m_iode; }
bool idot_sign() const { return m_idot_sign; }
uint64_t idot_value() const { return m_idot_value; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_4_t : public kaitai::kstruct {
public:
class ionosphere_data_t;
subframe_4_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_4_t();
class ionosphere_data_t : public kaitai::kstruct {
public:
ionosphere_data_t(kaitai::kstream* p__io, gps_t::subframe_4_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~ionosphere_data_t();
private:
int8_t m_a0;
int8_t m_a1;
int8_t m_a2;
int8_t m_a3;
int8_t m_b0;
int8_t m_b1;
int8_t m_b2;
int8_t m_b3;
gps_t* m__root;
gps_t::subframe_4_t* m__parent;
public:
int8_t a0() const { return m_a0; }
int8_t a1() const { return m_a1; }
int8_t a2() const { return m_a2; }
int8_t a3() const { return m_a3; }
int8_t b0() const { return m_b0; }
int8_t b1() const { return m_b1; }
int8_t b2() const { return m_b2; }
int8_t b3() const { return m_b3; }
gps_t* _root() const { return m__root; }
gps_t::subframe_4_t* _parent() const { return m__parent; }
};
private:
uint64_t m_data_id;
uint64_t m_page_id;
ionosphere_data_t* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t data_id() const { return m_data_id; }
uint64_t page_id() const { return m_page_id; }
ionosphere_data_t* body() const { return m_body; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class how_t : public kaitai::kstruct {
public:
how_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~how_t();
private:
uint64_t m_tow_count;
bool m_alert;
bool m_anti_spoof;
uint64_t m_subframe_id;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t tow_count() const { return m_tow_count; }
bool alert() const { return m_alert; }
bool anti_spoof() const { return m_anti_spoof; }
uint64_t subframe_id() const { return m_subframe_id; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class tlm_t : public kaitai::kstruct {
public:
tlm_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~tlm_t();
private:
std::string m_magic;
uint64_t m_tlm;
bool m_integrity_status;
bool m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
std::string magic() const { return m_magic; }
uint64_t tlm() const { return m_tlm; }
bool integrity_status() const { return m_integrity_status; }
bool reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_2_t : public kaitai::kstruct {
public:
subframe_2_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_2_t();
private:
uint8_t m_iode;
int16_t m_c_rs;
int16_t m_delta_n;
int32_t m_m_0;
int16_t m_c_uc;
int32_t m_e;
int16_t m_c_us;
uint32_t m_sqrt_a;
uint16_t m_t_oe;
bool m_fit_interval_flag;
uint64_t m_aoda;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
uint8_t iode() const { return m_iode; }
int16_t c_rs() const { return m_c_rs; }
int16_t delta_n() const { return m_delta_n; }
int32_t m_0() const { return m_m_0; }
int16_t c_uc() const { return m_c_uc; }
int32_t e() const { return m_e; }
int16_t c_us() const { return m_c_us; }
uint32_t sqrt_a() const { return m_sqrt_a; }
uint16_t t_oe() const { return m_t_oe; }
bool fit_interval_flag() const { return m_fit_interval_flag; }
uint64_t aoda() const { return m_aoda; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
private:
tlm_t* m_tlm;
how_t* m_how;
kaitai::kstruct* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
gps_t* m__root;
kaitai::kstruct* m__parent;
public:
tlm_t* tlm() const { return m_tlm; }
how_t* how() const { return m_how; }
kaitai::kstruct* body() const { return m_body; }
gps_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // GPS_H_

View File

@ -0,0 +1,340 @@
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "ubx.h"
#include "kaitai/exceptions.h"
ubx_t::ubx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
f_checksum = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::_read() {
m_magic = m__io->read_bytes(2);
if (!(magic() == std::string("\xB5\x62", 2))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\xB5\x62", 2), magic(), _io(), std::string("/seq/0"));
}
m_msg_type = m__io->read_u2be();
m_length = m__io->read_u2le();
n_body = true;
switch (msg_type()) {
case 2569: {
n_body = false;
m_body = new mon_hw_t(m__io, this, m__root);
break;
}
case 533: {
n_body = false;
m_body = new rxm_rawx_t(m__io, this, m__root);
break;
}
case 531: {
n_body = false;
m_body = new rxm_sfrbx_t(m__io, this, m__root);
break;
}
case 2571: {
n_body = false;
m_body = new mon_hw2_t(m__io, this, m__root);
break;
}
case 263: {
n_body = false;
m_body = new nav_pvt_t(m__io, this, m__root);
break;
}
}
}
ubx_t::~ubx_t() {
_clean_up();
}
void ubx_t::_clean_up() {
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
if (f_checksum) {
}
}
ubx_t::rxm_rawx_t::rxm_rawx_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_measurements = 0;
m__raw_measurements = 0;
m__io__raw_measurements = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_rawx_t::_read() {
m_rcv_tow = m__io->read_f8le();
m_week = m__io->read_u2le();
m_leap_s = m__io->read_s1();
m_num_meas = m__io->read_u1();
m_rec_stat = m__io->read_u1();
m_reserved1 = m__io->read_bytes(3);
int l_measurements = num_meas();
m__raw_measurements = new std::vector<std::string>();
m__raw_measurements->reserve(l_measurements);
m__io__raw_measurements = new std::vector<kaitai::kstream*>();
m__io__raw_measurements->reserve(l_measurements);
m_measurements = new std::vector<meas_t*>();
m_measurements->reserve(l_measurements);
for (int i = 0; i < l_measurements; i++) {
m__raw_measurements->push_back(m__io->read_bytes(32));
kaitai::kstream* io__raw_measurements = new kaitai::kstream(m__raw_measurements->at(m__raw_measurements->size() - 1));
m__io__raw_measurements->push_back(io__raw_measurements);
m_measurements->push_back(new meas_t(io__raw_measurements, this, m__root));
}
}
ubx_t::rxm_rawx_t::~rxm_rawx_t() {
_clean_up();
}
void ubx_t::rxm_rawx_t::_clean_up() {
if (m__raw_measurements) {
delete m__raw_measurements; m__raw_measurements = 0;
}
if (m__io__raw_measurements) {
for (std::vector<kaitai::kstream*>::iterator it = m__io__raw_measurements->begin(); it != m__io__raw_measurements->end(); ++it) {
delete *it;
}
delete m__io__raw_measurements; m__io__raw_measurements = 0;
}
if (m_measurements) {
for (std::vector<meas_t*>::iterator it = m_measurements->begin(); it != m_measurements->end(); ++it) {
delete *it;
}
delete m_measurements; m_measurements = 0;
}
}
ubx_t::rxm_rawx_t::meas_t::meas_t(kaitai::kstream* p__io, ubx_t::rxm_rawx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_rawx_t::meas_t::_read() {
m_pr_mes = m__io->read_f8le();
m_cp_mes = m__io->read_f8le();
m_do_mes = m__io->read_f4le();
m_gnss_id = static_cast<ubx_t::gnss_type_t>(m__io->read_u1());
m_sv_id = m__io->read_u1();
m_reserved2 = m__io->read_bytes(1);
m_freq_id = m__io->read_u1();
m_lock_time = m__io->read_u2le();
m_cno = m__io->read_u1();
m_pr_stdev = m__io->read_u1();
m_cp_stdev = m__io->read_u1();
