openpilot/selfdrive/modeld/models/dmonitoring.cc

215 lines
10 KiB
C++

#include <string.h>
#include "dmonitoring.h"
#include "common/mat.h"
#include "common/timing.h"
#include "common/params.h"
#include <libyuv.h>
#define MODEL_WIDTH 320
#define MODEL_HEIGHT 640
#define FULL_W 852 // should get these numbers from camerad
#if defined(QCOM) || defined(QCOM2)
#define input_lambda(x) (x - 128.f) * 0.0078125f
#else
#define input_lambda(x) x // for non SNPE running platforms, assume keras model instead has lambda layer
#endif
void dmonitoring_init(DMonitoringModelState* s) {
#if defined(QCOM) || defined(QCOM2)
const char* model_path = "../../models/dmonitoring_model_q.dlc";
#else
const char* model_path = "../../models/dmonitoring_model.dlc";
#endif
#ifdef QCOM2
int runtime = USE_CPU_RUNTIME;
#else
int runtime = USE_DSP_RUNTIME;
#endif
s->m = new DefaultRunModel(model_path, (float*)&s->output, OUTPUT_SIZE, runtime);
s->is_rhd = Params().read_db_bool("IsRHD");
}
template <class T>
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
if (buf.size() < size) {
buf.resize(size);
}
return buf.data();
}
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height) {
uint8_t *raw_buf = (uint8_t*) stream_buf;
uint8_t *raw_y_buf = raw_buf;
uint8_t *raw_u_buf = raw_y_buf + (width * height);
uint8_t *raw_v_buf = raw_u_buf + ((width/2) * (height/2));
#ifndef QCOM2
const int cropped_width = height/2;
const int cropped_height = height;
const int global_x_offset = 0;
const int global_y_offset = 0;
const int crop_x_offset = width - cropped_width;
const int crop_y_offset = 0;
#else
const int full_width_tici = 1928;
const int full_height_tici = 1208;
const int adapt_width_tici = 808;
const int cropped_height = adapt_width_tici / 1.33;
const int cropped_width = cropped_height / 2;
const int global_x_offset = full_width_tici / 2 - adapt_width_tici / 2;
const int global_y_offset = full_height_tici / 2 - cropped_height / 2;
const int crop_x_offset = adapt_width_tici - cropped_width;
const int crop_y_offset = 0;
#endif
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
uint8_t *cropped_y_buf = get_buffer(s->cropped_buf, cropped_width*cropped_height*3/2);
uint8_t *cropped_u_buf = cropped_y_buf + (cropped_width * cropped_height);
uint8_t *cropped_v_buf = cropped_u_buf + ((cropped_width/2) * (cropped_height/2));
if (!s->is_rhd) {
for (int r = 0; r < cropped_height/2; r++) {
memcpy(cropped_y_buf + 2*r*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset)*width + global_x_offset + crop_x_offset, cropped_width);
memcpy(cropped_y_buf + (2*r+1)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset + 1)*width + global_x_offset + crop_x_offset, cropped_width);
memcpy(cropped_u_buf + r*cropped_width/2, raw_u_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + (global_x_offset + crop_x_offset)/2, cropped_width/2);
memcpy(cropped_v_buf + r*cropped_width/2, raw_v_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + (global_x_offset + crop_x_offset)/2, cropped_width/2);
}
} else {
uint8_t *premirror_cropped_y_buf = get_buffer(s->premirror_cropped_buf, cropped_width*cropped_height*3/2);
uint8_t *premirror_cropped_u_buf = premirror_cropped_y_buf + (cropped_width * cropped_height);
uint8_t *premirror_cropped_v_buf = premirror_cropped_u_buf + ((cropped_width/2) * (cropped_height/2));
for (int r = 0; r < cropped_height/2; r++) {
memcpy(premirror_cropped_y_buf + (2*r)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset)*width + global_x_offset, cropped_width);
memcpy(premirror_cropped_y_buf + (2*r+1)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset + 1)*width + global_x_offset, cropped_width);
memcpy(premirror_cropped_u_buf + r*cropped_width/2, raw_u_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + global_x_offset/2, cropped_width/2);
memcpy(premirror_cropped_v_buf + r*cropped_width/2, raw_v_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + global_x_offset/2, cropped_width/2);
}
libyuv::I420Mirror(premirror_cropped_y_buf, cropped_width,
premirror_cropped_u_buf, cropped_width/2,
premirror_cropped_v_buf, cropped_width/2,
cropped_y_buf, cropped_width,
cropped_u_buf, cropped_width/2,
cropped_v_buf, cropped_width/2,
cropped_width, cropped_height);
}
uint8_t *resized_buf = get_buffer(s->resized_buf, resized_width*resized_height*3/2);
uint8_t *resized_y_buf = resized_buf;
uint8_t *resized_u_buf = resized_y_buf + (resized_width * resized_height);
uint8_t *resized_v_buf = resized_u_buf + ((resized_width/2) * (resized_height/2));
libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterBilinear;
libyuv::I420Scale(cropped_y_buf, cropped_width,
cropped_u_buf, cropped_width/2,
