openpilot/phonelibs/opencv/include/opencv2/core/gpumat.hpp

564 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPUMAT_HPP__
#define __OPENCV_GPUMAT_HPP__
#ifdef __cplusplus
#include "opencv2/core/core.hpp"
#include "opencv2/core/cuda_devptrs.hpp"
namespace cv { namespace gpu
{
//////////////////////////////// Initialization & Info ////////////////////////
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
CV_EXPORTS int getCudaEnabledDeviceCount();
//! Functions below throw cv::Expception if the library is compiled without Cuda.
CV_EXPORTS void setDevice(int device);
CV_EXPORTS int getDevice();
//! Explicitly destroys and cleans up all resources associated with the current device in the current process.
//! Any subsequent API call to this device will reinitialize the device.
CV_EXPORTS void resetDevice();
enum FeatureSet
{
FEATURE_SET_COMPUTE_10 = 10,
FEATURE_SET_COMPUTE_11 = 11,
FEATURE_SET_COMPUTE_12 = 12,
FEATURE_SET_COMPUTE_13 = 13,
FEATURE_SET_COMPUTE_20 = 20,
FEATURE_SET_COMPUTE_21 = 21,
FEATURE_SET_COMPUTE_30 = 30,
FEATURE_SET_COMPUTE_35 = 35,
GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,
WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,
DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35
};
// Checks whether current device supports the given feature
CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
// Gives information about what GPU archs this OpenCV GPU module was
// compiled for
class CV_EXPORTS TargetArchs
{
public:
static bool builtWith(FeatureSet feature_set);
static bool has(int major, int minor);
static bool hasPtx(int major, int minor);
static bool hasBin(int major, int minor);
static bool hasEqualOrLessPtx(int major, int minor);
static bool hasEqualOrGreater(int major, int minor);
static bool hasEqualOrGreaterPtx(int major, int minor);
static bool hasEqualOrGreaterBin(int major, int minor);
private:
TargetArchs();
};
// Gives information about the given GPU
class CV_EXPORTS DeviceInfo
{
public:
// Creates DeviceInfo object for the current GPU
DeviceInfo() : device_id_(getDevice()) { query(); }
// Creates DeviceInfo object for the given GPU
DeviceInfo(int device_id) : device_id_(device_id) { query(); }
std::string name() const { return name_; }
// Return compute capability versions
int majorVersion() const { return majorVersion_; }
int minorVersion() const { return minorVersion_; }
int multiProcessorCount() const { return multi_processor_count_; }
size_t sharedMemPerBlock() const;
void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
size_t freeMemory() const;
size_t totalMemory() const;
// Checks whether device supports the given feature
bool supports(FeatureSet feature_set) const;
// Checks whether the GPU module can be run on the given device
bool isCompatible() const;
int deviceID() const { return device_id_; }
private:
void query();
int device_id_;
std::string name_;
int multi_processor_count_;
int majorVersion_;
int minorVersion_;
};
CV_EXPORTS void printCudaDeviceInfo(int device);
CV_EXPORTS void printShortCudaDeviceInfo(int device);
//////////////////////////////// GpuMat ///////////////////////////////
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class CV_EXPORTS GpuMat
{
public:
//! default constructor
GpuMat();
//! constructs GpuMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
GpuMat(int rows, int cols, int type);
GpuMat(Size size, int type);
//! constucts GpuMatrix and fills it with the specified value _s.
GpuMat(int rows, int cols, int type, Scalar s);
GpuMat(Size size, int type, Scalar s);
//! copy constructor
GpuMat(const GpuMat& m);
//! constructor for GpuMatrix headers pointing to user-allocated data
GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
//! creates a matrix header for a part of the bigger matrix
GpuMat(const GpuMat& m, Range rowRange, Range colRange);
GpuMat(const GpuMat& m, Rect roi);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit GpuMat(const Mat& m);
//! destructor - calls release()
~GpuMat();
//! assignment operators
GpuMat& operator = (const GpuMat& m);
//! pefroms blocking upload data to GpuMat.
void upload(const Mat& m);
//! downloads data from device to host memory. Blocking calls.
void download(Mat& m) const;
//! returns a new GpuMatrix header for the specified row
GpuMat row(int y) const;
//! returns a new GpuMatrix header for the specified column
GpuMat col(int x) const;
//! ... for the specified row span
GpuMat rowRange(int startrow, int endrow) const;
GpuMat rowRange(Range r) const;
//! ... for the specified column span
GpuMat colRange(int startcol, int endcol) const;
GpuMat colRange(Range r) const;
//! returns deep copy of the GpuMatrix, i.e. the data is copied
GpuMat clone() const;
//! copies the GpuMatrix content to "m".
