openpilot/selfdrive/modeld/models/dmonitoring.cc

201 lines
8.0 KiB
C++

#include "selfdrive/modeld/models/dmonitoring.h"
#include <string.h>
#include "libyuv.h"
#include "selfdrive/common/mat.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/timing.h"
#include "selfdrive/hardware/hw.h"
#define MODEL_WIDTH 320
#define MODEL_HEIGHT 640
#define FULL_W 852 // should get these numbers from camerad
#if defined(QCOM) || defined(QCOM2)
#define input_lambda(x) (x - 128.f) * 0.0078125f
#else
#define input_lambda(x) x // for non SNPE running platforms, assume keras model instead has lambda layer
#endif
void dmonitoring_init(DMonitoringModelState* s) {
const char *model_path = "../../models/dmonitoring_model_q.dlc";
int runtime = USE_DSP_RUNTIME;
s->m = new DefaultRunModel(model_path, &s->output[0], OUTPUT_SIZE, runtime);
s->is_rhd = Params().getBool("IsRHD");
}
template <class T>
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
if (buf.size() < size) buf.resize(size);
return buf.data();
}
static inline auto get_yuv_buf(std::vector<uint8_t> &buf, const int width, int height) {
uint8_t *y = get_buffer(buf, width * height * 3 / 2);
uint8_t *u = y + width * height;
uint8_t *v = u + (width /2) * (height / 2);
return std::make_tuple(y, u, v);
}
struct Rect {int x, y, w, h;};
void crop_yuv(uint8_t *raw, int width, int height, uint8_t *y, uint8_t *u, uint8_t *v, const Rect &rect) {
uint8_t *raw_y = raw;
uint8_t *raw_u = raw_y + (width * height);
uint8_t *raw_v = raw_u + ((width / 2) * (height / 2));
for (int r = 0; r < rect.h / 2; r++) {
memcpy(y + 2 * r * rect.w, raw_y + (2 * r + rect.y) * width + rect.x, rect.w);
memcpy(y + (2 * r + 1) * rect.w, raw_y + (2 * r + rect.y + 1) * width + rect.x, rect.w);
memcpy(u + r * (rect.w / 2), raw_u + (r + (rect.y / 2)) * width / 2 + (rect.x / 2), rect.w / 2);
memcpy(v + r * (rect.w / 2), raw_v + (r + (rect.y / 2)) * width / 2 + (rect.x / 2), rect.w / 2);
}
}
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height) {
Rect crop_rect;
if (Hardware::TICI()) {
const int full_width_tici = 1928;
const int full_height_tici = 1208;
const int adapt_width_tici = 668;
const int cropped_height = adapt_width_tici / 1.33;
crop_rect = {full_width_tici / 2 - adapt_width_tici / 2,
full_height_tici / 2 - cropped_height / 2 - 196,
cropped_height / 2,
cropped_height};
if (!s->is_rhd) {
crop_rect.x += adapt_width_tici - crop_rect.w + 32;
}
} else {
crop_rect = {0, 0, height / 2, height};
if (!s->is_rhd) {
crop_rect.x += width - crop_rect.w;
}
}
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
auto [cropped_y, cropped_u, cropped_v] = get_yuv_buf(s->cropped_buf, crop_rect.w, crop_rect.h);
if (!s->is_rhd) {
crop_yuv((uint8_t *)stream_buf, width, height, cropped_y, cropped_u, cropped_v, crop_rect);
} else {
auto [mirror_y, mirror_u, mirror_v] = get_yuv_buf(s->premirror_cropped_buf, crop_rect.w, crop_rect.h);
crop_yuv((uint8_t *)stream_buf, width, height, mirror_y, mirror_u, mirror_v, crop_rect);
libyuv::I420Mirror(mirror_y, crop_rect.w,
mirror_u, crop_rect.w / 2,
mirror_v, crop_rect.w / 2,
cropped_y, crop_rect.w,
cropped_u, crop_rect.w / 2,
cropped_v, crop_rect.w / 2,
crop_rect.w, crop_rect.h);
}
auto [resized_buf, resized_u, resized_v] = get_yuv_buf(s->resized_buf, resized_width, resized_height);
uint8_t *resized_y = resized_buf;
libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterBilinear;
libyuv::I420Scale(cropped_y, crop_rect.w,
cropped_u, crop_rect.w / 2,
cropped_v, crop_rect.w / 2,
crop_rect.w, crop_rect.h,
resized_y, resized_width,
