openpilot/selfdrive/modeld/thneed/thneed.cc

468 lines
16 KiB
C++

#include <cassert>
#include <sys/mman.h>
#include <dlfcn.h>
#include <map>
#include <string>
#include <string.h>
#include <errno.h>
#include "thneed.h"
Thneed *g_thneed = NULL;
int g_fd = -1;
map<pair<cl_kernel, int>, string> g_args;
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec;
}
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
extern "C" {
int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL;
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
request &= 0xFFFFFFFF; // needed on QCOM2
if (my_ioctl == NULL) my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
Thneed *thneed = g_thneed;
// save the fd
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes;
if (thneed != NULL) {
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
if (thneed->record & 1) {
thneed->timestamp = cmd->timestamp;
thneed->context_id = cmd->context_id;
thneed->cmds.push_back(unique_ptr<CachedCommand>(new CachedCommand(thneed, cmd)));
}
if (thneed->record & 2) {
printf("IOCTL_KGSL_GPU_COMMAND(%2zu): flags: 0x%lx context_id: %u timestamp: %u\n",
thneed->cmds.size(),
cmd->flags,
cmd->context_id, cmd->timestamp);
}
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
if (thneed->record & 2) {
printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
}
if (thneed->record & 1) {
thneed->syncobjs.push_back(string((char *)objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count));
}
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
if (thneed->record & 2) {
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d timestamp: %d timeout: %d\n",
cmd->context_id, cmd->timestamp, cmd->timeout);
}
} else if (request == IOCTL_KGSL_SETPROPERTY) {
if (thneed->record & 2) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes);
if (thneed->record & 4) {
hexdump((uint32_t *)prop->value, prop->sizebytes);
if (prop->type == KGSL_PROP_PWR_CONSTRAINT) {
struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value;
hexdump((uint32_t *)constraint->data, constraint->size);
}
}
}
}
}
int ret = my_ioctl(filedes, request, argp);
if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno);
return ret;
}
}
GPUMalloc::GPUMalloc(int size, int fd) {
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = size;
alloc.flags = 0x10000a00;
ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
base = (uint64_t)addr;
remaining = size;
}
GPUMalloc::~GPUMalloc() {
// TODO: free the GPU malloced area
}
void *GPUMalloc::alloc(int size) {
if (size > remaining) return NULL;
remaining -= size;
void *ret = (void*)base;
base += (size+0xff) & (~0xFF);
return ret;
}
CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) {
thneed = lthneed;
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
memcpy(cmds, (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*2);
memcpy(objs, (void *)cmd->objlist, sizeof(struct kgsl_command_object)*1);
memcpy(&cache, cmd, sizeof(cache));
cache.cmdlist = (uint64_t)cmds;
cache.objlist = (uint64_t)objs;
for (int i = 0; i < cmd->numcmds; i++) {
void *nn = thneed->ram->alloc(cmds[i].size);
memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size);
cmds[i].gpuaddr = (uint64_t)nn;
}
for (int i = 0; i < cmd->numobjs; i++) {
void *nn = thneed->ram->alloc(objs[i].size);
memset(nn, 0, objs[i].size);
objs[i].gpuaddr = (uint64_t)nn;
}
}
void CachedCommand::exec(bool wait) {
cache.timestamp = ++thneed->timestamp;
int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (wait) {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = cache.context_id;
wait.timestamp = cache.timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(thneed->fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
if (thneed->record & 2) printf("exec %d wait %d after %lu us\n", ret, wret, (te-tb)/1000);
} else {
if (thneed->record & 2) printf("CachedCommand::exec got %d\n", ret);
}
assert(ret == 0);
}
Thneed::Thneed() {
assert(g_fd != -1);
fd = g_fd;
