#include "selfdrive/ui/ui.h" #include #include #include #include #include "selfdrive/common/swaglog.h" #include "selfdrive/common/util.h" #include "selfdrive/common/visionimg.h" #include "selfdrive/common/watchdog.h" #include "selfdrive/hardware/hw.h" #include "selfdrive/ui/paint.h" #include "selfdrive/ui/qt/qt_window.h" #define BACKLIGHT_DT 0.25 #define BACKLIGHT_TS 2.00 #define BACKLIGHT_OFFROAD 50 // Projects a point in car to space to the corresponding point in full frame // image space. static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, vertex_data *out) { const float margin = 500.0f; const vec3 pt = (vec3){{in_x, in_y, in_z}}; const vec3 Ep = matvecmul3(s->scene.view_from_calib, pt); const vec3 KEp = matvecmul3(s->wide_camera ? ecam_intrinsic_matrix : fcam_intrinsic_matrix, Ep); // Project. float x = KEp.v[0] / KEp.v[2]; float y = KEp.v[1] / KEp.v[2]; nvgTransformPoint(&out->x, &out->y, s->car_space_transform, x, y); return out->x >= -margin && out->x <= s->fb_w + margin && out->y >= -margin && out->y <= s->fb_h + margin; } static void ui_init_vision(UIState *s) { // Invisible until we receive a calibration message. s->scene.world_objects_visible = false; for (int i = 0; i < s->vipc_client->num_buffers; i++) { s->texture[i].reset(new EGLImageTexture(&s->vipc_client->buffers[i])); glBindTexture(GL_TEXTURE_2D, s->texture[i]->frame_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // BGR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_BLUE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_GREEN); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED); } assert(glGetError() == GL_NO_ERROR); } static int get_path_length_idx(const cereal::ModelDataV2::XYZTData::Reader &line, const float path_height) { const auto line_x = line.getX(); int max_idx = 0; for (int i = 0; i < TRAJECTORY_SIZE && line_x[i] < path_height; ++i) { max_idx = i; } return max_idx; } static void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, std::optional line) { for (int i = 0; i < 2; ++i) { auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo(); if (lead_data.getStatus()) { float z = line ? (*line).getZ()[get_path_length_idx(*line, lead_data.getDRel())] : 0.0; // negative because radarState uses left positive convention calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]); } } } static void update_line_data(const UIState *s, const cereal::ModelDataV2::XYZTData::Reader &line, float y_off, float z_off, line_vertices_data *pvd, int max_idx) { const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ(); vertex_data *v = &pvd->v[0]; for (int i = 0; i <= max_idx; i++) { v += calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, v); } for (int i = max_idx; i >= 0; i--) { v += calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, v); } pvd->cnt = v - pvd->v; assert(pvd->cnt < std::size(pvd->v)); } static void update_model(UIState *s, const cereal::ModelDataV2::Reader &model) { UIScene &scene = s->scene; auto model_position = model.getPosition(); float max_distance = std::clamp(model_position.getX()[TRAJECTORY_SIZE - 1], MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE); // update lane lines const auto lane_lines = model.getLaneLines(); const auto lane_line_probs = model.getLaneLineProbs(); int max_idx = get_path_length_idx(lane_lines[0], max_distance); for (int i = 0; i < std::size(scene.lane_line_vertices); i++) { scene.lane_line_probs[i] = lane_line_probs[i]; update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx); } // update road edges const auto road_edges = model.getRoadEdges(); const auto road_edge_stds = model.getRoadEdgeStds(); for (int i = 0; i < std::size(scene.road_edge_vertices); i++) { scene.road_edge_stds[i] = road_edge_stds[i]; update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx); } // update path auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne(); if (lead_one.getStatus()) { const float lead_d = lead_one.getDRel() * 2.; max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance); } max_idx = get_path_length_idx(model_position, max_distance); update_line_data(s, model_position, 0.5, 1.22, &scene.track_vertices, max_idx); } static void update_sockets(UIState *s){ s->sm->update(0); } static void update_state(UIState *s) { SubMaster &sm = *(s->sm); UIScene &scene = s->scene; if (sm.updated("radarState")) { std::optional line; if (sm.rcv_frame("modelV2") > 0) { line = sm["modelV2"].getModelV2().getPosition(); } update_leads(s, sm["radarState"].getRadarState(), line); } if (sm.updated("liveCalibration")) { scene.world_objects_visible = true; auto rpy_list = sm["liveCalibration"].getLiveCalibration().getRpyCalib(); Eigen::Vector3d rpy; rpy << rpy_list[0], rpy_list[1], rpy_list[2]; Eigen::Matrix3d device_from_calib = euler2rot(rpy); Eigen::Matrix3d view_from_device; view_from_device << 0,1,0, 0,0,1, 1,0,0; Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j); } } } if (sm.updated("modelV2")) { update_model(s, sm["modelV2"].getModelV2()); } if (sm.updated("pandaState")) { auto pandaState = sm["pandaState"].getPandaState(); scene.pandaType = pandaState.getPandaType(); scene.ignition = pandaState.getIgnitionLine() || pandaState.getIgnitionCan(); } else if ((s->sm->frame - s->sm->rcv_frame("pandaState")) > 5*UI_FREQ) { scene.pandaType = cereal::PandaState::PandaType::UNKNOWN; } if (sm.updated("ubloxGnss")) { auto data = sm["ubloxGnss"].getUbloxGnss(); if (data.which() == cereal::UbloxGnss::MEASUREMENT_REPORT) { scene.satelliteCount = data.getMeasurementReport().getNumMeas(); } } if (sm.updated("carParams")) { scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl(); } if (sm.updated("sensorEvents")) { for (auto sensor : sm["sensorEvents"].getSensorEvents()) { if (!Hardware::TICI() && sensor.which() == cereal::SensorEventData::LIGHT) { scene.light_sensor = sensor.getLight(); } if (!scene.started && sensor.which() == cereal::SensorEventData::ACCELERATION) { auto accel = sensor.getAcceleration().getV(); if (accel.totalSize().wordCount){ // TODO: sometimes empty lists are received. Figure out why scene.accel_sensor = accel[2]; } } else if (!scene.started && sensor.which() == cereal::SensorEventData::GYRO_UNCALIBRATED) { auto gyro = sensor.getGyroUncalibrated().getV(); if (gyro.totalSize().wordCount){ scene.gyro_sensor = gyro[1]; } } } } if (Hardware::TICI() && sm.updated("roadCameraState")) { auto camera_state = sm["roadCameraState"].getRoadCameraState(); float gain = camera_state.getGainFrac() * (camera_state.getGlobalGain() > 100 ? 2.5 : 1.0) / 10.0; scene.light_sensor = std::clamp((1023.0 / 1757.0) * (1757.0 - camera_state.getIntegLines()) * (1.0 - gain), 0.0, 1023.0); } scene.started = sm["deviceState"].getDeviceState().getStarted() || scene.driver_view; } static void update_params(UIState *s) { const uint64_t frame = s->sm->frame; UIScene &scene = s->scene; if (frame % (5*UI_FREQ) == 0) { scene.is_metric = Params().getBool("IsMetric"); } } static void update_vision(UIState *s) { if (!s->vipc_client->connected && s->scene.started) { if (s->vipc_client->connect(false)){ ui_init_vision(s); } } if (s->vipc_client->connected){ VisionBuf * buf = s->vipc_client->recv(); if (buf != nullptr){ s->last_frame = buf; } else if (!Hardware::PC()) { LOGE("visionIPC receive timeout"); } } } static void update_status(UIState *s) { if (s->scene.started && s->sm->updated("controlsState")) { auto controls_state = (*s->sm)["controlsState"].getControlsState(); auto alert_status = controls_state.getAlertStatus(); if (alert_status == cereal::ControlsState::AlertStatus::USER_PROMPT) { s->status = STATUS_WARNING; } else if (alert_status == cereal::ControlsState::AlertStatus::CRITICAL) { s->status = STATUS_ALERT; } else { s->status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED; } } // Handle onroad/offroad transition static bool started_prev = false; if (s->scene.started != started_prev) { if (s->scene.started) { s->status = STATUS_DISENGAGED; s->scene.started_frame = s->sm->frame; s->scene.is_rhd = Params().getBool("IsRHD"); s->scene.end_to_end = Params().getBool("EndToEndToggle"); s->vipc_client = s->scene.driver_view ? s->vipc_client_front : s->vipc_client_rear; } else { s->vipc_client->connected = false; } } started_prev = s->scene.started; } QUIState::QUIState(QObject *parent) : QObject(parent) { ui_state.sm = std::make_unique>({ "modelV2", "controlsState", "liveCalibration", "radarState", "deviceState", "liveLocationKalman", "pandaState", "carParams", "driverState", "driverMonitoringState", "sensorEvents", "carState", "ubloxGnss", #ifdef QCOM2 "roadCameraState", #endif }); ui_state.fb_w = vwp_w; ui_state.fb_h = vwp_h; ui_state.scene.started = false; ui_state.last_frame = nullptr; ui_state.wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false; ui_state.vipc_client_rear = new VisionIpcClient("camerad", ui_state.wide_camera ? VISION_STREAM_RGB_WIDE : VISION_STREAM_RGB_BACK, true); ui_state.vipc_client_front = new VisionIpcClient("camerad", VISION_STREAM_RGB_FRONT, true); ui_state.vipc_client = ui_state.vipc_client_rear; // update timer timer = new QTimer(this); QObject::connect(timer, &QTimer::timeout, this, &QUIState::update); timer->start(0); } void QUIState::update() { update_params(&ui_state); update_sockets(&ui_state); update_state(&ui_state); update_status(&ui_state); update_vision(&ui_state); if (ui_state.scene.started != started_prev || ui_state.sm->frame == 1) { started_prev = ui_state.scene.started; emit offroadTransition(!ui_state.scene.started); // Change timeout to 0 when onroad, this will call update continously. // This puts visionIPC in charge of update frequency, reducing video latency timer->start(ui_state.scene.started ? 0 : 1000 / UI_FREQ); } watchdog_kick(); emit uiUpdate(ui_state); } Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) { brightness_b = Params(true).get("BRIGHTNESS_B").value_or(10.0); brightness_m = Params(true).get("BRIGHTNESS_M").value_or(0.1); } void Device::update(const UIState &s) { updateBrightness(s); updateWakefulness(s); // TODO: remove from UIState and use signals QUIState::ui_state.awake = awake; } void Device::setAwake(bool on, bool reset) { if (on != awake) { awake = on; Hardware::set_display_power(awake); LOGD("setting display power %d", awake); emit displayPowerChanged(awake); } if (reset) { awake_timeout = 30 * UI_FREQ; } } void Device::updateBrightness(const UIState &s) { float clipped_brightness = std::min(100.0f, (s.scene.light_sensor * brightness_m) + brightness_b); if (Hardware::TICI() && !s.scene.started) { clipped_brightness = BACKLIGHT_OFFROAD; } int brightness = brightness_filter.update(clipped_brightness); if (!awake) { brightness = 0; } if (brightness != last_brightness) { std::thread{Hardware::set_brightness, brightness}.detach(); } last_brightness = brightness; } void Device::updateWakefulness(const UIState &s) { awake_timeout = std::max(awake_timeout - 1, 0); bool should_wake = s.scene.started || s.scene.ignition; if (!should_wake) { // tap detection while display is off bool accel_trigger = abs(s.scene.accel_sensor - accel_prev) > 0.2; bool gyro_trigger = abs(s.scene.gyro_sensor - gyro_prev) > 0.15; should_wake = accel_trigger && gyro_trigger; gyro_prev = s.scene.gyro_sensor; accel_prev = (accel_prev * (accel_samples - 1) + s.scene.accel_sensor) / accel_samples; } setAwake(awake_timeout, should_wake); }