cropped_v_buf, cropped_width/2,
cropped_width, cropped_height,
resized_y_buf, resized_width,
resized_u_buf, resized_width/2,
resized_v_buf, resized_width/2,
resized_width, resized_height,
mode);
// prerotate to be cache aware
uint8_t *resized_buf_rot = get_buffer(s->resized_buf_rot, resized_width*resized_height*3/2);
uint8_t *resized_y_buf_rot = resized_buf_rot;
uint8_t *resized_u_buf_rot = resized_y_buf_rot + (resized_width * resized_height);
uint8_t *resized_v_buf_rot = resized_u_buf_rot + ((resized_width/2) * (resized_height/2));
libyuv::I420Rotate(resized_y_buf, resized_width,
resized_u_buf, resized_width/2,
resized_v_buf, resized_width/2,
resized_y_buf_rot, resized_height,
resized_u_buf_rot, resized_height/2,
resized_v_buf_rot, resized_height/2,
// negative height causes a vertical flip to match previous
resized_width, -resized_height, libyuv::kRotate90);
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
// one shot conversion, O(n) anyway
// yuvframe2tensor, normalize
for (int c = 0; c < MODEL_WIDTH/2; c++) {
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
// Y_ul
net_input_buf[(c*MODEL_HEIGHT/2) + r + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c)*resized_height]);
// Y_dl
net_input_buf[(c*MODEL_HEIGHT/2) + r + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c)*resized_height]);
// Y_ur
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c+1)*resized_height]);
// Y_dr
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c+1)*resized_height]);
// U
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(resized_width*resized_height) + r + (c*resized_height/2)]);
// V
net_input_buf[(c*MODEL_HEIGHT/2) + r + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + r + (c*resized_height/2)]);
}
}
//printf("preprocess completed. %d \n", yuv_buf_len);
//FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
//fwrite(raw_buf, height*width*3/2, sizeof(uint8_t), dump_yuv_file);
//fclose(dump_yuv_file);
// *** testing ***
// idat = np.frombuffer(open("/tmp/inputdump.yuv", "rb").read(), np.float32).reshape(6, 160, 320)
// imshow(cv2.cvtColor(tensor_to_frames(idat[None]/0.0078125+128)[0], cv2.COLOR_YUV2RGB_I420))
//FILE *dump_yuv_file2 = fopen("/tmp/inputdump.yuv", "wb");
//fwrite(net_input_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file2);
//fclose(dump_yuv_file2);
s->m->execute(net_input_buf, yuv_buf_len);
DMonitoringResult ret = {0};
memcpy(&ret.face_orientation, &s->output[0], sizeof ret.face_orientation);
memcpy(&ret.face_orientation_meta, &s->output[6], sizeof ret.face_orientation_meta);
memcpy(&ret.face_position, &s->output[3], sizeof ret.face_position);
memcpy(&ret.face_position_meta, &s->output[9], sizeof ret.face_position_meta);
memcpy(&ret.face_prob, &s->output[12], sizeof ret.face_prob);
memcpy(&ret.left_eye_prob, &s->output[21], sizeof ret.left_eye_prob);
memcpy(&ret.right_eye_prob, &s->output[30], sizeof ret.right_eye_prob);
memcpy(&ret.left_blink_prob, &s->output[31], sizeof ret.right_eye_prob);
memcpy(&ret.right_blink_prob, &s->output[32], sizeof ret.right_eye_prob);
memcpy(&ret.sg_prob, &s->output[33], sizeof ret.sg_prob);
ret.face_orientation_meta[0] = softplus(ret.face_orientation_meta[0]);
ret.face_orientation_meta[1] = softplus(ret.face_orientation_meta[1]);
ret.face_orientation_meta[2] = softplus(ret.face_orientation_meta[2]);
ret.face_position_meta[0] = softplus(ret.face_position_meta[0]);
ret.face_position_meta[1] = softplus(ret.face_position_meta[1]);
return ret;
}
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time){
// make msg
MessageBuilder msg;
auto framed = msg.initEvent().initDriverState();
framed.setFrameId(frame_id);
framed.setModelExecutionTime(execution_time);
kj::ArrayPtr<const float> face_orientation(&res.face_orientation[0], ARRAYSIZE(res.face_orientation));
kj::ArrayPtr<const float> face_orientation_std(&res.face_orientation_meta[0], ARRAYSIZE(res.face_orientation_meta));
kj::ArrayPtr<const float> face_position(&res.face_position[0], ARRAYSIZE(res.face_position));
kj::ArrayPtr<const float> face_position_std(&res.face_position_meta[0], ARRAYSIZE(res.face_position_meta));
framed.setFaceOrientation(face_orientation);
framed.setFaceOrientationStd(face_orientation_std);
framed.setFacePosition(face_position);
framed.setFacePositionStd(face_position_std);
framed.setFaceProb(res.face_prob);
framed.setLeftEyeProb(res.left_eye_prob);
framed.setRightEyeProb(res.right_eye_prob);
framed.setLeftBlinkProb(res.left_blink_prob);
framed.setRightBlinkProb(res.right_blink_prob);
framed.setSgProb(res.sg_prob);
pm.send("driverState", msg);
}
void dmonitoring_free(DMonitoringModelState* s) {
delete s->m;
}