ram = make_unique<GPUMalloc>(0x40000, fd);
record = 1;
timestamp = -1;
g_thneed = this;
}
void Thneed::stop() {
record = 0;
}
//#define SAVE_LOG
void Thneed::execute(float **finputs, float *foutput, bool slow) {
uint64_t tb, te;
if (record & 2) tb = nanos_since_boot();
#ifdef SAVE_LOG
char fn[0x100];
snprintf(fn, sizeof(fn), "/tmp/thneed_log_%d", timestamp);
FILE *f = fopen(fn, "wb");
#endif
// ****** copy inputs
for (int idx = 0; idx < inputs.size(); ++idx) {
size_t sz;
clGetMemObjectInfo(inputs[idx], CL_MEM_SIZE, sizeof(sz), &sz, NULL);
#ifdef SAVE_LOG
fwrite(&sz, 1, sizeof(sz), f);
fwrite(finputs[idx], 1, sz, f);
#endif
if (record & 2) printf("copying %lu -- %p -> %p\n", sz, finputs[idx], inputs[idx]);
clEnqueueWriteBuffer(command_queue, inputs[idx], CL_TRUE, 0, sz, finputs[idx], 0, NULL, NULL);
}
// ****** set power constraint
struct kgsl_device_constraint_pwrlevel pwrlevel;
pwrlevel.level = KGSL_CONSTRAINT_PWR_MAX;
struct kgsl_device_constraint constraint;
constraint.type = KGSL_CONSTRAINT_PWRLEVEL;
constraint.context_id = context_id;
constraint.data = (void*)&pwrlevel;
constraint.size = sizeof(pwrlevel);
struct kgsl_device_getproperty prop;
prop.type = KGSL_PROP_PWR_CONSTRAINT;
prop.value = (void*)&constraint;
prop.sizebytes = sizeof(constraint);
int ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
// ****** run commands
int i = 0;
for (auto it = cmds.begin(); it != cmds.end(); ++it) {
++i;
if (record & 2) printf("run %2d: ", i);
(*it)->exec((i == cmds.size()) || slow);
}
// ****** sync objects
for (auto it = syncobjs.begin(); it != syncobjs.end(); ++it) {
struct kgsl_gpuobj_sync cmd;
cmd.objs = (uint64_t)it->data();
cmd.obj_len = it->length();
cmd.count = it->length() / sizeof(struct kgsl_gpuobj_sync_obj);
ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd);
assert(ret == 0);
}
// ****** copy outputs
size_t sz;
clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
if (record & 2) printf("copying %lu for output %p -> %p\n", sz, output, foutput);
clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL);
#ifdef SAVE_LOG
fwrite(&sz, 1, sizeof(sz), f);
fwrite(foutput, 1, sz, f);
fclose(f);
#endif
// ****** unset power constraint
constraint.type = KGSL_CONSTRAINT_NONE;
constraint.data = NULL;
constraint.size = 0;
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
if (record & 2) {
te = nanos_since_boot();
printf("model exec in %lu us\n", (te-tb)/1000);
}
}
// TODO: with a different way of getting the input and output buffers, we don't have to intercept CL at all
cl_int (*my_clSetKernelArg)(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) = NULL;
cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
if (my_clSetKernelArg == NULL) my_clSetKernelArg = reinterpret_cast<decltype(my_clSetKernelArg)>(dlsym(RTLD_NEXT, "REAL_clSetKernelArg"));
if (arg_value != NULL) {
g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size);
}
cl_int ret = my_clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
cl_int (*my_clEnqueueNDRangeKernel)(cl_command_queue, cl_kernel, cl_uint, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *) = NULL;
cl_int thneed_clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
if (my_clEnqueueNDRangeKernel == NULL) my_clEnqueueNDRangeKernel = reinterpret_cast<decltype(my_clEnqueueNDRangeKernel)>(dlsym(RTLD_NEXT, "REAL_clEnqueueNDRangeKernel"));
Thneed *thneed = g_thneed;
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
char name[0x100];
clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(name), name, NULL);
cl_uint num_args;
clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL);
if (thneed != NULL && thneed->record & 1) {
thneed->command_queue = command_queue;
for (int i = 0; i < num_args; i++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
string arg = g_args[make_pair(kernel, i)];
if (strcmp(arg_name, "input") == 0 && strcmp(name, "zero_pad_image_float") == 0) {
cl_mem mem;
memcpy(&mem, (void*)arg.data(), sizeof(mem));
thneed->inputs.push_back(mem);
