openpilot/selfdrive/locationd/locationd.py

339 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
import numpy as np
import sympy as sp
import cereal.messaging as messaging
from cereal import log
import common.transformations.coordinates as coord
from common.transformations.orientation import ecef_euler_from_ned, \
euler_from_quat, \
ned_euler_from_ecef, \
quat_from_euler, euler_from_rot, \
rot_from_quat, rot_from_euler
from rednose.helpers import KalmanError
from selfdrive.locationd.models.live_kf import LiveKalman, States, ObservationKind
from selfdrive.locationd.models.constants import GENERATED_DIR
from selfdrive.swaglog import cloudlog
#from datetime import datetime
#from laika.gps_time import GPSTime
from sympy.utilities.lambdify import lambdify
from rednose.helpers.sympy_helpers import euler_rotate
SensorSource = log.SensorEventData.SensorSource
VISION_DECIMATION = 2
SENSOR_DECIMATION = 10
POSENET_STD_HIST = 40
def to_float(arr):
return [float(arr[0]), float(arr[1]), float(arr[2])]
def get_H():
# this returns a function to eval the jacobian
# of the observation function of the local vel
roll = sp.Symbol('roll')
pitch = sp.Symbol('pitch')
yaw = sp.Symbol('yaw')
vx = sp.Symbol('vx')
vy = sp.Symbol('vy')
vz = sp.Symbol('vz')
h = euler_rotate(roll, pitch, yaw).T*(sp.Matrix([vx, vy, vz]))
H = h.jacobian(sp.Matrix([roll, pitch, yaw, vx, vy, vz]))
H_f = lambdify([roll, pitch, yaw, vx, vy, vz], H)
return H_f
class Localizer():
def __init__(self, disabled_logs=None, dog=None):
if disabled_logs is None:
disabled_logs = []
self.kf = LiveKalman(GENERATED_DIR)
self.reset_kalman()
self.max_age = .1 # seconds
self.disabled_logs = disabled_logs
self.calib = np.zeros(3)
self.device_from_calib = np.eye(3)
self.calib_from_device = np.eye(3)
self.calibrated = 0
self.H = get_H()
self.posenet_invalid_count = 0
self.posenet_speed = 0
self.car_speed = 0
self.posenet_stds = 10*np.ones((POSENET_STD_HIST))
self.converter = coord.LocalCoord.from_ecef(self.kf.x[States.ECEF_POS])
self.unix_timestamp_millis = 0
self.last_gps_fix = 0
self.device_fell = False
@staticmethod
def msg_from_state(converter, calib_from_device, H, predicted_state, predicted_cov):
predicted_std = np.sqrt(np.diagonal(predicted_cov))
fix_ecef = predicted_state[States.ECEF_POS]
fix_ecef_std = predicted_std[States.ECEF_POS_ERR]
vel_ecef = predicted_state[States.ECEF_VELOCITY]
vel_ecef_std = predicted_std[States.ECEF_VELOCITY_ERR]
fix_pos_geo = coord.ecef2geodetic(fix_ecef)
#fix_pos_geo_std = np.abs(coord.ecef2geodetic(fix_ecef + fix_ecef_std) - fix_pos_geo)
orientation_ecef = euler_from_quat(predicted_state[States.ECEF_ORIENTATION])
orientation_ecef_std = predicted_std[States.ECEF_ORIENTATION_ERR]