m_do_stdev = m__io->read_u1();
m_trk_stat = m__io->read_u1();
m_reserved3 = m__io->read_bytes(1);
}
ubx_t::rxm_rawx_t::meas_t::~meas_t() {
_clean_up();
}
void ubx_t::rxm_rawx_t::meas_t::_clean_up() {
}
ubx_t::rxm_sfrbx_t::rxm_sfrbx_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_body = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_sfrbx_t::_read() {
m_gnss_id = static_cast<ubx_t::gnss_type_t>(m__io->read_u1());
m_sv_id = m__io->read_u1();
m_reserved1 = m__io->read_bytes(1);
m_freq_id = m__io->read_u1();
m_num_words = m__io->read_u1();
m_reserved2 = m__io->read_bytes(1);
m_version = m__io->read_u1();
m_reserved3 = m__io->read_bytes(1);
int l_body = num_words();
m_body = new std::vector<uint32_t>();
m_body->reserve(l_body);
for (int i = 0; i < l_body; i++) {
m_body->push_back(m__io->read_u4le());
}
}
ubx_t::rxm_sfrbx_t::~rxm_sfrbx_t() {
_clean_up();
}
void ubx_t::rxm_sfrbx_t::_clean_up() {
if (m_body) {
delete m_body; m_body = 0;
}
}
ubx_t::nav_pvt_t::nav_pvt_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::nav_pvt_t::_read() {
m_i_tow = m__io->read_u4le();
m_year = m__io->read_u2le();
m_month = m__io->read_u1();
m_day = m__io->read_u1();
m_hour = m__io->read_u1();
m_min = m__io->read_u1();
m_sec = m__io->read_u1();
m_valid = m__io->read_u1();
m_t_acc = m__io->read_u4le();
m_nano = m__io->read_s4le();
m_fix_type = m__io->read_u1();
m_flags = m__io->read_u1();
m_flags2 = m__io->read_u1();
m_num_sv = m__io->read_u1();
m_lon = m__io->read_s4le();
m_lat = m__io->read_s4le();
m_height = m__io->read_s4le();
m_h_msl = m__io->read_s4le();
m_h_acc = m__io->read_u4le();
m_v_acc = m__io->read_u4le();
m_vel_n = m__io->read_s4le();
m_vel_e = m__io->read_s4le();
m_vel_d = m__io->read_s4le();
m_g_speed = m__io->read_s4le();
m_head_mot = m__io->read_s4le();
m_s_acc = m__io->read_s4le();
m_head_acc = m__io->read_u4le();
m_p_dop = m__io->read_u2le();
m_flags3 = m__io->read_u1();
m_reserved1 = m__io->read_bytes(5);
m_head_veh = m__io->read_s4le();
m_mag_dec = m__io->read_s2le();
m_mag_acc = m__io->read_u2le();
}
ubx_t::nav_pvt_t::~nav_pvt_t() {
_clean_up();
}
void ubx_t::nav_pvt_t::_clean_up() {
}
ubx_t::mon_hw2_t::mon_hw2_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::mon_hw2_t::_read() {
m_ofs_i = m__io->read_s1();
m_mag_i = m__io->read_u1();
m_ofs_q = m__io->read_s1();
m_mag_q = m__io->read_u1();
m_cfg_source = static_cast<ubx_t::mon_hw2_t::config_source_t>(m__io->read_u1());
m_reserved1 = m__io->read_bytes(3);
m_low_lev_cfg = m__io->read_u4le();
m_reserved2 = m__io->read_bytes(8);
m_post_status = m__io->read_u4le();
m_reserved3 = m__io->read_bytes(4);
}
ubx_t::mon_hw2_t::~mon_hw2_t() {
_clean_up();
}
void ubx_t::mon_hw2_t::_clean_up() {
}
ubx_t::mon_hw_t::mon_hw_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::mon_hw_t::_read() {
m_pin_sel = m__io->read_u4le();
m_pin_bank = m__io->read_u4le();
m_pin_dir = m__io->read_u4le();
m_pin_val = m__io->read_u4le();
m_noise_per_ms = m__io->read_u2le();
m_agc_cnt = m__io->read_u2le();
m_a_status = static_cast<ubx_t::mon_hw_t::antenna_status_t>(m__io->read_u1());
m_a_power = static_cast<ubx_t::mon_hw_t::antenna_power_t>(m__io->read_u1());
m_flags = m__io->read_u1();
m_reserved1 = m__io->read_bytes(1);
m_used_mask = m__io->read_u4le();
m_vp = m__io->read_bytes(17);
m_jam_ind = m__io->read_u1();
m_reserved2 = m__io->read_bytes(2);
m_pin_irq = m__io->read_u4le();
m_pull_h = m__io->read_u4le();
m_pull_l = m__io->read_u4le();
}
ubx_t::mon_hw_t::~mon_hw_t() {
_clean_up();
}
void ubx_t::mon_hw_t::_clean_up() {
}
uint16_t ubx_t::checksum() {
if (f_checksum)
return m_checksum;
std::streampos _pos = m__io->pos();
m__io->seek((length() + 6));
m_checksum = m__io->read_u2le();
m__io->seek(_pos);
f_checksum = true;
return m_checksum;
}

View File

@ -0,0 +1,410 @@
#ifndef UBX_H_
#define UBX_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <vector>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class ubx_t : public kaitai::kstruct {
public:
class rxm_rawx_t;
class rxm_sfrbx_t;
class nav_pvt_t;
class mon_hw2_t;
class mon_hw_t;
enum gnss_type_t {
GNSS_TYPE_GPS = 0,
GNSS_TYPE_SBAS = 1,
GNSS_TYPE_GALILEO = 2,
GNSS_TYPE_BEIDOU = 3,
GNSS_TYPE_IMES = 4,
GNSS_TYPE_QZSS = 5,
GNSS_TYPE_GLONASS = 6
};
ubx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~ubx_t();
class rxm_rawx_t : public kaitai::kstruct {
public:
class meas_t;
rxm_rawx_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~rxm_rawx_t();
class meas_t : public kaitai::kstruct {
public:
meas_t(kaitai::kstream* p__io, ubx_t::rxm_rawx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~meas_t();
private:
double m_pr_mes;
double m_cp_mes;
float m_do_mes;
gnss_type_t m_gnss_id;
uint8_t m_sv_id;
std::string m_reserved2;
uint8_t m_freq_id;
uint16_t m_lock_time;
uint8_t m_cno;
uint8_t m_pr_stdev;
uint8_t m_cp_stdev;
uint8_t m_do_stdev;
uint8_t m_trk_stat;
std::string m_reserved3;
ubx_t* m__root;
ubx_t::rxm_rawx_t* m__parent;
public:
double pr_mes() const { return m_pr_mes; }
double cp_mes() const { return m_cp_mes; }
float do_mes() const { return m_do_mes; }
gnss_type_t gnss_id() const { return m_gnss_id; }
uint8_t sv_id() const { return m_sv_id; }
std::string reserved2() const { return m_reserved2; }
uint8_t freq_id() const { return m_freq_id; }
uint16_t lock_time() const { return m_lock_time; }
uint8_t cno() const { return m_cno; }
uint8_t pr_stdev() const { return m_pr_stdev; }
uint8_t cp_stdev() const { return m_cp_stdev; }
uint8_t do_stdev() const { return m_do_stdev; }
uint8_t trk_stat() const { return m_trk_stat; }
std::string reserved3() const { return m_reserved3; }
ubx_t* _root() const { return m__root; }
ubx_t::rxm_rawx_t* _parent() const { return m__parent; }
};
private:
double m_rcv_tow;
uint16_t m_week;
int8_t m_leap_s;
uint8_t m_num_meas;
uint8_t m_rec_stat;
std::string m_reserved1;
std::vector<meas_t*>* m_measurements;
ubx_t* m__root;
ubx_t* m__parent;
std::vector<std::string>* m__raw_measurements;
std::vector<kaitai::kstream*>* m__io__raw_measurements;
public:
double rcv_tow() const { return m_rcv_tow; }
uint16_t week() const { return m_week; }
int8_t leap_s() const { return m_leap_s; }
uint8_t num_meas() const { return m_num_meas; }
uint8_t rec_stat() const { return m_rec_stat; }
std::string reserved1() const { return m_reserved1; }
std::vector<meas_t*>* measurements() const { return m_measurements; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
std::vector<std::string>* _raw_measurements() const { return m__raw_measurements; }
std::vector<kaitai::kstream*>* _io__raw_measurements() const { return m__io__raw_measurements; }
};
class rxm_sfrbx_t : public kaitai::kstruct {
public:
rxm_sfrbx_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~rxm_sfrbx_t();
private:
gnss_type_t m_gnss_id;
uint8_t m_sv_id;
std::string m_reserved1;
uint8_t m_freq_id;
uint8_t m_num_words;