}
if (strcmp(arg_name, "output") == 0 && strcmp(name, "image2d_to_buffer_float") == 0) {
cl_mem mem;
memcpy(&mem, (void*)arg.data(), sizeof(mem));
thneed->output = mem;
}
}
}
if (thneed != NULL && thneed->record & 2) {
printf("%p %56s -- ", kernel, name);
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", global_work_size[i]);
}
printf(" -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", local_work_size[i]);
}
printf("\n");
}
if (thneed != NULL && thneed->record & 4) {
// extreme debug
for (int i = 0; i < num_args; i++) {
char arg_type[0x100];
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_type), arg_type, NULL);
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
string arg = g_args[make_pair(kernel, i)];
printf(" %s %s", arg_type, arg_name);
void *arg_value = (void*)arg.data();
int arg_size = arg.size();
if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (strcmp(arg_type, "float") == 0) {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
if (val != NULL) {
if (strcmp("image2d_t", arg_type) == 0 || strcmp("image1d_t", arg_type) == 0) {
cl_image_format format;
size_t width, height, depth, array_size, row_pitch, slice_pitch;
clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL);
assert(format.image_channel_data_type == CL_HALF_FLOAT);
clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL);
clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL);
clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL);
clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL);
clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL);
clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL);
assert(depth == 0);
assert(array_size == 0);
assert(slice_pitch == 0);
printf(" image %zu x %zu rp %zu", width, height, row_pitch);
} else {
size_t sz;
clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
printf(" buffer %zu", sz);
}
}
}
printf("\n");
}
}
cl_int ret = my_clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
/*uint64_t tb = nanos_since_boot();
clWaitForEvents(1, event);
uint64_t te = nanos_since_boot();
if (thneed != NULL && thneed->record & 2) {
printf(" wait %lu us\n", (te-tb)/1000);
}*/
return ret;
}
//#define SAVE_KERNELS
#ifdef SAVE_KERNELS
map<cl_program, string> program_source;
cl_program (*my_clCreateProgramWithSource)(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) = NULL;
cl_program thneed_clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) {
if (my_clCreateProgramWithSource == NULL) my_clCreateProgramWithSource = reinterpret_cast<decltype(my_clCreateProgramWithSource)>(dlsym(RTLD_NEXT, "REAL_clCreateProgramWithSource"));
assert(count == 1);
size_t my_lengths[1];
my_lengths[0] = lengths[0];
char fn[0x100];
snprintf(fn, sizeof(fn), "/tmp/program_%zu.cl", strlen(strings[0]));
FILE *f = fopen(fn, "wb");
fprintf(f, "%s", strings[0]);
fclose(f);
char tmp[0x10000];
memset(tmp, 0, sizeof(tmp));
snprintf(fn, sizeof(fn), "/tmp/patched_%zu.cl", strlen(strings[0]));
FILE *g = fopen(fn, "rb");
if (g != NULL) {
printf("LOADING PATCHED PROGRAM %s\n", fn);
fread(tmp, 1, sizeof(tmp), g);
fclose(g);
strings[0] = tmp;
my_lengths[0] = strlen(tmp);
}
program_source[ret] = strings[0];
cl_program ret = my_clCreateProgramWithSource(context, count, strings, my_lengths, errcode_ret);
return ret;
}
#endif
void *dlsym(void *handle, const char *symbol) {
// TODO: Find dlsym in a better way. Currently this is hand looked up in libdl.so
#if defined QCOM
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen-0x2d4);
#elif defined QCOM2
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen+0x138);
#else
#error "Unsupported platform for thneed"
#endif
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)thneed_clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)thneed_clSetKernelArg;
#ifdef SAVE_KERNELS
} else if (strcmp("clCreateProgramWithSource", symbol) == 0) {
return (void*)thneed_clCreateProgramWithSource;
#endif
} else {
return my_dlsym(handle, symbol);
}
}