#include "selfdrive/modeld/thneed/thneed.h" #include #include #include #include #include #include #include #include "selfdrive/common/clutil.h" #include "selfdrive/common/timing.h" //#define RUN_DISASSEMBLER //#define RUN_OPTIMIZER Thneed *g_thneed = NULL; int g_fd = -1; map, string> g_args; map, int> g_args_size; map g_program_source; void hexdump(uint32_t *d, int len) { assert((len%4) == 0); printf(" dumping %p len 0x%x\n", d, len); for (int i = 0; i < len/4; i++) { if (i != 0 && (i%0x10) == 0) printf("\n"); printf("%8x ", d[i]); } printf("\n"); } // *********** ioctl interceptor *********** extern "C" { int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL; #undef ioctl int ioctl(int filedes, unsigned long request, void *argp) { request &= 0xFFFFFFFF; // needed on QCOM2 if (my_ioctl == NULL) my_ioctl = reinterpret_cast(dlsym(RTLD_NEXT, "ioctl")); Thneed *thneed = g_thneed; // save the fd if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes; // note that this runs always, even without a thneed object if (request == IOCTL_KGSL_DRAWCTXT_CREATE) { struct kgsl_drawctxt_create *create = (struct kgsl_drawctxt_create *)argp; create->flags &= ~KGSL_CONTEXT_PRIORITY_MASK; create->flags |= 1 << KGSL_CONTEXT_PRIORITY_SHIFT; // priority from 1-15, 1 is max priority printf("IOCTL_KGSL_DRAWCTXT_CREATE: creating context with flags 0x%x\n", create->flags); } if (thneed != NULL) { if (request == IOCTL_KGSL_GPU_COMMAND) { struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp; if (thneed->record & THNEED_RECORD) { thneed->timestamp = cmd->timestamp; thneed->context_id = cmd->context_id; thneed->cmds.push_back(unique_ptr(new CachedCommand(thneed, cmd))); } if (thneed->record & THNEED_DEBUG) { printf("IOCTL_KGSL_GPU_COMMAND(%2zu): flags: 0x%lx context_id: %u timestamp: %u numcmds: %d numobjs: %d\n", thneed->cmds.size(), cmd->flags, cmd->context_id, cmd->timestamp, cmd->numcmds, cmd->numobjs); } } else if (request == IOCTL_KGSL_GPUOBJ_SYNC) { struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp; struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs); if (thneed->record & THNEED_DEBUG) { printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count); for (int i = 0; i < cmd->count; i++) { printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op); } printf("\n"); } if (thneed->record & THNEED_RECORD) { thneed->cmds.push_back(unique_ptr(new CachedSync(thneed, string((char *)objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count)))); } } else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) { struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp; if (thneed->record & THNEED_DEBUG) { printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d timestamp: %d timeout: %d\n", cmd->context_id, cmd->timestamp, cmd->timeout); } } else if (request == IOCTL_KGSL_SETPROPERTY) { if (thneed->record & THNEED_DEBUG) { struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp; printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes); if (thneed->record & THNEED_VERBOSE_DEBUG) { hexdump((uint32_t *)prop->value, prop->sizebytes); if (prop->type == KGSL_PROP_PWR_CONSTRAINT) { struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value; hexdump((uint32_t *)constraint->data, constraint->size); } } } } else if (request == IOCTL_KGSL_DRAWCTXT_CREATE || request == IOCTL_KGSL_DRAWCTXT_DESTROY) { // this happens } else if (request == IOCTL_KGSL_GPUOBJ_ALLOC || request == IOCTL_KGSL_GPUOBJ_FREE) { // this happens } else { if (thneed->record & THNEED_DEBUG) { printf("other ioctl %lx\n", request); } } } int ret = my_ioctl(filedes, request, argp); if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno); return ret; } } // *********** GPUMalloc *********** GPUMalloc::GPUMalloc(int size, int fd) { struct kgsl_gpuobj_alloc alloc; memset(&alloc, 0, sizeof(alloc)); alloc.size = size; alloc.flags = 0x10000a00; ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc); void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000); assert(addr != MAP_FAILED); base = (uint64_t)addr; remaining = size; } GPUMalloc::~GPUMalloc() { // TODO: free the GPU malloced area } void *GPUMalloc::alloc(int size) { void *ret = (void*)base; size = (size+0xff) & (~0xFF); assert(size <= remaining); remaining -= size; base += size; return ret; } // *********** CachedSync, at the ioctl layer *********** void CachedSync::exec() { struct kgsl_gpuobj_sync cmd; cmd.objs = (uint64_t)data.data(); cmd.obj_len = data.length(); cmd.count = data.length() / sizeof(struct kgsl_gpuobj_sync_obj); int ret = ioctl(thneed->fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd); assert(ret == 0); } // *********** CachedCommand, at the ioctl layer *********** CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) { thneed = lthneed; assert(cmd->numsyncs == 0); memcpy(&cache, cmd, sizeof(cache)); if (cmd->numcmds > 0) { cmds = make_unique(cmd->numcmds); memcpy(cmds.get(), (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*cmd->numcmds); cache.cmdlist = (uint64_t)cmds.get(); for (int i = 0; i < cmd->numcmds; i++) { void *nn = thneed->ram->alloc(cmds[i].size); memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size); cmds[i].gpuaddr = (uint64_t)nn; } } if (cmd->numobjs > 0) { objs = make_unique(cmd->numobjs); memcpy(objs.get(), (void *)cmd->objlist, sizeof(struct kgsl_command_object)*cmd->numobjs); cache.objlist = (uint64_t)objs.get(); for (int i = 0; i < cmd->numobjs; i++) { void *nn = thneed->ram->alloc(objs[i].size); memset(nn, 0, objs[i].size); objs[i].gpuaddr = (uint64_t)nn; } } kq = thneed->ckq; thneed->ckq.clear(); } void CachedCommand::exec() { cache.timestamp = ++thneed->timestamp; int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache); if (thneed->record & THNEED_DEBUG) printf("CachedCommand::exec got %d\n", ret); if (thneed->record & THNEED_VERBOSE_DEBUG) { for (auto &it : kq) { it->debug_print(false); } #ifdef RUN_DISASSEMBLER // assuming 2 commands disassemble(0); disassemble(1); #endif } assert(ret == 0); } // *********** Thneed *********** Thneed::Thneed(bool do_clinit) { if (do_clinit) clinit(); assert(g_fd != -1); fd = g_fd; ram = make_unique(0x80000, fd); record = THNEED_RECORD; timestamp = -1; g_thneed = this; } void Thneed::stop() { find_inputs_outputs(); printf("Thneed::stop: recorded %lu commands\n", cmds.size()); record = 0; } void Thneed::find_inputs_outputs() { cl_int err; if (inputs.size() > 0) return; // save the global inputs/outputs for (auto &k : kq) { for (int i = 0; i < k->num_args; i++) { if (k->name == "zero_pad_image_float" && k->arg_names[i] == "input") { cl_mem aa = *(cl_mem*)(k->args[i].data()); size_t sz; clGetMemObjectInfo(aa, CL_MEM_SIZE, sizeof(sz), &sz, NULL); input_sizes.push_back(sz); void *ret = clEnqueueMapBuffer(command_queue, aa, CL_TRUE, CL_MAP_WRITE, 0, sz, 0, NULL, NULL, &err); assert(err == CL_SUCCESS); inputs.push_back(ret); } if (k->name == "image2d_to_buffer_float" && k->arg_names[i] == "output") { output = *(cl_mem*)(k->args[i].data()); } } } } void Thneed::copy_inputs(float **finputs) { //cl_int ret; for (int idx = 0; idx < inputs.size(); ++idx) { if (record & THNEED_DEBUG) printf("copying %lu -- %p -> %p\n", input_sizes[idx], finputs[idx], inputs[idx]); memcpy(inputs[idx], finputs[idx], input_sizes[idx]); } } void Thneed::copy_output(float *foutput) { if (output != NULL) { size_t sz; clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL); if (record & THNEED_DEBUG) printf("copying %lu for output %p -> %p\n", sz, output, foutput); clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL); } else { printf("CAUTION: model output is NULL, does it have no outputs?\n"); } } void Thneed::wait() { struct kgsl_device_waittimestamp_ctxtid wait; wait.context_id = context_id; wait.timestamp = timestamp; wait.timeout = -1; uint64_t tb = nanos_since_boot(); int wret = ioctl(fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait); uint64_t te = nanos_since_boot(); if (record & THNEED_DEBUG) printf("wait %d after %lu us\n", wret, (te-tb)/1000); } void Thneed::execute(float **finputs, float *foutput, bool slow) { uint64_t tb, te; if (record & THNEED_DEBUG) tb = nanos_since_boot(); // ****** copy inputs copy_inputs(finputs); // ****** set power constraint int ret; struct kgsl_device_constraint_pwrlevel pwrlevel; pwrlevel.level = KGSL_CONSTRAINT_PWR_MAX; struct kgsl_device_constraint constraint; constraint.type = KGSL_CONSTRAINT_PWRLEVEL; constraint.context_id = context_id; constraint.data = (void*)&pwrlevel; constraint.size = sizeof(pwrlevel); struct kgsl_device_getproperty prop; prop.type = KGSL_PROP_PWR_CONSTRAINT; prop.value = (void*)&constraint; prop.sizebytes = sizeof(constraint); ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop); assert(ret == 0); // ****** run commands int i = 0; for (auto &it : cmds) { ++i; if (record & THNEED_DEBUG) printf("run %2d @ %7lu us: ", i, (nanos_since_boot()-tb)/1000); it->exec(); if ((i == cmds.size()) || slow) wait(); } // ****** copy outputs copy_output(foutput); // ****** unset power constraint constraint.type = KGSL_CONSTRAINT_NONE; constraint.data = NULL; constraint.size = 0; ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop); assert(ret == 0); if (record & THNEED_DEBUG) { te = nanos_since_boot(); printf("model exec in %lu us\n", (te-tb)/1000); } } void Thneed::clinit() { device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT); context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err)); //cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0}; cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; command_queue = CL_CHECK_ERR(clCreateCommandQueueWithProperties(context, device_id, props, &err)); printf("Thneed::clinit done\n"); } cl_int Thneed::clexec() { printf("Thneed::clexec: running %lu queued kernels\n", kq.size()); for (auto &k : kq) { if (record & THNEED_RECORD) ckq.push_back(k); cl_int ret = k->exec(); assert(ret == CL_SUCCESS); } return clFinish(command_queue); } // *********** OpenCL interceptor *********** cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) { g_args_size[make_pair(kernel, arg_index)] = arg_size; if (arg_value != NULL) { g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size); } else { g_args[make_pair(kernel, arg_index)] = string(""); } cl_int ret = clSetKernelArg(kernel, arg_index, arg_size, arg_value); return ret; } cl_int thneed_clEnqueueNDRangeKernel(cl_command_queue command_queue, cl_kernel kernel, cl_uint work_dim, const size_t *global_work_offset, const size_t *global_work_size, const size_t *local_work_size, cl_uint num_events_in_wait_list, const cl_event *event_wait_list, cl_event *event) { Thneed *thneed = g_thneed; // SNPE doesn't use these assert(num_events_in_wait_list == 0); assert(global_work_offset == NULL); assert(event_wait_list == NULL); cl_int ret = 0; if (thneed != NULL && thneed->record & THNEED_RECORD) { if (thneed->context == NULL) { thneed->command_queue = command_queue; clGetKernelInfo(kernel, CL_KERNEL_CONTEXT, sizeof(thneed->context), &thneed->context, NULL); clGetContextInfo(thneed->context, CL_CONTEXT_DEVICES, sizeof(thneed->device_id), &thneed->device_id, NULL); } // if we are recording, we don't actually enqueue the kernel thneed->kq.push_back(unique_ptr(new CLQueuedKernel(thneed, kernel, work_dim, global_work_size, local_work_size))); *event = NULL; } else { ret = clEnqueueNDRangeKernel(command_queue, kernel, work_dim, global_work_offset, global_work_size, local_work_size, num_events_in_wait_list, event_wait_list, event); } return ret; } cl_int thneed_clFinish(cl_command_queue command_queue) { Thneed *thneed = g_thneed; if (thneed != NULL && thneed->record & THNEED_RECORD) { #ifdef RUN_OPTIMIZER thneed->optimize(); #endif return thneed->clexec(); } else { return clFinish(command_queue); } } cl_program thneed_clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) { assert(count == 1); cl_program ret = clCreateProgramWithSource(context, count, strings, lengths, errcode_ret); g_program_source[ret] = strings[0]; return ret; } void *dlsym(void *handle, const char *symbol) { #if defined(QCOM) || defined(QCOM2) void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen + DLSYM_OFFSET); #else #error "Unsupported platform for thneed" #endif if (memcmp("REAL_", symbol, 5) == 0) { return my_dlsym(handle, symbol+5); } else if (strcmp("clFinish", symbol) == 0) { return (void*)thneed_clFinish; } else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) { return (void*)thneed_clEnqueueNDRangeKernel; } else if (strcmp("clSetKernelArg", symbol) == 0) { return (void*)thneed_clSetKernelArg; } else if (strcmp("clCreateProgramWithSource", symbol) == 0) { return (void*)thneed_clCreateProgramWithSource; } else { return my_dlsym(handle, symbol); } } // *********** CLQueuedKernel *********** CLQueuedKernel::CLQueuedKernel(Thneed *lthneed, cl_kernel _kernel, cl_uint _work_dim, const size_t *_global_work_size, const size_t *_local_work_size) { thneed = lthneed; kernel = _kernel; work_dim = _work_dim; assert(work_dim <= 3); for (int i = 0; i < work_dim; i++) { global_work_size[i] = _global_work_size[i]; local_work_size[i] = _local_work_size[i]; } char _name[0x100]; clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(_name), _name, NULL); name = string(_name); clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL); // get args for (int i = 0; i < num_args; i++) { char arg_name[0x100]; clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); arg_names.push_back(string(arg_name)); clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); arg_types.push_back(string(arg_name)); args.push_back(g_args[make_pair(kernel, i)]); args_size.push_back(g_args_size[make_pair(kernel, i)]); } // get program clGetKernelInfo(kernel, CL_KERNEL_PROGRAM, sizeof(program), &program, NULL); } int CLQueuedKernel::get_arg_num(const char *search_arg_name) { for (int i = 0; i < num_args; i++) { if (arg_names[i] == search_arg_name) return i; } printf("failed to find %s in %s\n", search_arg_name, name.c_str()); assert(false); } cl_int CLQueuedKernel::exec() { if (kernel == NULL) { kernel = clCreateKernel(program, name.c_str(), NULL); arg_names.clear(); arg_types.clear(); for (int j = 0; j < num_args; j++) { char arg_name[0x100]; clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); arg_names.push_back(string(arg_name)); clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); arg_types.push_back(string(arg_name)); cl_int ret; if (args[j].size() != 0) { assert(args[j].size() == args_size[j]); ret = thneed_clSetKernelArg(kernel, j, args[j].size(), args[j].data()); } else { ret = thneed_clSetKernelArg(kernel, j, args_size[j], NULL); } assert(ret == CL_SUCCESS); } } if (thneed->record & THNEED_DEBUG) { debug_print(thneed->record & THNEED_VERBOSE_DEBUG); } return clEnqueueNDRangeKernel(thneed->command_queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL); } void CLQueuedKernel::debug_print(bool verbose) { printf("%p %56s -- ", kernel, name.c_str()); for (int i = 0; i < work_dim; i++) { printf("%4zu ", global_work_size[i]); } printf(" -- "); for (int i = 0; i < work_dim; i++) { printf("%4zu ", local_work_size[i]); } printf("\n"); if (verbose) { for (int i = 0; i < num_args; i++) { string arg = args[i]; printf(" %s %s", arg_types[i].c_str(), arg_names[i].c_str()); void *arg_value = (void*)arg.data(); int arg_size = arg.size(); if (arg_size == 0) { printf(" (size) %d", args_size[i]); } else if (arg_size == 1) { printf(" = %d", *((char*)arg_value)); } else if (arg_size == 2) { printf(" = %d", *((short*)arg_value)); } else if (arg_size == 4) { if (arg_types[i] == "float") { printf(" = %f", *((float*)arg_value)); } else { printf(" = %d", *((int*)arg_value)); } } else if (arg_size == 8) { cl_mem val = (cl_mem)(*((uintptr_t*)arg_value)); printf(" = %p", val); if (val != NULL) { if (arg_types[i] == "image2d_t" || arg_types[i] == "image1d_t") { cl_image_format format; size_t width, height, depth, array_size, row_pitch, slice_pitch; cl_mem buf; clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL); assert(format.image_channel_order == CL_RGBA); assert(format.image_channel_data_type == CL_HALF_FLOAT); clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL); clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL); clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL); clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL); clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL); clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL); assert(depth == 0); assert(array_size == 0); assert(slice_pitch == 0); clGetImageInfo(val, CL_IMAGE_BUFFER, sizeof(buf), &buf, NULL); size_t sz; clGetMemObjectInfo(buf, CL_MEM_SIZE, sizeof(sz), &sz, NULL); printf(" image %zu x %zu rp %zu @ %p buffer %zu", width, height, row_pitch, buf, sz); } else { size_t sz; clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL); printf(" buffer %zu", sz); } } } printf("\n"); } } }