resized_u, resized_width / 2,
resized_v, resized_width / 2,
resized_width, resized_height,
mode);
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
// one shot conversion, O(n) anyway
// yuvframe2tensor, normalize
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
for (int c = 0; c < MODEL_WIDTH/2; c++) {
// Y_ul
net_input_buf[(r*MODEL_WIDTH/2) + c + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r)*resized_width + (2*c)]);
// Y_dl
net_input_buf[(r*MODEL_WIDTH/2) + c + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r+1)*resized_width + (2*c)]);
// Y_ur
net_input_buf[(r*MODEL_WIDTH/2) + c + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r)*resized_width + (2*c+1)]);
// Y_dr
net_input_buf[(r*MODEL_WIDTH/2) + c + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r+1)*resized_width + (2*c+1)]);
// U
net_input_buf[(r*MODEL_WIDTH/2) + c + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + r*resized_width/2 + c]);
// V
net_input_buf[(r*MODEL_WIDTH/2) + c + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + c + (r*resized_width/2)]);
}
}
//printf("preprocess completed. %d \n", yuv_buf_len);
//FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
//fwrite(raw_buf, height*width*3/2, sizeof(uint8_t), dump_yuv_file);
//fclose(dump_yuv_file);
// *** testing ***
// idat = np.frombuffer(open("/tmp/inputdump.yuv", "rb").read(), np.float32).reshape(6, 160, 320)
// imshow(cv2.cvtColor(tensor_to_frames(idat[None]/0.0078125+128)[0], cv2.COLOR_YUV2RGB_I420))
//FILE *dump_yuv_file2 = fopen("/tmp/inputdump.yuv", "wb");
//fwrite(net_input_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file2);
//fclose(dump_yuv_file2);
double t1 = millis_since_boot();
s->m->execute(net_input_buf, yuv_buf_len);
double t2 = millis_since_boot();
DMonitoringResult ret = {0};
for (int i = 0; i < 3; ++i) {
ret.face_orientation[i] = s->output[i];
ret.face_orientation_meta[i] = softplus(s->output[6 + i]);
}
for (int i = 0; i < 2; ++i) {
ret.face_position[i] = s->output[3 + i];
ret.face_position_meta[i] = softplus(s->output[9 + i]);
}
ret.face_prob = s->output[12];
ret.left_eye_prob = s->output[21];
ret.right_eye_prob = s->output[30];
ret.left_blink_prob = s->output[31];
ret.right_blink_prob = s->output[32];
ret.sg_prob = s->output[33];
ret.poor_vision = s->output[34];
ret.partial_face = s->output[35];
ret.distracted_pose = s->output[36];
ret.distracted_eyes = s->output[37];
ret.dsp_execution_time = (t2 - t1) / 1000.;
return ret;
}
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr<const float> raw_pred){
// make msg
MessageBuilder msg;
auto framed = msg.initEvent().initDriverState();
framed.setFrameId(frame_id);
framed.setModelExecutionTime(execution_time);
framed.setDspExecutionTime(res.dsp_execution_time);
framed.setFaceOrientation(res.face_orientation);
framed.setFaceOrientationStd(res.face_orientation_meta);
framed.setFacePosition(res.face_position);
framed.setFacePositionStd(res.face_position_meta);
framed.setFaceProb(res.face_prob);
framed.setLeftEyeProb(res.left_eye_prob);
framed.setRightEyeProb(res.right_eye_prob);
framed.setLeftBlinkProb(res.left_blink_prob);
framed.setRightBlinkProb(res.right_blink_prob);
framed.setSunglassesProb(res.sg_prob);
framed.setPoorVision(res.poor_vision);
framed.setPartialFace(res.partial_face);
framed.setDistractedPose(res.distracted_pose);
framed.setDistractedEyes(res.distracted_eyes);
if (send_raw_pred) {
framed.setRawPredictions(raw_pred.asBytes());
}
pm.send("driverState", msg);
}
void dmonitoring_free(DMonitoringModelState* s) {
delete s->m;
}