std::string m_reserved2;
uint8_t m_version;
std::string m_reserved3;
std::vector<uint32_t>* m_body;
ubx_t* m__root;
ubx_t* m__parent;
public:
gnss_type_t gnss_id() const { return m_gnss_id; }
uint8_t sv_id() const { return m_sv_id; }
std::string reserved1() const { return m_reserved1; }
uint8_t freq_id() const { return m_freq_id; }
uint8_t num_words() const { return m_num_words; }
std::string reserved2() const { return m_reserved2; }
uint8_t version() const { return m_version; }
std::string reserved3() const { return m_reserved3; }
std::vector<uint32_t>* body() const { return m_body; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class nav_pvt_t : public kaitai::kstruct {
public:
nav_pvt_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~nav_pvt_t();
private:
uint32_t m_i_tow;
uint16_t m_year;
uint8_t m_month;
uint8_t m_day;
uint8_t m_hour;
uint8_t m_min;
uint8_t m_sec;
uint8_t m_valid;
uint32_t m_t_acc;
int32_t m_nano;
uint8_t m_fix_type;
uint8_t m_flags;
uint8_t m_flags2;
uint8_t m_num_sv;
int32_t m_lon;
int32_t m_lat;
int32_t m_height;
int32_t m_h_msl;
uint32_t m_h_acc;
uint32_t m_v_acc;
int32_t m_vel_n;
int32_t m_vel_e;
int32_t m_vel_d;
int32_t m_g_speed;
int32_t m_head_mot;
int32_t m_s_acc;
uint32_t m_head_acc;
uint16_t m_p_dop;
uint8_t m_flags3;
std::string m_reserved1;
int32_t m_head_veh;
int16_t m_mag_dec;
uint16_t m_mag_acc;
ubx_t* m__root;
ubx_t* m__parent;
public:
uint32_t i_tow() const { return m_i_tow; }
uint16_t year() const { return m_year; }
uint8_t month() const { return m_month; }
uint8_t day() const { return m_day; }
uint8_t hour() const { return m_hour; }
uint8_t min() const { return m_min; }
uint8_t sec() const { return m_sec; }
uint8_t valid() const { return m_valid; }
uint32_t t_acc() const { return m_t_acc; }
int32_t nano() const { return m_nano; }
uint8_t fix_type() const { return m_fix_type; }
uint8_t flags() const { return m_flags; }
uint8_t flags2() const { return m_flags2; }
uint8_t num_sv() const { return m_num_sv; }
int32_t lon() const { return m_lon; }
int32_t lat() const { return m_lat; }
int32_t height() const { return m_height; }
int32_t h_msl() const { return m_h_msl; }
uint32_t h_acc() const { return m_h_acc; }
uint32_t v_acc() const { return m_v_acc; }
int32_t vel_n() const { return m_vel_n; }
int32_t vel_e() const { return m_vel_e; }
int32_t vel_d() const { return m_vel_d; }
int32_t g_speed() const { return m_g_speed; }
int32_t head_mot() const { return m_head_mot; }
int32_t s_acc() const { return m_s_acc; }
uint32_t head_acc() const { return m_head_acc; }
uint16_t p_dop() const { return m_p_dop; }
uint8_t flags3() const { return m_flags3; }
std::string reserved1() const { return m_reserved1; }
int32_t head_veh() const { return m_head_veh; }
int16_t mag_dec() const { return m_mag_dec; }
uint16_t mag_acc() const { return m_mag_acc; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class mon_hw2_t : public kaitai::kstruct {
public:
enum config_source_t {
CONFIG_SOURCE_FLASH = 102,
CONFIG_SOURCE_OTP = 111,
CONFIG_SOURCE_CONFIG_PINS = 112,
CONFIG_SOURCE_ROM = 113
};
mon_hw2_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~mon_hw2_t();
private:
int8_t m_ofs_i;
uint8_t m_mag_i;
int8_t m_ofs_q;
uint8_t m_mag_q;
config_source_t m_cfg_source;
std::string m_reserved1;
uint32_t m_low_lev_cfg;
std::string m_reserved2;
uint32_t m_post_status;
std::string m_reserved3;
ubx_t* m__root;
ubx_t* m__parent;
public:
int8_t ofs_i() const { return m_ofs_i; }
uint8_t mag_i() const { return m_mag_i; }
int8_t ofs_q() const { return m_ofs_q; }
uint8_t mag_q() const { return m_mag_q; }
config_source_t cfg_source() const { return m_cfg_source; }
std::string reserved1() const { return m_reserved1; }
uint32_t low_lev_cfg() const { return m_low_lev_cfg; }
std::string reserved2() const { return m_reserved2; }
uint32_t post_status() const { return m_post_status; }
std::string reserved3() const { return m_reserved3; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class mon_hw_t : public kaitai::kstruct {
public:
enum antenna_status_t {
ANTENNA_STATUS_INIT = 0,
ANTENNA_STATUS_DONTKNOW = 1,
ANTENNA_STATUS_OK = 2,
ANTENNA_STATUS_SHORT = 3,
ANTENNA_STATUS_OPEN = 4
};
enum antenna_power_t {
ANTENNA_POWER_FALSE = 0,
ANTENNA_POWER_TRUE = 1,
ANTENNA_POWER_DONTKNOW = 2
};
mon_hw_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~mon_hw_t();
private:
uint32_t m_pin_sel;
uint32_t m_pin_bank;
uint32_t m_pin_dir;
uint32_t m_pin_val;
uint16_t m_noise_per_ms;
uint16_t m_agc_cnt;
antenna_status_t m_a_status;
antenna_power_t m_a_power;
uint8_t m_flags;
std::string m_reserved1;
uint32_t m_used_mask;
std::string m_vp;
uint8_t m_jam_ind;
std::string m_reserved2;
uint32_t m_pin_irq;
uint32_t m_pull_h;
uint32_t m_pull_l;
ubx_t* m__root;
ubx_t* m__parent;
public:
uint32_t pin_sel() const { return m_pin_sel; }
uint32_t pin_bank() const { return m_pin_bank; }
uint32_t pin_dir() const { return m_pin_dir; }
uint32_t pin_val() const { return m_pin_val; }
uint16_t noise_per_ms() const { return m_noise_per_ms; }
uint16_t agc_cnt() const { return m_agc_cnt; }
antenna_status_t a_status() const { return m_a_status; }
antenna_power_t a_power() const { return m_a_power; }
uint8_t flags() const { return m_flags; }
std::string reserved1() const { return m_reserved1; }
uint32_t used_mask() const { return m_used_mask; }
std::string vp() const { return m_vp; }
uint8_t jam_ind() const { return m_jam_ind; }
std::string reserved2() const { return m_reserved2; }
uint32_t pin_irq() const { return m_pin_irq; }
uint32_t pull_h() const { return m_pull_h; }
uint32_t pull_l() const { return m_pull_l; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
private:
bool f_checksum;
uint16_t m_checksum;
public:
uint16_t checksum();
private:
std::string m_magic;
uint16_t m_msg_type;
uint16_t m_length;
kaitai::kstruct* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
ubx_t* m__root;
kaitai::kstruct* m__parent;
public:
std::string magic() const { return m_magic; }
uint16_t msg_type() const { return m_msg_type; }
uint16_t length() const { return m_length; }
kaitai::kstruct* body() const { return m_body; }
ubx_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // UBX_H_

View File

@ -0,0 +1,189 @@
# https://www.gps.gov/technical/icwg/IS-GPS-200E.pdf
meta:
id: gps
endian: be
bit-endian: be
seq:
- id: tlm
type: tlm
- id: how
type: how
- id: body
type:
switch-on: how.subframe_id
cases:
1: subframe_1
2: subframe_2
3: subframe_3
4: subframe_4
types:
tlm:
seq:
- id: magic
contents: [0x8b]
- id: tlm
type: b14
- id: integrity_status
type: b1
- id: reserved
type: b1
how:
seq:
- id: tow_count
type: b17
- id: alert
type: b1
- id: anti_spoof
type: b1
- id: subframe_id
type: b3
- id: reserved
type: b2
subframe_1:
seq:
# Word 3
- id: week_no
type: b10
- id: code
type: b2
- id: sv_accuracy
type: b4
- id: sv_health
type: b6
- id: iodc_msb
type: b2