device_from_ecef = rot_from_quat(predicted_state[States.ECEF_ORIENTATION]).T
calibrated_orientation_ecef = euler_from_rot(calib_from_device.dot(device_from_ecef))
acc_calib = calib_from_device.dot(predicted_state[States.ACCELERATION])
acc_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
predicted_cov[States.ACCELERATION_ERR, States.ACCELERATION_ERR]).dot(
calib_from_device.T)))
ang_vel_calib = calib_from_device.dot(predicted_state[States.ANGULAR_VELOCITY])
ang_vel_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
predicted_cov[States.ANGULAR_VELOCITY_ERR, States.ANGULAR_VELOCITY_ERR]).dot(
calib_from_device.T)))
vel_device = device_from_ecef.dot(vel_ecef)
device_from_ecef_eul = euler_from_quat(predicted_state[States.ECEF_ORIENTATION]).T
idxs = list(range(States.ECEF_ORIENTATION_ERR.start, States.ECEF_ORIENTATION_ERR.stop)) + \
list(range(States.ECEF_VELOCITY_ERR.start, States.ECEF_VELOCITY_ERR.stop))
condensed_cov = predicted_cov[idxs][:, idxs]
HH = H(*list(np.concatenate([device_from_ecef_eul, vel_ecef])))
vel_device_cov = HH.dot(condensed_cov).dot(HH.T)
vel_device_std = np.sqrt(np.diagonal(vel_device_cov))
vel_calib = calib_from_device.dot(vel_device)
vel_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
vel_device_cov).dot(calib_from_device.T)))
orientation_ned = ned_euler_from_ecef(fix_ecef, orientation_ecef)
#orientation_ned_std = ned_euler_from_ecef(fix_ecef, orientation_ecef + orientation_ecef_std) - orientation_ned
ned_vel = converter.ecef2ned(fix_ecef + vel_ecef) - converter.ecef2ned(fix_ecef)
#ned_vel_std = self.converter.ecef2ned(fix_ecef + vel_ecef + vel_ecef_std) - self.converter.ecef2ned(fix_ecef + vel_ecef)
fix = messaging.log.LiveLocationKalman.new_message()
# write measurements to msg
measurements = [
# measurement field, value, std, valid
(fix.positionGeodetic, fix_pos_geo, np.nan*np.zeros(3), True),
(fix.positionECEF, fix_ecef, fix_ecef_std, True),
(fix.velocityECEF, vel_ecef, vel_ecef_std, True),
(fix.velocityNED, ned_vel, np.nan*np.zeros(3), True),
(fix.velocityDevice, vel_device, vel_device_std, True),
(fix.accelerationDevice, predicted_state[States.ACCELERATION], predicted_std[States.ACCELERATION_ERR], True),
(fix.orientationECEF, orientation_ecef, orientation_ecef_std, True),
(fix.calibratedOrientationECEF, calibrated_orientation_ecef, np.nan*np.zeros(3), True),
(fix.orientationNED, orientation_ned, np.nan*np.zeros(3), True),
(fix.angularVelocityDevice, predicted_state[States.ANGULAR_VELOCITY], predicted_std[States.ANGULAR_VELOCITY_ERR], True),
(fix.velocityCalibrated, vel_calib, vel_calib_std, True),
(fix.angularVelocityCalibrated, ang_vel_calib, ang_vel_calib_std, True),
(fix.accelerationCalibrated, acc_calib, acc_calib_std, True),
]
for field, value, std, valid in measurements:
