openpilot/selfdrive/controls/lib/pathplanner.py

231 lines
9.2 KiB
Python

import os
import math
from common.realtime import sec_since_boot, DT_MDL
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT
from selfdrive.controls.lib.lane_planner import LanePlanner
from selfdrive.config import Conversions as CV
import cereal.messaging as messaging
from cereal import log
LaneChangeState = log.PathPlan.LaneChangeState
LaneChangeDirection = log.PathPlan.LaneChangeDirection
LOG_MPC = os.environ.get('LOG_MPC', False)
LANE_CHANGE_SPEED_MIN = 45 * CV.MPH_TO_MS
LANE_CHANGE_TIME_MAX = 10.
DESIRES = {
LaneChangeDirection.none: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.PathPlan.Desire.none,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.none,
},
LaneChangeDirection.left: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.PathPlan.Desire.laneChangeLeft,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeLeft,
},
LaneChangeDirection.right: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.PathPlan.Desire.laneChangeRight,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeRight,
},
}
def calc_states_after_delay(states, v_ego, steer_angle, curvature_factor, steer_ratio, delay):
states[0].x = v_ego * delay
states[0].psi = v_ego * curvature_factor * math.radians(steer_angle) / steer_ratio * delay
return states
class PathPlanner():
def __init__(self, CP):
self.LP = LanePlanner()
self.last_cloudlog_t = 0
self.steer_rate_cost = CP.steerRateCost
self.setup_mpc()
self.solution_invalid_cnt = 0
self.path_offset_i = 0.0
self.lane_change_state = LaneChangeState.off
self.lane_change_timer = 0.0
self.prev_one_blinker = False
def setup_mpc(self):
self.libmpc = libmpc_py.libmpc
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
self.mpc_solution = libmpc_py.ffi.new("log_t *")
self.cur_state = libmpc_py.ffi.new("state_t *")
self.cur_state[0].x = 0.0
self.cur_state[0].y = 0.0
self.cur_state[0].psi = 0.0
self.cur_state[0].delta = 0.0
self.angle_steers_des = 0.0
self.angle_steers_des_mpc = 0.0
self.angle_steers_des_prev = 0.0
self.angle_steers_des_time = 0.0
def update(self, sm, pm, CP, VM):
v_ego = sm['carState'].vEgo
angle_steers = sm['carState'].steeringAngle
active = sm['controlsState'].active
angle_offset = sm['liveParameters'].angleOffset
# Run MPC
self.angle_steers_des_prev = self.angle_steers_des_mpc
VM.update_params(sm['liveParameters'].stiffnessFactor, sm['liveParameters'].steerRatio)
curvature_factor = VM.curvature_factor(v_ego)
self.LP.parse_model(sm['model'])
# Lane change logic
lane_change_direction = LaneChangeDirection.none
one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
if not active or self.lane_change_timer > LANE_CHANGE_TIME_MAX:
self.lane_change_state = LaneChangeState.off
else:
if sm['carState'].leftBlinker:
lane_change_direction = LaneChangeDirection.left
elif sm['carState'].rightBlinker:
lane_change_direction = LaneChangeDirection.right
torque_applied = sm['carState'].steeringPressed and \
((sm['carState'].steeringTorque > 0 and lane_change_direction == LaneChangeDirection.left) or \
(sm['carState'].steeringTorque < 0 and lane_change_direction == LaneChangeDirection.right))
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
# State transitions
# off
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
self.lane_change_state = LaneChangeState.preLaneChange
# pre
elif self.lane_change_state == LaneChangeState.preLaneChange:
if not one_blinker or below_lane_change_speed:
self.lane_change_state = LaneChangeState.off
elif torque_applied:
self.lane_change_state = LaneChangeState.laneChangeStarting
# starting
elif self.lane_change_state == LaneChangeState.laneChangeStarting and lane_change_prob > 0.5:
self.lane_change_state = LaneChangeState.laneChangeFinishing
# finishing
elif self.lane_change_state == LaneChangeState.laneChangeFinishing and lane_change_prob < 0.2:
if one_blinker:
self.lane_change_state = LaneChangeState.preLaneChange
else:
self.lane_change_state = LaneChangeState.off
if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]:
self.lane_change_timer = 0.0
else:
self.lane_change_timer += DT_MDL
self.prev_one_blinker = one_blinker
desire = DESIRES[lane_change_direction][self.lane_change_state]
# Turn off lanes during lane change
if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
self.LP.l_prob = 0.
self.LP.r_prob = 0.
self.libmpc.init_weights(MPC_COST_LAT.PATH / 10.0, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
else:
self.libmpc.init_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
self.LP.update_d_poly(v_ego)
# TODO: Check for active, override, and saturation
# if active:
# self.path_offset_i += self.LP.d_poly[3] / (60.0 * 20.0)
# self.path_offset_i = clip(self.path_offset_i, -0.5, 0.5)
# self.LP.d_poly[3] += self.path_offset_i
# else:
# self.path_offset_i = 0.0
# account for actuation delay
self.cur_state = calc_states_after_delay(self.cur_state, v_ego, angle_steers - angle_offset, curvature_factor, VM.sR, CP.steerActuatorDelay)
v_ego_mpc = max(v_ego, 5.0) # avoid mpc roughness due to low speed
self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
list(self.LP.l_poly), list(self.LP.r_poly), list(self.LP.d_poly),
self.LP.l_prob, self.LP.r_prob, curvature_factor, v_ego_mpc, self.LP.lane_width)
# reset to current steer angle if not active or overriding
if active:
delta_desired = self.mpc_solution[0].delta[1]
rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
else:
delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
rate_desired = 0.0
self.cur_state[0].delta = delta_desired
self.angle_steers_des_mpc = float(math.degrees(delta_desired * VM.sR) + angle_offset)
# Check for infeasable MPC solution
mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
t = sec_since_boot()
if mpc_nans:
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, CP.steerRateCost)
self.cur_state[0].delta = math.radians(angle_steers - angle_offset) / VM.sR
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message()
plan_send.init('pathPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'liveParameters', 'model'])
plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
plan_send.pathPlan.lProb = float(self.LP.l_prob)
plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
plan_send.pathPlan.rProb = float(self.LP.r_prob)
plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
plan_send.pathPlan.rateSteers = float(rate_desired)
plan_send.pathPlan.angleOffset = float(sm['liveParameters'].angleOffsetAverage)
plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)
plan_send.pathPlan.sensorValid = bool(sm['liveParameters'].sensorValid)
plan_send.pathPlan.posenetValid = bool(sm['liveParameters'].posenetValid)
plan_send.pathPlan.desire = desire
plan_send.pathPlan.laneChangeState = self.lane_change_state
plan_send.pathPlan.laneChangeDirection = lane_change_direction
pm.send('pathPlan', plan_send)
if LOG_MPC:
dat = messaging.new_message()
dat.init('liveMpc')
dat.liveMpc.x = list(self.mpc_solution[0].x)
dat.liveMpc.y = list(self.mpc_solution[0].y)
dat.liveMpc.psi = list(self.mpc_solution[0].psi)
dat.liveMpc.delta = list(self.mpc_solution[0].delta)
dat.liveMpc.cost = self.mpc_solution[0].cost
pm.send('liveMpc', dat)