# Word 4
- id: l2_p_data_flag
type: b1
- id: reserved1
type: b23
# Word 5
- id: reserved2
type: b24
# Word 6
- id: reserved3
type: b24
# Word 7
- id: reserved4
type: b16
- id: t_gd
type: s1
# Word 8
- id: iodc_lsb
type: u1
- id: t_oc
type: u2
# Word 9
- id: af_2
type: s1
- id: af_1
type: s2
# Word 10
- id: af_0_sign
type: b1
- id: af_0_value
type: b21
- id: reserved5
type: b2
instances:
af_0:
value: 'af_0_sign ? (af_0_value - (1 << 21)) : af_0_value'
subframe_2:
seq:
# Word 3
- id: iode
type: u1
- id: c_rs
type: s2
# Word 4 & 5
- id: delta_n
type: s2
- id: m_0
type: s4
# Word 6 & 7
- id: c_uc
type: s2
- id: e
type: s4
# Word 8 & 9
- id: c_us
type: s2
- id: sqrt_a
type: u4
# Word 10
- id: t_oe
type: u2
- id: fit_interval_flag
type: b1
- id: aoda
type: b5
- id: reserved
type: b2
subframe_3:
seq:
# Word 3 & 4
- id: c_ic
type: s2
- id: omega_0
type: s4
# Word 5 & 6
- id: c_is
type: s2
- id: i_0
type: s4
# Word 7 & 8
- id: c_rc
type: s2
- id: omega
type: s4
# Word 9
- id: omega_dot_sign
type: b1
- id: omega_dot_value
type: b23
# Word 10
- id: iode
type: u1
- id: idot_sign
type: b1
- id: idot_value
type: b13
- id: reserved
type: b2
instances:
omega_dot:
value: 'omega_dot_sign ? (omega_dot_value - (1 << 23)) : omega_dot_value'
idot:
value: 'idot_sign ? (idot_value - (1 << 13)) : idot_value'
subframe_4:
seq:
# Word 3
- id: data_id
type: b2
- id: page_id
type: b6
- id: body
type:
switch-on: page_id
cases:
56: ionosphere_data
types:
ionosphere_data:
seq:
- id: a0
type: s1
- id: a1
type: s1
- id: a2
type: s1
- id: a3
type: s1
- id: b0
type: s1
- id: b1
type: s1
- id: b2
type: s1
- id: b3
type: s1

View File

@ -1,144 +1,29 @@
#include <stdio.h>
#include <stdlib.h>
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <math.h>
#include <cmath>
#include <ctime>
#include <chrono>
#include <iostream>
#include <cassert>
#include <unordered_map>
#include "common/swaglog.h"
#include "ublox_msg.h"
const double gpsPi = 3.1415926535898;
#define UBLOX_MSG_SIZE(hdr) (*(uint16_t *)&hdr[4])
#define GET_FIELD_U(w, nb, pos) (((w) >> (pos)) & ((1<<(nb))-1))
namespace ublox {
inline int twos_complement(uint32_t v, uint32_t nb) {
int sign = v >> (nb - 1);
int value = v;
if(sign != 0)
value = value - (1 << nb);
return value;
}
inline int GET_FIELD_S(uint32_t w, uint32_t nb, uint32_t pos) {
int v = GET_FIELD_U(w, nb, pos);
return twos_complement(v, nb);
}
class EphemerisData {
public:
EphemerisData(uint8_t svId, subframes_map &subframes) {
this->svId = svId;
int week_no = GET_FIELD_U(subframes[1][2+0], 10, 20);
int t_gd = GET_FIELD_S(subframes[1][2+4], 8, 6);
int iodc = (GET_FIELD_U(subframes[1][2+0], 2, 6) << 8) | GET_FIELD_U(
subframes[1][2+5], 8, 22);
int t_oc = GET_FIELD_U(subframes[1][2+5], 16, 6);
int a_f2 = GET_FIELD_S(subframes[1][2+6], 8, 22);
int a_f1 = GET_FIELD_S(subframes[1][2+6], 16, 6);
int a_f0 = GET_FIELD_S(subframes[1][2+7], 22, 8);
int c_rs = GET_FIELD_S(subframes[2][2+0], 16, 6);
int delta_n = GET_FIELD_S(subframes[2][2+1], 16, 14);
int m_0 = (GET_FIELD_S(subframes[2][2+1], 8, 6) << 24) | GET_FIELD_U(
subframes[2][2+2], 24, 6);
int c_uc = GET_FIELD_S(subframes[2][2+3], 16, 14);
int e = (GET_FIELD_U(subframes[2][2+3], 8, 6) << 24) | GET_FIELD_U(subframes[2][2+4], 24, 6);
int c_us = GET_FIELD_S(subframes[2][2+5], 16, 14);
uint32_t a_powhalf = (GET_FIELD_U(subframes[2][2+5], 8, 6) << 24) | GET_FIELD_U(
subframes[2][2+6], 24, 6);
int t_oe = GET_FIELD_U(subframes[2][2+7], 16, 14);
int c_ic = GET_FIELD_S(subframes[3][2+0], 16, 14);
int omega_0 = (GET_FIELD_S(subframes[3][2+0], 8, 6) << 24) | GET_FIELD_U(
subframes[3][2+1], 24, 6);
int c_is = GET_FIELD_S(subframes[3][2+2], 16, 14);
int i_0 = (GET_FIELD_S(subframes[3][2+2], 8, 6) << 24) | GET_FIELD_U(
subframes[3][2+3], 24, 6);
int c_rc = GET_FIELD_S(subframes[3][2+4], 16, 14);
int w = (GET_FIELD_S(subframes[3][2+4], 8, 6) << 24) | GET_FIELD_U(subframes[3][2+5], 24, 6);
int omega_dot = GET_FIELD_S(subframes[3][2+6], 24, 6);
int idot = GET_FIELD_S(subframes[3][2+7], 14, 8);
this->_rsvd1 = GET_FIELD_U(subframes[1][2+1], 23, 6);
this->_rsvd2 = GET_FIELD_U(subframes[1][2+2], 24, 6);
this->_rsvd3 = GET_FIELD_U(subframes[1][2+3], 24, 6);
this->_rsvd4 = GET_FIELD_U(subframes[1][2+4], 16, 14);
this->aodo = GET_FIELD_U(subframes[2][2+7], 5, 8);
double gpsPi = 3.1415926535898;
// now form variables in radians, meters and seconds etc
this->Tgd = t_gd * pow(2, -31);
this->A = pow(a_powhalf * pow(2, -19), 2.0);
this->cic = c_ic * pow(2, -29);
this->cis = c_is * pow(2, -29);
this->crc = c_rc * pow(2, -5);
this->crs = c_rs * pow(2, -5);
this->cuc = c_uc * pow(2, -29);
this->cus = c_us * pow(2, -29);
this->deltaN = delta_n * pow(2, -43) * gpsPi;
this->ecc = e * pow(2, -33);
this->i0 = i_0 * pow(2, -31) * gpsPi;
this->idot = idot * pow(2, -43) * gpsPi;
this->M0 = m_0 * pow(2, -31) * gpsPi;
this->omega = w * pow(2, -31) * gpsPi;
this->omega_dot = omega_dot * pow(2, -43) * gpsPi;
this->omega0 = omega_0 * pow(2, -31) * gpsPi;
this->toe = t_oe * pow(2, 4);
this->toc = t_oc * pow(2, 4);
this->gpsWeek = week_no;
this->af0 = a_f0 * pow(2, -31);
this->af1 = a_f1 * pow(2, -43);
this->af2 = a_f2 * pow(2, -55);
uint32_t iode1 = GET_FIELD_U(subframes[2][2+0], 8, 22);
uint32_t iode2 = GET_FIELD_U(subframes[3][2+7], 8, 22);
this->valid = (iode1 == iode2) && (iode1 == (iodc & 0xff));
this->iode = iode1;
if (GET_FIELD_U(subframes[4][2+0], 6, 22) == 56 &&
GET_FIELD_U(subframes[4][2+0], 2, 28) == 1 &&
GET_FIELD_U(subframes[5][2+0], 2, 28) == 1) {
double a0 = GET_FIELD_S(subframes[4][2], 8, 14) * pow(2, -30);
double a1 = GET_FIELD_S(subframes[4][2], 8, 6) * pow(2, -27);
double a2 = GET_FIELD_S(subframes[4][3], 8, 22) * pow(2, -24);
double a3 = GET_FIELD_S(subframes[4][3], 8, 14) * pow(2, -24);
double b0 = GET_FIELD_S(subframes[4][3], 8, 6) * pow(2, 11);
double b1 = GET_FIELD_S(subframes[4][4], 8, 22) * pow(2, 14);
double b2 = GET_FIELD_S(subframes[4][4], 8, 14) * pow(2, 16);
double b3 = GET_FIELD_S(subframes[4][4], 8, 6) * pow(2, 16);
this->ionoAlpha[0] = a0;this->ionoAlpha[1] = a1;this->ionoAlpha[2] = a2;this->ionoAlpha[3] = a3;
this->ionoBeta[0] = b0;this->ionoBeta[1] = b1;this->ionoBeta[2] = b2;this->ionoBeta[3] = b3;
this->ionoCoeffsValid = true;
} else {
this->ionoCoeffsValid = false;
}
}
uint16_t svId;
double Tgd, A, cic, cis, crc, crs, cuc, cus, deltaN, ecc, i0, idot, M0, omega, omega_dot, omega0, toe, toc;
uint32_t gpsWeek, iode, _rsvd1, _rsvd2, _rsvd3, _rsvd4, aodo;
double af0, af1, af2;
bool valid;
double ionoAlpha[4], ionoBeta[4];
bool ionoCoeffsValid;
};
UbloxMsgParser::UbloxMsgParser() :bytes_in_parse_buf(0) {
nav_frame_buffer[0U] = std::map<uint8_t, subframes_map>();
for(int i = 1;i < 33;i++)
nav_frame_buffer[0U][i] = subframes_map();
inline static bool bit_to_bool(uint8_t val, int shifts) {
return (bool)(val & (1 << shifts));
}
inline int UbloxMsgParser::needed_bytes() {
// Msg header incomplete?