# TODO: can we write the lists faster?
field.value = to_float(value)
field.std = to_float(std)
field.valid = valid
return fix
def liveLocationMsg(self):
fix = self.msg_from_state(self.converter, self.calib_from_device, self.H, self.kf.x, self.kf.P)
# experimentally found these values, no false positives in 20k minutes of driving
old_mean, new_mean = np.mean(self.posenet_stds[:POSENET_STD_HIST//2]), np.mean(self.posenet_stds[POSENET_STD_HIST//2:])
std_spike = new_mean/old_mean > 4 and new_mean > 7
fix.posenetOK = not (std_spike and self.car_speed > 5)
fix.deviceStable = not self.device_fell
self.device_fell = False
#fix.gpsWeek = self.time.week
#fix.gpsTimeOfWeek = self.time.tow
fix.unixTimestampMillis = self.unix_timestamp_millis
if np.linalg.norm(fix.positionECEF.std) < 50 and self.calibrated:
fix.status = 'valid'
elif np.linalg.norm(fix.positionECEF.std) < 50:
fix.status = 'uncalibrated'
else:
fix.status = 'uninitialized'
return fix
def update_kalman(self, time, kind, meas, R=None):
try:
self.kf.predict_and_observe(time, kind, meas, R)
except KalmanError:
cloudlog.error("Error in predict and observe, kalman reset")
self.reset_kalman()
def handle_gps(self, current_time, log):
# ignore the message if the fix is invalid
if log.flags % 2 == 0:
return
self.last_gps_fix = current_time
self.converter = coord.LocalCoord.from_geodetic([log.latitude, log.longitude, log.altitude])
ecef_pos = self.converter.ned2ecef([0, 0, 0])
ecef_vel = self.converter.ned2ecef(np.array(log.vNED)) - ecef_pos
ecef_pos_R = np.diag([(3*log.verticalAccuracy)**2]*3)
ecef_vel_R = np.diag([(log.speedAccuracy)**2]*3)
#self.time = GPSTime.from_datetime(datetime.utcfromtimestamp(log.timestamp*1e-3))
self.unix_timestamp_millis = log.timestamp
gps_est_error = np.sqrt((self.kf.x[0] - ecef_pos[0])**2 +
(self.kf.x[1] - ecef_pos[1])**2 +
(self.kf.x[2] - ecef_pos[2])**2)
orientation_ecef = euler_from_quat(self.kf.x[States.ECEF_ORIENTATION])
orientation_ned = ned_euler_from_ecef(ecef_pos, orientation_ecef)
orientation_ned_gps = np.array([0, 0, np.radians(log.bearing)])
orientation_error = np.mod(orientation_ned - orientation_ned_gps - np.pi, 2*np.pi) - np.pi
initial_pose_ecef_quat = quat_from_euler(ecef_euler_from_ned(ecef_pos, orientation_ned_gps))
if np.linalg.norm(ecef_vel) > 5 and np.linalg.norm(orientation_error) > 1:
cloudlog.error("Locationd vs ubloxLocation orientation difference too large, kalman reset")
self.reset_kalman(init_pos=ecef_pos, init_orient=initial_pose_ecef_quat)
self.update_kalman(current_time, ObservationKind.ECEF_ORIENTATION_FROM_GPS, initial_pose_ecef_quat)
elif gps_est_error > 50:
cloudlog.error("Locationd vs ubloxLocation position difference too large, kalman reset")
self.reset_kalman(init_pos=ecef_pos, init_orient=initial_pose_ecef_quat)
self.update_kalman(current_time, ObservationKind.ECEF_POS, ecef_pos, R=ecef_pos_R)
self.update_kalman(current_time, ObservationKind.ECEF_VEL, ecef_vel, R=ecef_vel_R)
def handle_car_state(self, current_time, log):
self.speed_counter += 1
if self.speed_counter % SENSOR_DECIMATION == 0:
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, [log.vEgo])
self.car_speed = abs(log.vEgo)
if log.vEgo == 0:
self.update_kalman(current_time, ObservationKind.NO_ROT, [0, 0, 0])
def handle_cam_odo(self, current_time, log):
self.cam_counter += 1
if self.cam_counter % VISION_DECIMATION == 0:
rot_device = self.device_from_calib.dot(log.rot)
rot_device_std = self.device_from_calib.dot(log.rotStd)
self.update_kalman(current_time,
ObservationKind.CAMERA_ODO_ROTATION,
np.concatenate([rot_device, 10*rot_device_std]))
