#!/usr/bin/env python3 import sys import math import numpy as np import sympy as sp from selfdrive.locationd.models.constants import ObservationKind from rednose.helpers.ekf_sym import EKF_sym, gen_code i = 0 def _slice(n): global i s = slice(i, i + n) i += n return s class States(): # Vehicle model params STIFFNESS = _slice(1) # [-] STEER_RATIO = _slice(1) # [-] ANGLE_OFFSET = _slice(1) # [rad] ANGLE_OFFSET_FAST = _slice(1) # [rad] VELOCITY = _slice(2) # (x, y) [m/s] YAW_RATE = _slice(1) # [rad/s] STEER_ANGLE = _slice(1) # [rad] class CarKalman(): name = 'car' x_initial = np.array([ 1.0, 15.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, ]) # process noise Q = np.diag([ (.05/100)**2, .01**2, math.radians(0.002)**2, math.radians(0.1)**2, .1**2, .01**2, math.radians(0.1)**2, math.radians(0.1)**2, ]) P_initial = Q.copy() obs_noise = { ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.01)**2), ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(5.0)**2), ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2), ObservationKind.STIFFNESS: np.atleast_2d(5.0**2), ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2), } maha_test_kinds = [] # [ObservationKind.ROAD_FRAME_YAW_RATE, ObservationKind.ROAD_FRAME_XY_SPEED] global_vars = [ sp.Symbol('mass'), sp.Symbol('rotational_inertia'), sp.Symbol('center_to_front'), sp.Symbol('center_to_rear'), sp.Symbol('stiffness_front'), sp.Symbol('stiffness_rear'), ] @staticmethod def generate_code(generated_dir): dim_state = CarKalman.x_initial.shape[0] name = CarKalman.name maha_test_kinds = CarKalman.maha_test_kinds # globals m, j, aF, aR, cF_orig, cR_orig = CarKalman.global_vars # make functions and jacobians with sympy # state variables state_sym = sp.MatrixSymbol('state', dim_state, 1) state = sp.Matrix(state_sym) # Vehicle model constants x = state[States.STIFFNESS, :][0, 0] cF, cR = x * cF_orig, x * cR_orig angle_offset = state[States.ANGLE_OFFSET, :][0, 0] angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0] sa = state[States.STEER_ANGLE, :][0, 0] sR = state[States.STEER_RATIO, :][0, 0] u, v = state[States.VELOCITY, :] r = state[States.YAW_RATE, :][0, 0] A = sp.Matrix(np.zeros((2, 2))) A[0, 0] = -(cF + cR) / (m * u) A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u A[1, 0] = -(cF * aF - cR * aR) / (j * u) A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u) B = sp.Matrix(np.zeros((2, 1))) B[0, 0] = cF / m / sR B[1, 0] = (cF * aF) / j / sR x = sp.Matrix([v, r]) # lateral velocity, yaw rate x_dot = A * x + B * (sa - angle_offset - angle_offset_fast) dt = sp.Symbol('dt') state_dot = sp.Matrix(np.zeros((dim_state, 1))) state_dot[States.VELOCITY.start + 1, 0] = x_dot[0] state_dot[States.YAW_RATE.start, 0] = x_dot[1] # Basic descretization, 1st order integrator # Can be pretty bad if dt is big f_sym = state + dt * state_dot # # Observation functions # obs_eqs = [ [sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None], [sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None], [sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None], [sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None], [sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None], [sp.Matrix([sR]), ObservationKind.STEER_RATIO, None], [sp.Matrix([x]), ObservationKind.STIFFNESS, None], ] gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, maha_test_kinds=maha_test_kinds, global_vars=CarKalman.global_vars) def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0): self.dim_state = self.x_initial.shape[0] x_init = self.x_initial x_init[States.STEER_RATIO] = steer_ratio x_init[States.STIFFNESS] = stiffness_factor x_init[States.ANGLE_OFFSET] = angle_offset # init filter self.filter = EKF_sym(generated_dir, self.name, self.Q, self.x_initial, self.P_initial, self.dim_state, self.dim_state, maha_test_kinds=self.maha_test_kinds, global_vars=self.global_vars) @property def x(self): return self.filter.state() @property def P(self): return self.filter.covs() def predict(self, t): return self.filter.predict(t) def rts_smooth(self, estimates): return self.filter.rts_smooth(estimates, norm_quats=False) def get_R(self, kind, n): obs_noise = self.obs_noise[kind] dim = obs_noise.shape[0] R = np.zeros((n, dim, dim)) for i in range(n): R[i, :, :] = obs_noise return R def init_state(self, state, covs_diag=None, covs=None, filter_time=None): if covs_diag is not None: P = np.diag(covs_diag) elif covs is not None: P = covs else: P = self.filter.covs() self.filter.init_state(state, P, filter_time) def predict_and_observe(self, t, kind, data, R=None): if len(data) > 0: data = np.atleast_2d(data) if R is None: R = self.get_R(kind, len(data)) self.filter.predict_and_update_batch(t, kind, data, R) if __name__ == "__main__": generated_dir = sys.argv[2] CarKalman.generate_code(generated_dir)