if(bytes_in_parse_buf < UBLOX_HEADER_SIZE)
return UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE - bytes_in_parse_buf;
uint16_t needed = UBLOX_MSG_SIZE(msg_parse_buf) + UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE;
if(bytes_in_parse_buf < ublox::UBLOX_HEADER_SIZE)
return ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE - bytes_in_parse_buf;
uint16_t needed = UBLOX_MSG_SIZE(msg_parse_buf) + ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE;
// too much data
if(needed < (uint16_t)bytes_in_parse_buf)
return -1;
@ -147,7 +32,7 @@ inline int UbloxMsgParser::needed_bytes() {
inline bool UbloxMsgParser::valid_cheksum() {
uint8_t ck_a = 0, ck_b = 0;
for(int i = 2; i < bytes_in_parse_buf - UBLOX_CHECKSUM_SIZE;i++) {
for(int i = 2; i < bytes_in_parse_buf - ublox::UBLOX_CHECKSUM_SIZE;i++) {
ck_a = (ck_a + msg_parse_buf[i]) & 0xFF;
ck_b = (ck_b + ck_a) & 0xFF;
}
@ -163,17 +48,15 @@ inline bool UbloxMsgParser::valid_cheksum() {
}
inline bool UbloxMsgParser::valid() {
return bytes_in_parse_buf >= UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE &&
return bytes_in_parse_buf >= ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE &&
needed_bytes() == 0 && valid_cheksum();
}
inline bool UbloxMsgParser::valid_so_far() {
if(bytes_in_parse_buf > 0 && msg_parse_buf[0] != PREAMBLE1) {
//LOGD("PREAMBLE1 invalid, %02X.", msg_parse_buf[0]);
if(bytes_in_parse_buf > 0 && msg_parse_buf[0] != ublox::PREAMBLE1) {
return false;
}
if(bytes_in_parse_buf > 1 && msg_parse_buf[1] != PREAMBLE2) {
//LOGD("PREAMBLE2 invalid, %02X.", msg_parse_buf[1]);
if(bytes_in_parse_buf > 1 && msg_parse_buf[1] != ublox::PREAMBLE2) {
return false;
}
if(needed_bytes() == 0 && !valid()) {
@ -182,192 +65,6 @@ inline bool UbloxMsgParser::valid_so_far() {
return true;
}
kj::Array<capnp::word> UbloxMsgParser::gen_solution() {
nav_pvt_msg *msg = (nav_pvt_msg *)&msg_parse_buf[UBLOX_HEADER_SIZE];
MessageBuilder msg_builder;
auto gpsLoc = msg_builder.initEvent().initGpsLocationExternal();
gpsLoc.setSource(cereal::GpsLocationData::SensorSource::UBLOX);
gpsLoc.setFlags(msg->flags);
gpsLoc.setLatitude(msg->lat * 1e-07);
gpsLoc.setLongitude(msg->lon * 1e-07);
gpsLoc.setAltitude(msg->height * 1e-03);
gpsLoc.setSpeed(msg->gSpeed * 1e-03);
gpsLoc.setBearingDeg(msg->headMot * 1e-5);
gpsLoc.setAccuracy(msg->hAcc * 1e-03);
std::tm timeinfo = std::tm();
timeinfo.tm_year = msg->year - 1900;
timeinfo.tm_mon = msg->month - 1;
timeinfo.tm_mday = msg->day;
timeinfo.tm_hour = msg->hour;
timeinfo.tm_min = msg->min;
timeinfo.tm_sec = msg->sec;
std::time_t utc_tt = timegm(&timeinfo);
gpsLoc.setTimestamp(utc_tt * 1e+03 + msg->nano * 1e-06);
float f[] = { msg->velN * 1e-03f, msg->velE * 1e-03f, msg->velD * 1e-03f };
gpsLoc.setVNED(f);
gpsLoc.setVerticalAccuracy(msg->vAcc * 1e-03);
gpsLoc.setSpeedAccuracy(msg->sAcc * 1e-03);
gpsLoc.setBearingAccuracyDeg(msg->headAcc * 1e-05);
return capnp::messageToFlatArray(msg_builder);
}
inline bool bit_to_bool(uint8_t val, int shifts) {
return (bool)(val & (1 << shifts));
}
kj::Array<capnp::word> UbloxMsgParser::gen_raw() {
rxm_raw_msg *msg = (rxm_raw_msg *)&msg_parse_buf[UBLOX_HEADER_SIZE];
if(bytes_in_parse_buf != (
UBLOX_HEADER_SIZE + sizeof(rxm_raw_msg) + msg->numMeas * sizeof(rxm_raw_msg_extra) + UBLOX_CHECKSUM_SIZE
)) {
LOGD("Invalid measurement size %u, %u, %u, %u", msg->numMeas, bytes_in_parse_buf, sizeof(rxm_raw_msg_extra), sizeof(rxm_raw_msg));
return kj::Array<capnp::word>();
}
rxm_raw_msg_extra *measurements = (rxm_raw_msg_extra *)&msg_parse_buf[UBLOX_HEADER_SIZE + sizeof(rxm_raw_msg)];
MessageBuilder msg_builder;
auto mr = msg_builder.initEvent().initUbloxGnss().initMeasurementReport();
mr.setRcvTow(msg->rcvTow);
mr.setGpsWeek(msg->week);
mr.setLeapSeconds(msg->leapS);
mr.setGpsWeek(msg->week);
auto mb = mr.initMeasurements(msg->numMeas);
for(int8_t i = 0; i < msg->numMeas; i++) {
mb[i].setSvId(measurements[i].svId);
mb[i].setSigId(measurements[i].sigId);
mb[i].setPseudorange(measurements[i].prMes);
mb[i].setCarrierCycles(measurements[i].cpMes);
mb[i].setDoppler(measurements[i].doMes);
mb[i].setGnssId(measurements[i].gnssId);
mb[i].setGlonassFrequencyIndex(measurements[i].freqId);
mb[i].setLocktime(measurements[i].locktime);
mb[i].setCno(measurements[i].cno);
mb[i].setPseudorangeStdev(0.01*(pow(2, (measurements[i].prStdev & 15)))); // weird scaling, might be wrong
mb[i].setCarrierPhaseStdev(0.004*(measurements[i].cpStdev & 15));
mb[i].setDopplerStdev(0.002*(pow(2, (measurements[i].doStdev & 15)))); // weird scaling, might be wrong
auto ts = mb[i].initTrackingStatus();
ts.setPseudorangeValid(bit_to_bool(measurements[i].trkStat, 0));
ts.setCarrierPhaseValid(bit_to_bool(measurements[i].trkStat, 1));
ts.setHalfCycleValid(bit_to_bool(measurements[i].trkStat, 2));
ts.setHalfCycleSubtracted(bit_to_bool(measurements[i].trkStat, 3));
}
mr.setNumMeas(msg->numMeas);
auto rs = mr.initReceiverStatus();
rs.setLeapSecValid(bit_to_bool(msg->recStat, 0));
rs.setClkReset(bit_to_bool(msg->recStat, 2));
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_data() {
rxm_sfrbx_msg *msg = (rxm_sfrbx_msg *)&msg_parse_buf[UBLOX_HEADER_SIZE];
if(bytes_in_parse_buf != (
UBLOX_HEADER_SIZE + sizeof(rxm_sfrbx_msg) + msg->numWords * sizeof(rxm_sfrbx_msg_extra) + UBLOX_CHECKSUM_SIZE
)) {
LOGD("Invalid sfrbx words size %u, %u, %u, %u", msg->numWords, bytes_in_parse_buf, sizeof(rxm_raw_msg_extra), sizeof(rxm_raw_msg));
return kj::Array<capnp::word>();
}
rxm_sfrbx_msg_extra *measurements = (rxm_sfrbx_msg_extra *)&msg_parse_buf[UBLOX_HEADER_SIZE + sizeof(rxm_sfrbx_msg)];
if(msg->gnssId == 0) {
uint8_t subframeId = GET_FIELD_U(measurements[1].dwrd, 3, 8);
std::vector<uint32_t> words;
for(int i = 0; i < msg->numWords;i++)
words.push_back(measurements[i].dwrd);
subframes_map &map = nav_frame_buffer[msg->gnssId][msg->svid];
if (subframeId == 1) {
map = subframes_map();
map[subframeId] = words;
} else if (map.find(subframeId-1) != map.end()) {
map[subframeId] = words;
}
if(map.size() == 5) {
EphemerisData ephem_data(msg->svid, map);
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initEphemeris();
eph.setSvId(ephem_data.svId);
eph.setToc(ephem_data.toc);
eph.setGpsWeek(ephem_data.gpsWeek);
eph.setAf0(ephem_data.af0);
eph.setAf1(ephem_data.af1);
eph.setAf2(ephem_data.af2);
eph.setIode(ephem_data.iode);
eph.setCrs(ephem_data.crs);
eph.setDeltaN(ephem_data.deltaN);
eph.setM0(ephem_data.M0);
eph.setCuc(ephem_data.cuc);
eph.setEcc(ephem_data.ecc);
eph.setCus(ephem_data.cus);
eph.setA(ephem_data.A);
eph.setToe(ephem_data.toe);
eph.setCic(ephem_data.cic);
eph.setOmega0(ephem_data.omega0);
eph.setCis(ephem_data.cis);
eph.setI0(ephem_data.i0);
eph.setCrc(ephem_data.crc);
eph.setOmega(ephem_data.omega);
eph.setOmegaDot(ephem_data.omega_dot);
eph.setIDot(ephem_data.idot);
eph.setTgd(ephem_data.Tgd);
eph.setIonoCoeffsValid(ephem_data.ionoCoeffsValid);
if(ephem_data.ionoCoeffsValid) {
eph.setIonoAlpha(ephem_data.ionoAlpha);
eph.setIonoBeta(ephem_data.ionoBeta);
} else {
eph.setIonoAlpha(kj::ArrayPtr<const double>());
eph.setIonoBeta(kj::ArrayPtr<const double>());
}
return capnp::messageToFlatArray(msg_builder);
}
}
return kj::Array<capnp::word>();
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw() {
mon_hw_msg *msg = (mon_hw_msg *)&msg_parse_buf[UBLOX_HEADER_SIZE];
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus();
hwStatus.setNoisePerMS(msg->noisePerMS);
hwStatus.setAgcCnt(msg->agcCnt);
hwStatus.setAStatus((cereal::UbloxGnss::HwStatus::AntennaSupervisorState) msg->aStatus);
hwStatus.setAPower((cereal::UbloxGnss::HwStatus::AntennaPowerStatus) msg->aPower);
hwStatus.setJamInd(msg->jamInd);
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw2() {
mon_hw2_msg *msg = (mon_hw2_msg *)&msg_parse_buf[UBLOX_HEADER_SIZE];
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus2();
hwStatus.setOfsI(msg->ofsI);
hwStatus.setMagI(msg->magI);
hwStatus.setOfsQ(msg->ofsQ);
hwStatus.setMagQ(msg->magQ);
switch (msg->cfgSource) {
case 114:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::ROM);
break;
case 111:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::OTP);
break;
case 112:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::CONFIGPINS);
break;
case 102:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::FLASH);
break;
default:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::UNDEFINED);
break;
}
hwStatus.setLowLevCfg(msg->lowLevCfg);
hwStatus.setPostStatus(msg->postStatus);
return capnp::messageToFlatArray(msg_builder);
}
bool UbloxMsgParser::add_data(const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed) {
int needed = needed_bytes();
@ -379,18 +76,267 @@ bool UbloxMsgParser::add_data(const uint8_t *incoming_data, uint32_t incoming_da
} else {
bytes_consumed = incoming_data_len;
}
// Validate msg format, detect invalid header and invalid checksum.