// It calls m.create(this->size(), this->type()).
void copyTo(GpuMat& m) const;
//! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements.
void copyTo(GpuMat& m, const GpuMat& mask) const;
//! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale.
void convertTo(GpuMat& m, int rtype, double alpha = 1, double beta = 0) const;
void assignTo(GpuMat& m, int type=-1) const;
//! sets every GpuMatrix element to s
GpuMat& operator = (Scalar s);
//! sets some of the GpuMatrix elements to s, according to the mask
GpuMat& setTo(Scalar s, const GpuMat& mask = GpuMat());
//! creates alternative GpuMatrix header for the same data, with different
// number of channels and/or different number of rows. see cvReshape.
GpuMat reshape(int cn, int rows = 0) const;
//! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type.
// previous data is unreferenced if needed.
void create(int rows, int cols, int type);
void create(Size size, int type);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
void release();
//! swaps with other smart pointer
void swap(GpuMat& mat);
//! locates GpuMatrix header within a parent GpuMatrix. See below
void locateROI(Size& wholeSize, Point& ofs) const;
//! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix.
GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
//! extracts a rectangular sub-GpuMatrix
// (this is a generalized form of row, rowRange etc.)
GpuMat operator()(Range rowRange, Range colRange) const;
GpuMat operator()(Rect roi) const;
//! returns true iff the GpuMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_GpuMat_CONT(cvGpuMat->type)
bool isContinuous() const;
//! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvMat->type)
size_t elemSize() const;
//! returns the size of element channel in bytes.
size_t elemSize1() const;
//! returns element type, similar to CV_MAT_TYPE(cvMat->type)
int type() const;
//! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
int depth() const;
//! returns element type, similar to CV_MAT_CN(cvMat->type)
int channels() const;
//! returns step/elemSize1()
size_t step1() const;
//! returns GpuMatrix size:
// width == number of columns, height == number of rows
Size size() const;
//! returns true if GpuMatrix data is NULL
bool empty() const;
//! returns pointer to y-th row
uchar* ptr(int y = 0);
const uchar* ptr(int y = 0) const;
//! template version of the above method
template<typename _Tp> _Tp* ptr(int y = 0);
template<typename _Tp> const _Tp* ptr(int y = 0) const;
template <typename _Tp> operator PtrStepSz<_Tp>() const;
template <typename _Tp> operator PtrStep<_Tp>() const;
// Deprecated function
template <typename _Tp> CV_GPU_DEPRECATED operator DevMem2D_<_Tp>() const;
template <typename _Tp> CV_GPU_DEPRECATED operator PtrStep_<_Tp>() const;
#undef CV_GPU_DEPRECATED
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the number of rows and columns
int rows, cols;
//! a distance between successive rows in bytes; includes the gap if any
size_t step;
//! pointer to the data
uchar* data;
//! pointer to the reference counter;
// when GpuMatrix points to user-allocated data, the pointer is NULL
int* refcount;
//! helper fields used in locateROI and adjustROI
uchar* datastart;
uchar* dataend;
};
//! Creates continuous GPU matrix
CV_EXPORTS void createContinuous(int rows, int cols, int type, GpuMat& m);
CV_EXPORTS GpuMat createContinuous(int rows, int cols, int type);
CV_EXPORTS void createContinuous(Size size, int type, GpuMat& m);
CV_EXPORTS GpuMat createContinuous(Size size, int type);
//! Ensures that size of the given matrix is not less than (rows, cols) size
//! and matrix type is match specified one too
CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m);
CV_EXPORTS void ensureSizeIsEnough(Size size, int type, GpuMat& m);
CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat &mat);
////////////////////////////////////////////////////////////////////////
// Error handling
CV_EXPORTS void error(const char* error_string, const char* file, const int line, const char* func = "");