trans_device = self.device_from_calib.dot(log.trans)
trans_device_std = self.device_from_calib.dot(log.transStd)
self.posenet_speed = np.linalg.norm(trans_device)
self.posenet_stds[:-1] = self.posenet_stds[1:]
self.posenet_stds[-1] = trans_device_std[0]
self.update_kalman(current_time,
ObservationKind.CAMERA_ODO_TRANSLATION,
np.concatenate([trans_device, 10*trans_device_std]))
def handle_sensors(self, current_time, log):
# TODO does not yet account for double sensor readings in the log
for sensor_reading in log:
# TODO: handle messages from two IMUs at the same time
if sensor_reading.source == SensorSource.lsm6ds3:
continue
# Gyro Uncalibrated
if sensor_reading.sensor == 5 and sensor_reading.type == 16:
self.gyro_counter += 1
if self.gyro_counter % SENSOR_DECIMATION == 0:
v = sensor_reading.gyroUncalibrated.v
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-v[2], -v[1], -v[0]])
# Accelerometer
if sensor_reading.sensor == 1 and sensor_reading.type == 1:
# check if device fell, estimate 10 for g
# 40m/s**2 is a good filter for falling detection, no false positives in 20k minutes of driving
self.device_fell = self.device_fell or (np.linalg.norm(np.array(sensor_reading.acceleration.v) - np.array([10, 0, 0])) > 40)
self.acc_counter += 1
if self.acc_counter % SENSOR_DECIMATION == 0:
v = sensor_reading.acceleration.v
self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-v[2], -v[1], -v[0]])
def handle_live_calib(self, current_time, log):
if len(log.rpyCalib):
self.calib = log.rpyCalib
self.device_from_calib = rot_from_euler(self.calib)
self.calib_from_device = self.device_from_calib.T
self.calibrated = log.calStatus == 1
def reset_kalman(self, current_time=None, init_orient=None, init_pos=None):
self.filter_time = current_time
init_x = LiveKalman.initial_x.copy()
# too nonlinear to init on completely wrong
if init_orient is not None:
init_x[3:7] = init_orient
if init_pos is not None:
init_x[:3] = init_pos
self.kf.init_state(init_x, covs=np.diag(LiveKalman.initial_P_diag), filter_time=current_time)
self.observation_buffer = []
self.gyro_counter = 0
self.acc_counter = 0
self.speed_counter = 0
self.cam_counter = 0
def locationd_thread(sm, pm, disabled_logs=None):
if disabled_logs is None:
disabled_logs = []
if sm is None:
socks = ['gpsLocationExternal', 'sensorEvents', 'cameraOdometry', 'liveCalibration', 'carState']
sm = messaging.SubMaster(socks, ignore_alive=['gpsLocationExternal'])
if pm is None:
pm = messaging.PubMaster(['liveLocationKalman'])
localizer = Localizer(disabled_logs=disabled_logs)
while True:
sm.update()
for sock, updated in sm.updated.items():
if updated and sm.valid[sock]:
t = sm.logMonoTime[sock] * 1e-9
if sock == "sensorEvents":
localizer.handle_sensors(t, sm[sock])
elif sock == "gpsLocationExternal":
localizer.handle_gps(t, sm[sock])
elif sock == "carState":
localizer.handle_car_state(t, sm[sock])
elif sock == "cameraOdometry":
localizer.handle_cam_odo(t, sm[sock])
elif sock == "liveCalibration":
localizer.handle_live_calib(t, sm[sock])
if sm.updated['cameraOdometry']:
t = sm.logMonoTime['cameraOdometry']
msg = messaging.new_message('liveLocationKalman')
msg.logMonoTime = t
msg.liveLocationKalman = localizer.liveLocationMsg()
msg.liveLocationKalman.inputsOK = sm.all_alive_and_valid()
msg.liveLocationKalman.sensorsOK = sm.alive['sensorEvents'] and sm.valid['sensorEvents']
gps_age = (t / 1e9) - localizer.last_gps_fix
msg.liveLocationKalman.gpsOK = gps_age < 1.0
pm.send('liveLocationKalman', msg)
def main(sm=None, pm=None):
locationd_thread(sm, pm)
if __name__ == "__main__":
import os
os.environ["OMP_NUM_THREADS"] = "1"
main()