while(!valid_so_far() && bytes_in_parse_buf != 0) {
//LOGD("Drop corrupt data, remained in buf: %u", bytes_in_parse_buf);
// Corrupted msg, drop a byte.
bytes_in_parse_buf -= 1;
if(bytes_in_parse_buf > 0)
memmove(&msg_parse_buf[0], &msg_parse_buf[1], bytes_in_parse_buf);
}
// There is redundant data at the end of buffer, reset the buffer.
if(needed_bytes() == -1)
if(needed_bytes() == -1) {
bytes_in_parse_buf = 0;
}
return valid();
}
std::pair<std::string, kj::Array<capnp::word>> UbloxMsgParser::gen_msg() {
std::string dat = data();
kaitai::kstream stream(dat);
ubx_t ubx_message(&stream);
auto body = ubx_message.body();
switch (ubx_message.msg_type()) {
case 0x0107:
return {"gpsLocationExternal", gen_nav_pvt(static_cast<ubx_t::nav_pvt_t*>(body))};
break;
case 0x0213:
return {"ubloxGnss", gen_rxm_sfrbx(static_cast<ubx_t::rxm_sfrbx_t*>(body))};
break;
case 0x0215:
return {"ubloxGnss", gen_rxm_rawx(static_cast<ubx_t::rxm_rawx_t*>(body))};
break;
case 0x0a09:
return {"ubloxGnss", gen_mon_hw(static_cast<ubx_t::mon_hw_t*>(body))};
break;
case 0x0a0b:
return {"ubloxGnss", gen_mon_hw2(static_cast<ubx_t::mon_hw2_t*>(body))};
break;
default:
LOGE("Unkown message type %x", ubx_message.msg_type());
return {"ubloxGnss", kj::Array<capnp::word>()};
break;
}
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_pvt(ubx_t::nav_pvt_t *msg) {
MessageBuilder msg_builder;
auto gpsLoc = msg_builder.initEvent().initGpsLocationExternal();
gpsLoc.setSource(cereal::GpsLocationData::SensorSource::UBLOX);
gpsLoc.setFlags(msg->flags());
gpsLoc.setLatitude(msg->lat() * 1e-07);
gpsLoc.setLongitude(msg->lon() * 1e-07);
gpsLoc.setAltitude(msg->height() * 1e-03);
gpsLoc.setSpeed(msg->g_speed() * 1e-03);
gpsLoc.setBearingDeg(msg->head_mot() * 1e-5);
gpsLoc.setAccuracy(msg->h_acc() * 1e-03);
std::tm timeinfo = std::tm();
timeinfo.tm_year = msg->year() - 1900;
timeinfo.tm_mon = msg->month() - 1;
timeinfo.tm_mday = msg->day();
timeinfo.tm_hour = msg->hour();
timeinfo.tm_min = msg->min();
timeinfo.tm_sec = msg->sec();
std::time_t utc_tt = timegm(&timeinfo);
gpsLoc.setTimestamp(utc_tt * 1e+03 + msg->nano() * 1e-06);
float f[] = { msg->vel_n() * 1e-03f, msg->vel_e() * 1e-03f, msg->vel_d() * 1e-03f };
gpsLoc.setVNED(f);
gpsLoc.setVerticalAccuracy(msg->v_acc() * 1e-03);
gpsLoc.setSpeedAccuracy(msg->s_acc() * 1e-03);
gpsLoc.setBearingAccuracyDeg(msg->head_acc() * 1e-05);
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_sfrbx(ubx_t::rxm_sfrbx_t *msg) {
auto body = *msg->body();
if (msg->gnss_id() == ubx_t::gnss_type_t::GNSS_TYPE_GPS) {
// GPS subframes are packed into 10x 4 bytes, each containing 3 actual bytes
// We will first need to separate the data from the padding and parity
assert(body.size() == 10);
std::string subframe_data;
subframe_data.reserve(30);
for (uint32_t word : body) {
word = word >> 6; // TODO: Verify parity
subframe_data.push_back(word >> 16);
subframe_data.push_back(word >> 8);
subframe_data.push_back(word >> 0);
}
// Collect subframes in map and parse when we have all the parts
kaitai::kstream stream(subframe_data);
gps_t subframe(&stream);
int subframe_id = subframe.how()->subframe_id();
if (subframe_id == 1) gps_subframes[msg->sv_id()].clear();
gps_subframes[msg->sv_id()][subframe_id] = subframe_data;
if (gps_subframes[msg->sv_id()].size() == 5) {
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initEphemeris();
eph.setSvId(msg->sv_id());
// Subframe 1
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][1]);
gps_t subframe(&stream);
gps_t::subframe_1_t* subframe_1 = static_cast<gps_t::subframe_1_t*>(subframe.body());
eph.setGpsWeek(subframe_1->week_no());
eph.setTgd(subframe_1->t_gd() * pow(2, -31));
eph.setToc(subframe_1->t_oc() * pow(2, 4));
eph.setAf2(subframe_1->af_2() * pow(2, -55));
eph.setAf1(subframe_1->af_1() * pow(2, -43));
eph.setAf0(subframe_1->af_0() * pow(2, -31));
}
// Subframe 2
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][2]);
gps_t subframe(&stream);
gps_t::subframe_2_t* subframe_2 = static_cast<gps_t::subframe_2_t*>(subframe.body());
eph.setCrs(subframe_2->c_rs() * pow(2, -5));
eph.setDeltaN(subframe_2->delta_n() * pow(2, -43) * gpsPi);
eph.setM0(subframe_2->m_0() * pow(2, -31) * gpsPi);
eph.setCuc(subframe_2->c_uc() * pow(2, -29));
eph.setEcc(subframe_2->e() * pow(2, -33));
eph.setCus(subframe_2->c_us() * pow(2, -29));
eph.setA(pow(subframe_2->sqrt_a() * pow(2, -19), 2.0));
eph.setToe(subframe_2->t_oe() * pow(2, 4));
}
// Subframe 3
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][3]);
gps_t subframe(&stream);
gps_t::subframe_3_t* subframe_3 = static_cast<gps_t::subframe_3_t*>(subframe.body());
eph.setCic(subframe_3->c_ic() * pow(2, -29));
eph.setOmega0(subframe_3->omega_0() * pow(2, -31) * gpsPi);
eph.setCis(subframe_3->c_is() * pow(2, -29));
eph.setI0(subframe_3->i_0() * pow(2, -31) * gpsPi);
eph.setCrc(subframe_3->c_rc() * pow(2, -5));
eph.setOmega(subframe_3->omega() * pow(2, -31) * gpsPi);
eph.setOmegaDot(subframe_3->omega_dot() * pow(2, -43) * gpsPi);
eph.setIode(subframe_3->iode());
eph.setIDot(subframe_3->idot() * pow(2, -43) * gpsPi);
}
// Subframe 4
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][4]);
gps_t subframe(&stream);
gps_t::subframe_4_t* subframe_4 = static_cast<gps_t::subframe_4_t*>(subframe.body());
// This is page 18, why is the page id 56?
