#!/usr/bin/env python3 from cereal import car from selfdrive.config import Conversions as CV from selfdrive.car.ocelot.values import CAR, FINGERPRINTS from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, gen_empty_fingerprint from selfdrive.swaglog import cloudlog from selfdrive.car.interfaces import CarInterfaceBase EventName = car.CarEvent.EventName class CarInterface(CarInterfaceBase): @staticmethod def compute_gb(accel, speed): return float(accel) / 3.0 @staticmethod def myround(x, base=5): return base * round(x/base) @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), car_fw=[]): # pylint: disable=dangerous-default-value ret = CarInterfaceBase.get_std_params(candidate, fingerprint) ret.enableCamera = True ret.carName = "ocelot" ret.safetyModel = car.CarParams.SafetyModel.allOutput ret.steerActuatorDelay = 0.12 # Default delay, Prius has larger delay ret.steerLimitTimer = 0.4 ret.lateralTuning.init('pid') ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.36 ret.steerRatio = 21 tire_stiffness_factor = 0.444 ret.mass = 810 + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00007 # full torque for 20 deg at 80mph means 0.00007818594 ret.steerRateCost = 1. ret.centerToFront = ret.wheelbase * 0.44 # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, tire_stiffness_factor=tire_stiffness_factor) ret.enableGasInterceptor = 0x201 in fingerprint[0] ret.openpilotLongitudinalControl = True cloudlog.warning("ECU Gas Interceptor: %r", ret.enableGasInterceptor) # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. ret.minEnableSpeed = -1. ret.longitudinalTuning.deadzoneBP = [0., 9.] ret.longitudinalTuning.deadzoneV = [0., .15] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kiBP = [0., 35.] if ret.enableGasInterceptor: ret.gasMaxBP = [0., 9., 35] ret.gasMaxV = [0.2, 0.5, 0.7] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiV = [0.18, 0.12] else: ret.gasMaxBP = [0.] ret.gasMaxV = [0.5] ret.longitudinalTuning.kpV = [3.6, 2.4, 1.5] ret.longitudinalTuning.kiV = [0.54, 0.36] return ret # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) self.cp_body.update_strings(can_strings) ret = self.CS.update(self.cp, self.cp_body) ret.canValid = self.cp.can_valid and self.cp_body.can_valid ret.steeringRateLimited = self.CC.steer_rate_limited if self.CC is not None else False # events events = self.create_common_events(ret) if ret.vEgo < self.CP.minEnableSpeed and self.CP.openpilotLongitudinalControl: events.add(EventName.belowEngageSpeed) if c.actuators.gas > 0.1: # some margin on the actuator to not false trigger cancellation while stopping events.add(EventName.speedTooLow) if ret.vEgo < 0.001: # while in standstill, send a user alert events.add(EventName.manualRestart) ret.events = events.to_msg() self.CS.out = ret.as_reader() return self.CS.out # pass in a car.CarControl # to be called @ 100hz def apply(self, c): can_sends = self.CC.update(c.enabled, self.CS, self.frame, c.actuators, c.cruiseControl.cancel, c.hudControl.visualAlert, c.hudControl.leftLaneVisible, c.hudControl.rightLaneVisible, c.hudControl.leadVisible, c.hudControl.leftLaneDepart, c.hudControl.rightLaneDepart) self.frame += 1 return can_sends