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline GpuMat::GpuMat()
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
}
inline GpuMat::GpuMat(int rows_, int cols_, int type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (rows_ > 0 && cols_ > 0)
create(rows_, cols_, type_);
}
inline GpuMat::GpuMat(Size size_, int type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (size_.height > 0 && size_.width > 0)
create(size_.height, size_.width, type_);
}
inline GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (rows_ > 0 && cols_ > 0)
{
create(rows_, cols_, type_);
setTo(s_);
}
}
inline GpuMat::GpuMat(Size size_, int type_, Scalar s_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (size_.height > 0 && size_.width > 0)
{
create(size_.height, size_.width, type_);
setTo(s_);
}
}
inline GpuMat::~GpuMat()
{
release();
}
inline GpuMat GpuMat::clone() const
{
GpuMat m;
copyTo(m);
return m;
}
inline void GpuMat::assignTo(GpuMat& m, int _type) const
{
if (_type < 0)
m = *this;
else
convertTo(m, _type);
}
inline size_t GpuMat::step1() const
{
return step / elemSize1();
}
inline bool GpuMat::empty() const
{
return data == 0;
}
template<typename _Tp> inline _Tp* GpuMat::ptr(int y)
{
return (_Tp*)ptr(y);
}
template<typename _Tp> inline const _Tp* GpuMat::ptr(int y) const
{
return (const _Tp*)ptr(y);
}
inline void swap(GpuMat& a, GpuMat& b)
{
a.swap(b);
}
inline GpuMat GpuMat::row(int y) const
{
return GpuMat(*this, Range(y, y+1), Range::all());
}
inline GpuMat GpuMat::col(int x) const
{
return GpuMat(*this, Range::all(), Range(x, x+1));
}
inline GpuMat GpuMat::rowRange(int startrow, int endrow) const
{
return GpuMat(*this, Range(startrow, endrow), Range::all());
}
inline GpuMat GpuMat::rowRange(Range r) const
{
return GpuMat(*this, r, Range::all());
}
inline GpuMat GpuMat::colRange(int startcol, int endcol) const
{
return GpuMat(*this, Range::all(), Range(startcol, endcol));
}
inline GpuMat GpuMat::colRange(Range r) const
{
return GpuMat(*this, Range::all(), r);
}
inline void GpuMat::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
}
inline GpuMat GpuMat::operator()(Range _rowRange, Range _colRange) const
{
return GpuMat(*this, _rowRange, _colRange);
}
inline GpuMat GpuMat::operator()(Rect roi) const
{
return GpuMat(*this, roi);
}
inline bool GpuMat::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline size_t GpuMat::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline size_t GpuMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline int GpuMat::type() const
{
return CV_MAT_TYPE(flags);
}
inline int GpuMat::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline int GpuMat::channels() const
{
return CV_MAT_CN(flags);
}
inline Size GpuMat::size() const
{
return Size(cols, rows);
}
inline uchar* GpuMat::ptr(int y)
{
CV_DbgAssert((unsigned)y < (unsigned)rows);
return data + step * y;
}
inline const uchar* GpuMat::ptr(int y) const
{
CV_DbgAssert((unsigned)y < (unsigned)rows);
return data + step * y;
}
inline GpuMat& GpuMat::operator = (Scalar s)
{
setTo(s);
return *this;
}
/** @cond IGNORED */
template <class T> inline GpuMat::operator PtrStepSz<T>() const
{
return PtrStepSz<T>(rows, cols, (T*)data, step);
}
template <class T> inline GpuMat::operator PtrStep<T>() const
{
return PtrStep<T>((T*)data, step);
}
template <class T> inline GpuMat::operator DevMem2D_<T>() const
{
return DevMem2D_<T>(rows, cols, (T*)data, step);
}
template <class T> inline GpuMat::operator PtrStep_<T>() const
{
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
}
/** @endcond */
inline GpuMat createContinuous(int rows, int cols, int type)
{
GpuMat m;
createContinuous(rows, cols, type, m);
return m;
}
inline void createContinuous(Size size, int type, GpuMat& m)
{
createContinuous(size.height, size.width, type, m);
}
inline GpuMat createContinuous(Size size, int type)
{
GpuMat m;
createContinuous(size, type, m);
return m;
}
inline void ensureSizeIsEnough(Size size, int type, GpuMat& m)
{
ensureSizeIsEnough(size.height, size.width, type, m);
}
}}
#endif // __cplusplus
#endif // __OPENCV_GPUMAT_HPP__