if (subframe_4->data_id() == 1 && subframe_4->page_id() == 56) {
auto iono = static_cast<gps_t::subframe_4_t::ionosphere_data_t*>(subframe_4->body());
double a0 = iono->a0() * pow(2, -30);
double a1 = iono->a1() * pow(2, -27);
double a2 = iono->a2() * pow(2, -24);
double a3 = iono->a3() * pow(2, -24);
eph.setIonoAlpha({a0, a1, a2, a3});
double b0 = iono->b0() * pow(2, 11);
double b1 = iono->b1() * pow(2, 14);
double b2 = iono->b2() * pow(2, 16);
double b3 = iono->b3() * pow(2, 16);
eph.setIonoBeta({b0, b1, b2, b3});
}
}
return capnp::messageToFlatArray(msg_builder);
}
}
return kj::Array<capnp::word>();
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_rawx(ubx_t::rxm_rawx_t *msg) {
MessageBuilder msg_builder;
auto mr = msg_builder.initEvent().initUbloxGnss().initMeasurementReport();
mr.setRcvTow(msg->rcv_tow());
mr.setGpsWeek(msg->week());
mr.setLeapSeconds(msg->leap_s());
mr.setGpsWeek(msg->week());
auto mb = mr.initMeasurements(msg->num_meas());
auto measurements = *msg->measurements();
for(int8_t i = 0; i < msg->num_meas(); i++) {
mb[i].setSvId(measurements[i]->sv_id());
mb[i].setPseudorange(measurements[i]->pr_mes());
mb[i].setCarrierCycles(measurements[i]->cp_mes());
mb[i].setDoppler(measurements[i]->do_mes());
mb[i].setGnssId(measurements[i]->gnss_id());
mb[i].setGlonassFrequencyIndex(measurements[i]->freq_id());
mb[i].setLocktime(measurements[i]->lock_time());
mb[i].setCno(measurements[i]->cno());
mb[i].setPseudorangeStdev(0.01 * (pow(2, (measurements[i]->pr_stdev() & 15)))); // weird scaling, might be wrong
mb[i].setCarrierPhaseStdev(0.004 * (measurements[i]->cp_stdev() & 15));
mb[i].setDopplerStdev(0.002 * (pow(2, (measurements[i]->do_stdev() & 15)))); // weird scaling, might be wrong
auto ts = mb[i].initTrackingStatus();
auto trk_stat = measurements[i]->trk_stat();
ts.setPseudorangeValid(bit_to_bool(trk_stat, 0));
ts.setCarrierPhaseValid(bit_to_bool(trk_stat, 1));
ts.setHalfCycleValid(bit_to_bool(trk_stat, 2));
ts.setHalfCycleSubtracted(bit_to_bool(trk_stat, 3));
}
mr.setNumMeas(msg->num_meas());
auto rs = mr.initReceiverStatus();
rs.setLeapSecValid(bit_to_bool(msg->rec_stat(), 0));
rs.setClkReset(bit_to_bool(msg->rec_stat(), 2));
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw(ubx_t::mon_hw_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus();
hwStatus.setNoisePerMS(msg->noise_per_ms());
hwStatus.setAgcCnt(msg->agc_cnt());
hwStatus.setAStatus((cereal::UbloxGnss::HwStatus::AntennaSupervisorState) msg->a_status());
hwStatus.setAPower((cereal::UbloxGnss::HwStatus::AntennaPowerStatus) msg->a_power());
hwStatus.setJamInd(msg->jam_ind());
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw2(ubx_t::mon_hw2_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus2();
hwStatus.setOfsI(msg->ofs_i());
hwStatus.setMagI(msg->mag_i());
hwStatus.setOfsQ(msg->ofs_q());
hwStatus.setMagQ(msg->mag_q());
switch (msg->cfg_source()) {
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_ROM:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::ROM);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_OTP:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::OTP);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_CONFIG_PINS:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::CONFIGPINS);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_FLASH:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::FLASH);
break;
default:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::UNDEFINED);
break;
}
hwStatus.setLowLevCfg(msg->low_lev_cfg());
hwStatus.setPostStatus(msg->post_status());
return capnp::messageToFlatArray(msg_builder);
}

View File

@ -1,191 +1,52 @@
#pragma once
#include <stdint.h>
#include <string>
#include <cstdint>
#include <memory>
#include <unordered_map>
#include "messaging.hpp"
#include "generated/ubx.h"
#include "generated/gps.h"
// NAV_PVT
typedef struct __attribute__((packed)) {
uint32_t iTOW;
uint16_t year;
int8_t month;
int8_t day;
int8_t hour;
int8_t min;
int8_t sec;
int8_t valid;
uint32_t tAcc;
int32_t nano;
int8_t fixType;
int8_t flags;
int8_t flags2;
int8_t numSV;
int32_t lon;
int32_t lat;
int32_t height;
int32_t hMSL;
uint32_t hAcc;
uint32_t vAcc;
int32_t velN;
int32_t velE;
int32_t velD;
int32_t gSpeed;
int32_t headMot;
uint32_t sAcc;
uint32_t headAcc;
uint16_t pDOP;
int8_t reserverd1[6];
int32_t headVeh;
int16_t magDec;
uint16_t magAcc;
} nav_pvt_msg;
// RXM_RAW
typedef struct __attribute__((packed)) {
double rcvTow;
uint16_t week;
int8_t leapS;
int8_t numMeas;
int8_t recStat;
int8_t reserved1[3];
} rxm_raw_msg;
// Extra data count is in numMeas
typedef struct __attribute__((packed)) {
double prMes;
double cpMes;
float doMes;
int8_t gnssId;
int8_t svId;
int8_t sigId;
int8_t freqId;
uint16_t locktime;
int8_t cno;
int8_t prStdev;
int8_t cpStdev;
int8_t doStdev;
int8_t trkStat;
int8_t reserved3;
} rxm_raw_msg_extra;
// RXM_SFRBX
typedef struct __attribute__((packed)) {
int8_t gnssId;
int8_t svid;
int8_t reserved1;
int8_t freqId;
int8_t numWords;
int8_t reserved2;
int8_t version;
int8_t reserved3;
} rxm_sfrbx_msg;
// Extra data count is in numWords
typedef struct __attribute__((packed)) {
uint32_t dwrd;
} rxm_sfrbx_msg_extra;
// MON_HW
typedef struct __attribute__((packed)) {
uint32_t pinSel;
uint32_t pinBank;
uint32_t pinDir;
uint32_t pinVal;
uint16_t noisePerMS;
uint16_t agcCnt;
uint8_t aStatus;
uint8_t aPower;
uint8_t flags;
uint8_t reserved1;
uint32_t usedMask;
uint8_t VP[17];
uint8_t jamInd;
uint8_t reserved2[2];
uint32_t pinIrq;
uint32_t pullH;
uint32_t pullL;
} mon_hw_msg;
// MON_HW2
typedef struct __attribute__((packed)) {
int8_t ofsI;
uint8_t magI;
int8_t ofsQ;
uint8_t magQ;
uint8_t cfgSource;
uint8_t reserved1[3];
uint32_t lowLevCfg;
uint8_t reserved2[8];
uint32_t postStatus;
uint8_t reserved3[4];
} mon_hw2_msg;
// protocol constants
namespace ublox {
// protocol constants
const uint8_t PREAMBLE1 = 0xb5;
const uint8_t PREAMBLE2 = 0x62;
// message classes
const uint8_t CLASS_NAV = 0x01;
const uint8_t CLASS_RXM = 0x02;
const uint8_t CLASS_MON = 0x0A;
// NAV messages
const uint8_t MSG_NAV_PVT = 0x7;
// RXM messages
const uint8_t MSG_RXM_RAW = 0x15;
const uint8_t MSG_RXM_SFRBX = 0x13;
// MON messages
const uint8_t MSG_MON_HW = 0x09;
const uint8_t MSG_MON_HW2 = 0x0B;
const int UBLOX_HEADER_SIZE = 6;
const int UBLOX_CHECKSUM_SIZE = 2;
const int UBLOX_MAX_MSG_SIZE = 65536;
typedef std::map<uint8_t, std::vector<uint32_t>> subframes_map;
class UbloxMsgParser {
public:
UbloxMsgParser();
kj::Array<capnp::word> gen_solution();
kj::Array<capnp::word> gen_raw();
kj::Array<capnp::word> gen_mon_hw();
kj::Array<capnp::word> gen_mon_hw2();
kj::Array<capnp::word> gen_nav_data();
bool add_data(const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed);
inline void reset() {bytes_in_parse_buf = 0;}
inline uint8_t msg_class() {
return msg_parse_buf[2];
}
inline uint8_t msg_id() {
return msg_parse_buf[3];
}
inline int needed_bytes();
void hexdump(uint8_t *d, int l) {
for (int i = 0; i < l; i++) {
if (i%0x10 == 0 && i != 0) printf("\n");
printf("%02X ", d[i]);
}
printf("\n");
}
private:
inline bool valid_cheksum();
inline bool valid();
inline bool valid_so_far();
uint8_t msg_parse_buf[UBLOX_HEADER_SIZE + UBLOX_MAX_MSG_SIZE];
int bytes_in_parse_buf;
std::map<uint8_t, std::map<uint8_t, subframes_map>> nav_frame_buffer;
};
// Boardd still uses these:
const uint8_t CLASS_NAV = 0x01;
const uint8_t CLASS_RXM = 0x02;
const uint8_t CLASS_MON = 0x0A;
}
typedef Message * (*poll_ubloxraw_msg_func)(Poller *poller);
typedef int (*send_gps_event_func)(PubSocket *s, const void *buf, size_t len);
int ubloxd_main(poll_ubloxraw_msg_func poll_func, send_gps_event_func send_func);
class UbloxMsgParser {
public:
bool add_data(const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed);
inline void reset() {bytes_in_parse_buf = 0;}
inline int needed_bytes();
inline std::string data() {return std::string((const char*)msg_parse_buf, bytes_in_parse_buf);}
std::pair<std::string, kj::Array<capnp::word>> gen_msg();
kj::Array<capnp::word> gen_nav_pvt(ubx_t::nav_pvt_t *msg);
kj::Array<capnp::word> gen_rxm_sfrbx(ubx_t::rxm_sfrbx_t *msg);
kj::Array<capnp::word> gen_rxm_rawx(ubx_t::rxm_rawx_t *msg);
kj::Array<capnp::word> gen_mon_hw(ubx_t::mon_hw_t *msg);
kj::Array<capnp::word> gen_mon_hw2(ubx_t::mon_hw2_t *msg);
private:
inline bool valid_cheksum();
inline bool valid();
inline bool valid_so_far();
std::unordered_map<int, std::unordered_map<int, std::string>> gps_subframes;
size_t bytes_in_parse_buf = 0;
uint8_t msg_parse_buf[ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_MAX_MSG_SIZE];
};

View File

@ -3,6 +3,7 @@
#include "common/swaglog.h"
#include "ublox_msg.h"
#include "kaitai/kaitaistream.h"
ExitHandler do_exit;
using namespace ublox;
@ -35,57 +36,21 @@ int main() {
const uint8_t *data = ubloxRaw.begin();
size_t len = ubloxRaw.size();
size_t bytes_consumed = 0;
while(bytes_consumed < len && !do_exit) {
size_t bytes_consumed_this_time = 0U;
if(parser.add_data(data + bytes_consumed, (uint32_t)(len - bytes_consumed), bytes_consumed_this_time)) {
// New message available
if(parser.msg_class() == CLASS_NAV) {
if(parser.msg_id() == MSG_NAV_PVT) {
//LOGD("MSG_NAV_PVT");
auto words = parser.gen_solution();
if(words.size() > 0) {
auto bytes = words.asBytes();
pm.send("gpsLocationExternal", bytes.begin(), bytes.size());
}
} else
LOGW("Unknown nav msg id: 0x%02X", parser.msg_id());
} else if(parser.msg_class() == CLASS_RXM) {
if(parser.msg_id() == MSG_RXM_RAW) {
//LOGD("MSG_RXM_RAW");
auto words = parser.gen_raw();
if(words.size() > 0) {
auto bytes = words.asBytes();
pm.send("ubloxGnss", bytes.begin(), bytes.size());
}
} else if(parser.msg_id() == MSG_RXM_SFRBX) {
//LOGD("MSG_RXM_SFRBX");
auto words = parser.gen_nav_data();
if(words.size() > 0) {
auto bytes = words.asBytes();
pm.send("ubloxGnss", bytes.begin(), bytes.size());
}
} else
LOGW("Unknown rxm msg id: 0x%02X", parser.msg_id());
} else if(parser.msg_class() == CLASS_MON) {
if(parser.msg_id() == MSG_MON_HW) {
//LOGD("MSG_MON_HW");
auto words = parser.gen_mon_hw();
if(words.size() > 0) {
auto bytes = words.asBytes();
pm.send("ubloxGnss", bytes.begin(), bytes.size());
}
} else if(parser.msg_id() == MSG_MON_HW2) {
//LOGD("MSG_MON_HW2");
auto words = parser.gen_mon_hw2();
if(words.size() > 0) {
auto bytes = words.asBytes();
pm.send("ubloxGnss", bytes.begin(), bytes.size());
}
} else {
LOGW("Unknown mon msg id: 0x%02X", parser.msg_id());
try {
auto msg = parser.gen_msg();
if (msg.second.size() > 0) {
auto bytes = msg.second.asBytes();
pm.send(msg.first.c_str(), bytes.begin(), bytes.size());
}
} else
LOGW("Unknown msg class: 0x%02X", parser.msg_class());
} catch (const std::exception& e) {
LOGE("Error parsing ublox message %s", e.what());
}
parser.reset();
}
bytes_consumed += bytes_consumed_this_time;

View File

@ -0,0 +1,259 @@
meta:
id: ubx
endian: le
seq:
- id: magic
contents: [0xb5, 0x62]
- id: msg_type
type: u2be
- id: length
type: u2
- id: body
type:
switch-on: msg_type
cases:
0x0107: nav_pvt
0x0213: rxm_sfrbx
0x0215: rxm_rawx
0x0a09: mon_hw
0x0a0b: mon_hw2
instances:
checksum:
pos: length + 6
type: u2
types:
mon_hw:
seq:
- id: pin_sel
type: u4
- id: pin_bank
type: u4
- id: pin_dir
type: u4
- id: pin_val
type: u4
- id: noise_per_ms
type: u2
- id: agc_cnt
type: u2
- id: a_status
type: u1
enum: antenna_status
- id: a_power
type: u1
enum: antenna_power
- id: flags
type: u1
- id: reserved1
size: 1
- id: used_mask
type: u4
- id: vp
size: 17
- id: jam_ind
type: u1
- id: reserved2
size: 2
- id: pin_irq
type: u4
- id: pull_h
type: u4
- id: pull_l
type: u4
enums:
antenna_status:
0: init
1: dontknow
2: ok
3: short
4: open
antenna_power:
0: off
1: on
2: dontknow
mon_hw2:
seq:
- id: ofs_i
type: s1
- id: mag_i
type: u1
- id: ofs_q
type: s1
- id: mag_q
type: u1
- id: cfg_source
type: u1
enum: config_source
- id: reserved1
size: 3
- id: low_lev_cfg
type: u4
- id: reserved2
size: 8
- id: post_status
type: u4
- id: reserved3
size: 4
enums:
config_source:
113: rom
111: otp
112: config_pins
102: flash
rxm_sfrbx:
seq:
- id: gnss_id
type: u1
enum: gnss_type
- id: sv_id
type: u1
- id: reserved1
size: 1
- id: freq_id
type: u1
- id: num_words
type: u1
- id: reserved2
size: 1
- id: version
type: u1
- id: reserved3
size: 1
- id: body
type: u4
repeat: expr
repeat-expr: num_words
rxm_rawx:
seq:
- id: rcv_tow
type: f8
- id: week
type: u2
- id: leap_s
type: s1
- id: num_meas
type: u1
- id: rec_stat
type: u1
- id: reserved1
size: 3
- id: measurements
type: meas
size: 32
repeat: expr
repeat-expr: num_meas
types:
meas:
seq:
- id: pr_mes
type: f8
- id: cp_mes
type: f8
- id: do_mes
type: f4
- id: gnss_id
type: u1
enum: gnss_type
- id: sv_id
type: u1
- id: reserved2
size: 1
- id: freq_id
type: u1
- id: lock_time
type: u2
- id: cno
type: u1
- id: pr_stdev
type: u1
- id: cp_stdev
type: u1
- id: do_stdev
type: u1
- id: trk_stat
type: u1
- id: reserved3
size: 1
nav_pvt:
seq:
- id: i_tow
type: u4
- id: year
type: u2
- id: month
type: u1
- id: day
type: u1
- id: hour
type: u1
- id: min
type: u1
- id: sec
type: u1
- id: valid
type: u1
- id: t_acc
type: u4
- id: nano
type: s4
- id: fix_type
type: u1
- id: flags
type: u1
- id: flags2
type: u1
- id: num_sv
type: u1
- id: lon
type: s4
- id: lat
type: s4
- id: height
type: s4
- id: h_msl
type: s4
- id: h_acc
type: u4
- id: v_acc
type: u4
- id: vel_n
type: s4
- id: vel_e
type: s4
- id: vel_d
type: s4
- id: g_speed
type: s4
- id: head_mot
type: s4
- id: s_acc
type: s4
- id: head_acc
type: u4
- id: p_dop
type: u2
- id: flags3
type: u1
- id: reserved1
size: 5
- id: head_veh
type: s4
- id: mag_dec
type: s2
- id: mag_acc
type: u2
enums:
gnss_type:
0: gps
1: sbas
2: galileo
3: beidou
4: imes
5: qzss
6: glonass